JPS5895647A - Manufacture of silicon nitride/boron nitride composite material - Google Patents

Manufacture of silicon nitride/boron nitride composite material

Info

Publication number
JPS5895647A
JPS5895647A JP56191948A JP19194881A JPS5895647A JP S5895647 A JPS5895647 A JP S5895647A JP 56191948 A JP56191948 A JP 56191948A JP 19194881 A JP19194881 A JP 19194881A JP S5895647 A JPS5895647 A JP S5895647A
Authority
JP
Japan
Prior art keywords
boron nitride
mixed powder
manufacturing
silicon nitride
organic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56191948A
Other languages
Japanese (ja)
Other versions
JPH0223495B2 (en
Inventor
長谷 貞三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56191948A priority Critical patent/JPS5895647A/en
Publication of JPS5895647A publication Critical patent/JPS5895647A/en
Publication of JPH0223495B2 publication Critical patent/JPH0223495B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は潤滑性に富む高温材料として好適な、窒化ホ
ウ素繊維を含んだ窒化ケイ素セラミック複合材の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silicon nitride ceramic composite material containing boron nitride fibers, which is suitable as a high-temperature material with rich lubricity.

周知のように窒化ケイ素系セラミック材は耐熱性が良好
でしかも高強度である等の理由から最近では広く使用さ
れつつあ)、また窒化ホウ素は潤滑性材料として知られ
ている。そこで最近では窒化ケイ素に窒化ホウ素を複合
した材料が潤滑性に富む高温材料として注目されている
As is well known, silicon nitride-based ceramic materials have recently become widely used due to their good heat resistance and high strength, and boron nitride is known as a lubricating material. Therefore, recently, a composite material of silicon nitride and boron nitride has been attracting attention as a high-temperature material with excellent lubricity.

上述のような窒化ホウ素/窒化ケイ素複合材としては窒
化ホウ素の繊維を一定方向に軸を揃えて窒化ケイ素基地
中に埋込んだものが提案されており、この種の複合材の
製造方法としては、窒化ホウ素の繊維を窒化ケイ素の粉
末中に配置し、高温られている。しかしながらこのよう
な製造方法においては、各窒化ホウ素繊維の間に窒化ケ
イ素が均一に介在せずに、隣シ合う窒化ホウ素繊維同士
が接してしまうことが多く、そのため各窒化ホウ素繊維
が均一に分散配列されていない製品が得られることが多
い、このような製品ではその摩擦係数が不均一となると
ともに摩耗速度も不均一となり、その結果安定した潤滑
性能が得られず、また耐久性も欠ける等の問題がある。
As the boron nitride/silicon nitride composite material mentioned above, it has been proposed that boron nitride fibers are embedded in a silicon nitride matrix with their axes aligned in a certain direction. , boron nitride fibers are placed in silicon nitride powder and heated to high temperature. However, in this manufacturing method, silicon nitride is not uniformly interposed between each boron nitride fiber, and adjacent boron nitride fibers often come into contact with each other, so each boron nitride fiber is not uniformly dispersed. Products that are not aligned are often obtained, and such products have uneven friction coefficients and uneven wear rates, resulting in unstable lubrication performance and lack of durability. There is a problem.

この発明は以上の事情に鑑みてなされたもので、窒化ホ
ウ素繊維が窒化ケイ素基地中に均一に分散配列された窒
化ホウ素/窒化ケイ素複合材を製造し得る方法を提供す
ることを目的とするものである。
This invention was made in view of the above circumstances, and an object thereof is to provide a method for manufacturing a boron nitride/silicon nitride composite material in which boron nitride fibers are uniformly dispersed and arranged in a silicon nitride matrix. It is.

すなわちこの発明の製造方法は、ジ−n−ブチルフタレ
ートに代表される有機液体の蒸気を含む雰囲気に窒化ホ
ウ素繊維をさらしてその窒化ホウホ繊維表面に前記有機
液体を膜状に付着させ、しかる後に窒化ケイ素を主体と
しかつこれにスピネル等の少量の焼結助剤を均一に混合
してなる第1の混合粉末を前記窒化ホウ素繊維の表面に
前記有機液体膜を介して均一に付着させ、次いで前記同
様に窒化ケイ素を主体としかつこれにスピネル等の少量
の焼結助剤を均一に混合してなる第2の混合粉末中に、
その第2の混合粉末に対し体積比で20〜50−となる
ように前記繊維を一方向に軸を揃えた状態で配置し、続
いて繊維軸方向に対し直交する方向に加圧力を加えて高
温でホットプレスして、粉末粒子相互間を焼結す、ると
ともに繊維と粉末粒子との間を焼結一体化し、窒化ホウ
素繊維が窒化ケイ素基地中に均一に分散配列された複合
材を得るものである。
That is, the manufacturing method of the present invention involves exposing boron nitride fibers to an atmosphere containing vapor of an organic liquid typified by di-n-butyl phthalate, causing the organic liquid to adhere to the surface of the nitrided boron fibers in the form of a film, and then A first mixed powder consisting mainly of silicon nitride and uniformly mixed with a small amount of a sintering aid such as spinel is uniformly adhered to the surface of the boron nitride fiber via the organic liquid film, and then Similarly to the above, the second mixed powder is made by uniformly mixing silicon nitride with a small amount of sintering aid such as spinel,
The fibers are arranged with their axes aligned in one direction so that the volume ratio is 20 to 50 with respect to the second mixed powder, and then a pressing force is applied in a direction perpendicular to the fiber axis direction. Hot press at high temperature to sinter the powder particles, and also sinter and integrate the fibers and powder particles to obtain a composite material in which boron nitride fibers are uniformly dispersed and arranged in the silicon nitride matrix. It is something.

以下この発明の方法についてさらに詳細に説明する。The method of the present invention will be explained in more detail below.

この発明の方法を実施するにあたっては、まず窒化ホウ
素(BN)繊維を有機液体の蒸気を含有する雰囲気にさ
らして、その有機液体を窒化ホウ素繊維の表面に膜状に
付着させる。この有機液体としては、窒化ホウ素繊維に
対するぬれ性が良好であってその有機液体を窒化ホウ素
繊維表面に膜状に付着させることが可能なものであシ、
シかも後述する混合粉末を均一に付着(貼着)させ得る
程度の粘性を有するものであることが必要であり、これ
らの点からジ−n−ブチルフタレートを使用することが
最も望ましく、このほかフタル酸オクチル、ヒドロ〜フ
ルフリル、リン酸トリエチル、ブチルフ、タリルブチル
グリコレート等も使用可能であシ、またこれらの混合液
体を使用することもできる。
In carrying out the method of the present invention, boron nitride (BN) fibers are first exposed to an atmosphere containing vapor of an organic liquid, so that the organic liquid is deposited in a film on the surface of the boron nitride fibers. The organic liquid should have good wettability to the boron nitride fibers and be able to adhere to the surface of the boron nitride fibers in the form of a film;
However, it is necessary to have a viscosity to the extent that the mixed powder described below can be uniformly adhered to it.From these points, it is most desirable to use di-n-butyl phthalate. Octyl phthalate, hydro-furfuryl, triethyl phosphate, butylphate, talyl butyl glycolate, etc. can also be used, and a liquid mixture thereof can also be used.

次いで前述のようにジ−n−ブチルフタレート等の有機
液体を膜状に付着させた窒化ホウ素繊維の表面に、その
有機液体膜を介して窒化ケイ素(5t5N4)を主体と
する第1の混合粉末を一様な厚みで均一に付着させる。
Next, as described above, a first mixed powder mainly composed of silicon nitride (5t5N4) is applied to the surface of the boron nitride fibers to which a film of an organic liquid such as di-n-butyl phthalate is attached via the organic liquid film. Apply it evenly with a uniform thickness.

この第1の混合粉末は、窒化ケイ素を主体とし、これに
焼結助剤粉末例えばスピネル、イツトリア、アルミナ、
ジルコニア、もしくはマグネシア、あるいはこれらの混
合粉末を少量、すなわち望ましくは3〜15重量−を均
一に添加混合したものであり、またその第10混金粉末
としては後述する第2の混合粉末よりも平均粒径が小さ
くて微細なもの、望ましくは粒径0.3μm以下の粒子
からなるものを使用する。この第1の混合粉末の粒度が
粗過ぎれば、窒化ホウ素繊維の表面に混合粉末が均一に
付着されずに剥落してしまうおそれがあるが、粒径を0
.3μm以下とすることによって混合粉末を均一に良好
な状態で付着させることができる。またこのように微細
な混合粉末を窒化ホウ素繊維の表面に均一に付着させて
おくことにより、特に繊維周囲の焼結性を良好にして、
窒化ホウ素繊維とその周囲の窒化ケイ素焼結基地との間
の結合を強固にすることができる。なお第1の混合粉末
を繊維表面に付着させる手段としては、例えば繊維周囲
から第1の混合粉末を吹付けたり、あるいは第1の混合
粉末の粉体表面に繊維を装置してその上からさらに第1
の混合粉末を散布したシすれば良く、このようにすれば
繊維表面の前記有機液体膜の粘性によって第1の混合粉
末が均一な厚みで付着される。
This first mixed powder is mainly composed of silicon nitride, and sintering aid powder such as spinel, ittria, alumina, etc.
A small amount of zirconia, magnesia, or a mixed powder thereof, preferably 3 to 15 weight, is uniformly added and mixed. Use particles having a small and fine particle size, preferably particles having a particle size of 0.3 μm or less. If the particle size of this first mixed powder is too coarse, there is a risk that the mixed powder will not adhere uniformly to the surface of the boron nitride fibers and will peel off.
.. By setting the thickness to 3 μm or less, the mixed powder can be uniformly adhered in a good condition. In addition, by uniformly adhering the fine mixed powder to the surface of the boron nitride fibers, the sinterability especially around the fibers is improved.
The bond between the boron nitride fiber and the surrounding silicon nitride sinter base can be strengthened. Note that the means for adhering the first mixed powder to the fiber surface may be, for example, spraying the first mixed powder from around the fibers, or placing the fibers on the powder surface of the first mixed powder and then applying further powder on top of the first mixed powder. 1st
In this way, the first mixed powder is deposited with a uniform thickness due to the viscosity of the organic liquid film on the fiber surface.

上述のようにして窒化ホウ素繊維表面に第1の混合粉末
を付着させた後、その多数本の窒化ホウ素繊維をその軸
を一方向に揃えた状態で第2の混合粉末中に等間隔で配
置する。この第2の混合粉末としては、前記第1の混合
粉末と同様に、窒化ケイ素を主体としこれにスピネル、
イクトリア、アルミナ、あるいはマグネシア、またはこ
れらの混合粉体等の情緒助剤を望ましくは3〜15重量
%均一に添加混合したものが使用される。またこの第2
の混合粉末としては粒子の径が1.0μm以下のものを
使用することが望ましい、なお第2の混合粉末に対する
窒化ホウ素繊維の割合は、窒化ホウ素繊維が体積比で2
0〜50%を占めるように設定する必要がある。すなわ
ち窒化ホウ素繊維の占める割合が小さいほど次のホット
プレス工程における温度と加圧力が低くて済−むが、2
0体積−よりも少なくなれば焼結体(製品)の潤滑性が
低下し、高温潤滑材料として不適当となシ、一方50体
積チを越−えれば相当な高温・高圧でホットプレスして
も充分な焼結体強度が得られない・次いで上述のように
窒化ホウ素繊維を第20混合粉末中に一方向に配列させ
た状態で、窒素雰囲気あるいはアルゴンガス雰囲気中に
おいてその全体に高温、高圧を加えていわゆるホットプ
レスを行う、このホットプレスにおける加圧力は、繊維
軸に対し直角な方向に加える。このようにホットプレス
すれば、第1および第2の混合粉末の粒子相互間が焼結
結合されると同時に窒化ホウ素繊維表面とその周囲の混
合粉末粒子との間が焼結結合され、全体として強固かつ
緻密に結合された焼結体(製品)が得られる。ここで、
窒化ホウ素繊維表面には予め前記有機液体膜を介して混
合粉末が付着されているから、隣り合う窒化ホウ素繊維
の間に必ず混合粉末が介在することになり、したがって
ホットプレスを行っても窒化ホウ素繊維相互間が接触し
てしまうことが防止され、その結果窒化ホウ素繊維が均
一に分散配列された焼結体が得られることになる。
After attaching the first mixed powder to the surface of the boron nitride fibers as described above, a large number of the boron nitride fibers are arranged at equal intervals in the second mixed powder with their axes aligned in one direction. do. As with the first mixed powder, this second mixed powder mainly contains silicon nitride, and spinel and silicon nitride.
An emotional auxiliary agent such as ictoria, alumina, magnesia, or a mixed powder thereof is desirably added and mixed in an amount of 3 to 15% by weight uniformly. Also this second
It is desirable to use a mixed powder with a particle diameter of 1.0 μm or less, and the ratio of boron nitride fiber to the second mixed powder is such that the volume ratio of boron nitride fiber is 2.
It is necessary to set it so that it occupies 0 to 50%. In other words, the smaller the proportion of boron nitride fibers, the lower the temperature and pressure in the next hot press step, but 2
If the volume is less than 0, the lubricity of the sintered body (product) will decrease and it will be unsuitable as a high-temperature lubricant material.On the other hand, if the volume exceeds 50, the sintered body (product) will be hot-pressed at considerably high temperatures and pressures.・Next, as mentioned above, with the boron nitride fibers arranged in one direction in the No. 20 mixed powder, the whole is heated at high temperature and high pressure in a nitrogen atmosphere or an argon gas atmosphere. The pressing force in this hot pressing is applied in a direction perpendicular to the fiber axis. By hot pressing in this way, the particles of the first and second mixed powders are sintered and bonded, and at the same time, the surface of the boron nitride fiber and the surrounding mixed powder particles are sintered and bonded, and the whole A strongly and densely bonded sintered body (product) is obtained. here,
Since the mixed powder is attached to the surface of the boron nitride fibers in advance via the organic liquid film, the mixed powder is always present between adjacent boron nitride fibers, so even if hot pressing is performed, the boron nitride The fibers are prevented from coming into contact with each other, and as a result, a sintered body in which the boron nitride fibers are uniformly dispersed and arranged can be obtained.

なお上述のホットプレスにおける温度は1600〜18
00℃程度が望ましく、また加圧力は100〜400 
kII/C11程度が望ましい。
Note that the temperature in the hot press mentioned above is 1600 to 18
The temperature is preferably about 00°C, and the pressure is 100 to 400°C.
A value of approximately kII/C11 is desirable.

1600℃より低温では加圧力を400 klil/d
以上としても充分に緻密化されない、一方1800℃で
は100 kYcd程度の加圧力で充分な密度に達する
が、1800℃を越えれば粒成長が生じて好ましくない
If the temperature is lower than 1600℃, apply pressure to 400 klil/d.
Even if the temperature exceeds 1800°C, sufficient densification is not achieved.On the other hand, at 1800°C, a sufficient density is reached with a pressing force of about 100 kYcd, but if the temperature exceeds 1800°C, grain growth occurs, which is undesirable.

以下にこの発明の実施例を記す。Examples of this invention are described below.

実施例 直径5〜lOμmの窒化ホウ素繊維(カーボラ/ダム社
製)を約2sのジ−n−ブチルフタレートを蒸気相とし
て含みかつ水分を実質的に含有しない空気にさらして、
窒化ホウ素繊維の表面にジ−n−ブチルフタレートを膜
状に付着させ九0次いでスピネル8重量%、残部窒化ケ
イ素からなる粒径0.3μm以下の第1の混合粉末を窒
化ホウ素繊維の表面に一様な厚さで付着させた。続いて
スピネル8重量%、残部窒化ケイ素からなる粒径1.0
μm以下の第2の混合粉末をホットプレス用黒鉛型底部
に散布し、その上に前記窒化ホウ素繊維を等間隔で一方
向に配列し、さらにその上に前記第2の混合粉末を散布
し、この配列・散布を複数回繰返して第2の混合粉末中
に窒化ホウ素繊維を35体積−の割合で配置した。次い
で窒素雰囲気中において1700℃で繊維軸方向に対し
直交する方向に250 Wailの加圧力を加えてホッ
トプレスし、混合粉末と繊維とが一体化された焼結体(
複合材)を得た。
Example: Boron nitride fibers (manufactured by Carbora/Dam) with a diameter of 5 to 10 μm were exposed to air containing about 2 s of di-n-butyl phthalate in the vapor phase and substantially free of moisture.
Di-n-butyl phthalate was deposited in a film form on the surface of the boron nitride fibers, and then a first mixed powder with a particle size of 0.3 μm or less consisting of 8% by weight spinel and the balance silicon nitride was applied to the surface of the boron nitride fibers. It was deposited at a uniform thickness. Next, a grain size of 1.0 consisting of spinel 8% by weight and the remainder silicon nitride.
Spreading a second mixed powder of µm or less on the bottom of a hot press graphite mold, arranging the boron nitride fibers at equal intervals in one direction on top of it, and further scattering the second mixed powder on top of it; This arrangement and scattering was repeated several times to arrange the boron nitride fibers in the second mixed powder at a ratio of 35 volumes. Next, hot pressing was carried out in a nitrogen atmosphere at 1700° C. by applying a pressure of 250 wail in a direction perpendicular to the fiber axis direction to obtain a sintered body (in which the mixed powder and fibers were integrated).
Composite material) was obtained.

上述の実施例により得られた焼結体の密度を測定し九と
ころ、理論計算密度の99%に達していることが確認さ
れた。また実施例により得られた焼結体の繊維の軸方向
と平行な面の摩擦係数を、窒素雰囲気中において400
℃で測定したところ、摩擦係数は0,16であった。比
較のため窒化ホウ素繊維を含まない焼結体の摩擦係数を
測定したところ、その場合には摩擦係数が0.58とな
り、シ九が、うてこの発明の場合には摩擦係数が格段に
小さくなっていることが明らかである。なおこの摩擦係
数測定試験は、クロムモリブデン鋼の円筒外周面を表面
粗さ0.03〜0.05μmに仕上げ、その円筒外周面
に表面粗さ0.1〜0.2μmの焼結体を繊維の長さ方
向が円筒外周面に接するようにして測定した。
The density of the sintered body obtained in the above example was measured and it was confirmed that the density reached 99% of the theoretically calculated density. In addition, the friction coefficient of the plane parallel to the axial direction of the fibers of the sintered body obtained in the example was determined to be 400% in a nitrogen atmosphere.
When measured at °C, the friction coefficient was 0.16. For comparison, we measured the friction coefficient of a sintered body that does not contain boron nitride fibers, and in that case the friction coefficient was 0.58. It is clear that In this friction coefficient measurement test, the outer peripheral surface of a cylinder made of chromium molybdenum steel was finished to a surface roughness of 0.03 to 0.05 μm, and a sintered body with a surface roughness of 0.1 to 0.2 μm was attached to the outer peripheral surface of the cylinder. Measurements were made with the length direction of the cylinder in contact with the outer peripheral surface of the cylinder.

さらに、実施例により得られた焼結体をセラミックガス
タービン用回転型熱交換器の軸受部に使用し、また比較
のため窒化ホウ素繊維を含まない焼結体を同じ軸受部に
使肝したとζろ、実施例により得られた焼結体を用いた
場合には、窒化ホウ素繊維を含まない焼結体を用いた場
合と比較して回転に要するエネルギが3割程度低減でき
ることが確認された。
Furthermore, the sintered body obtained in the example was used in the bearing part of a rotary heat exchanger for a ceramic gas turbine, and for comparison, a sintered body that did not contain boron nitride fiber was used in the same bearing part. It was confirmed that when the sintered body obtained in the example was used, the energy required for rotation could be reduced by about 30% compared to the case where a sintered body that did not contain boron nitride fibers was used. .

以上の説明で明らかなようにこの発明の製造方法は、ジ
−n−ブチル7タレート等の有機液体膜を介して予め窒
化ホウ素繊維表面に窒化ケイ素粉末を主体とする第1の
混合粉末を付着させておき、これを同じく窒化ケイ素粉
末を主体とする第2の混合粉末中に配置してホットプレ
スすることKよって、窒化ケイ素繊維が均一に分散配列
され九焼結体を得るととができる。したがってこの発明
の製造方法によれば、摩擦係数が均一で摩耗速度も均一
な高温潤滑材料に最適危焼結体を得ることができる。
As is clear from the above explanation, in the manufacturing method of the present invention, a first mixed powder mainly composed of silicon nitride powder is attached in advance to the surface of boron nitride fibers via an organic liquid film such as di-n-butyl 7-talate. This is then placed in a second mixed powder, which is also mainly composed of silicon nitride powder, and hot-pressed.Thereby, a sintered body in which the silicon nitride fibers are uniformly dispersed and arranged can be obtained. . Therefore, according to the manufacturing method of the present invention, it is possible to obtain a fragile sintered body optimal for high-temperature lubricating materials with a uniform coefficient of friction and a uniform wear rate.

Claims (9)

【特許請求の範囲】[Claims] (1)  有機液体の蒸気を含む雰囲気に窒化ホウ素繊
維をさらしてその窒化ホウ素繊維表面に前記有機液体を
膜状に付着させ、しかる後窒化ケイ素を主体としかつこ
れに少量の焼結助剤を均一に混合してなる第1の混合粉
末を前記窒化ホウ素繊維の表面に前記有機液体膜を介し
て付着させ、次いで窒化ケイ素を主体としかつこれに少
量の焼結助剤を均一に混合してなる第2の混合粉末中に
体積比で20〜50−となるように前記繊維を一方向に
軸を揃え良状態で配置し、続いて繊維軸方向に対し直交
する方向に加圧力を加えて高温でホットプレスすること
を特徴とする窒化ケイ素/窒化ホウ素複合材の製造方法
(1) A boron nitride fiber is exposed to an atmosphere containing the vapor of an organic liquid, so that the organic liquid is deposited on the surface of the boron nitride fiber in the form of a film, and then the boron nitride fiber is made mainly of silicon nitride and a small amount of a sintering aid is added thereto. A first mixed powder formed by uniformly mixing is adhered to the surface of the boron nitride fiber via the organic liquid film, and then a powder mainly composed of silicon nitride and a small amount of a sintering aid is uniformly mixed therein. The fibers are placed in a second mixed powder with their axes aligned in one direction so that the volume ratio is 20 to 50, and then a pressing force is applied in a direction perpendicular to the fiber axis direction. A method for producing a silicon nitride/boron nitride composite material, which is characterized by hot pressing at a high temperature.
(2)前記有機液体として、ジ−n−ブチルフタレート
、フタル酸オクチル、ヒドロフルフリル、リン酸トリエ
チル、およびブチルフタリルブチルグリコレートのうち
から選ばれた1種または2種以上のものを用いる特許請
求の11@l第1項記載の製造方法。
(2) As the organic liquid, one or more selected from di-n-butyl phthalate, octyl phthalate, hydrofurfuryl, triethyl phosphate, and butylphthalyl butyl glycolate is used. The manufacturing method according to claim 11@l.
(3)前記各混合粉末が、それぞれ窒化ケイ素に3〜1
5重量嗟重量績助剤を配合したものである特許請求の範
囲第1項記載の製造方法。
(3) The above-mentioned mixed powders each contain 3-1% of silicon nitride.
The manufacturing method according to claim 1, wherein a 5 weight weight performance aid is blended.
(4)前記焼結助剤として、スピネル、イツトリア、ア
ル之す、ジルコニア、およびマグネシアのうちから選ば
れた1種または2種以上のものを用いる特許請求の範囲
第1項記載の製造方法。
(4) The manufacturing method according to claim 1, wherein the sintering aid is one or more selected from spinel, ittria, aluminum, zirconia, and magnesia.
(5)前記第1の混合粉末として、その平均粒径が第2
の混合粉末よ抄も小さいものを使用する特許請求の範囲
順環記載の製造方法。
(5) The first mixed powder has an average particle size of a second powder.
The manufacturing method according to the claims, which uses a mixed powder having a small size.
(6)前記第1の混合粉末として粒径が0.3μm以下
のものを用いる特許請求の範囲第5項記載の製造方法。
(6) The manufacturing method according to claim 5, wherein the first mixed powder has a particle size of 0.3 μm or less.
(7)前記第2の混合粉末として粒径が1.0μm以下
のものを用いる特許請求の範囲第5項記載の製造方法。
(7) The manufacturing method according to claim 5, wherein the second mixed powder has a particle size of 1.0 μm or less.
(8)  前記ホットプレスにおける加圧力を100〜
400−とする特許請求の範囲第1項記載の製造方法。
(8) Pressure force in the hot press is 100~
400- The manufacturing method according to claim 1.
(9)前記ホットプレスにおける加熱温度を1600〜
1800℃とする特許請求の範囲第1項記幀の製造方法
(9) The heating temperature in the hot press is 1600~
The manufacturing method according to claim 1, wherein the temperature is 1800°C.
JP56191948A 1981-11-30 1981-11-30 Manufacture of silicon nitride/boron nitride composite material Granted JPS5895647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56191948A JPS5895647A (en) 1981-11-30 1981-11-30 Manufacture of silicon nitride/boron nitride composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56191948A JPS5895647A (en) 1981-11-30 1981-11-30 Manufacture of silicon nitride/boron nitride composite material

Publications (2)

Publication Number Publication Date
JPS5895647A true JPS5895647A (en) 1983-06-07
JPH0223495B2 JPH0223495B2 (en) 1990-05-24

Family

ID=16283118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56191948A Granted JPS5895647A (en) 1981-11-30 1981-11-30 Manufacture of silicon nitride/boron nitride composite material

Country Status (1)

Country Link
JP (1) JPS5895647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632864A (en) * 1986-06-19 1988-01-07 株式会社豊田中央研究所 Fiber reinforced ceramic composite body and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632864A (en) * 1986-06-19 1988-01-07 株式会社豊田中央研究所 Fiber reinforced ceramic composite body and manufacture

Also Published As

Publication number Publication date
JPH0223495B2 (en) 1990-05-24

Similar Documents

Publication Publication Date Title
EP0834594A1 (en) Process for producing sputtering target
US7235506B2 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
JPH04241938A (en) Composite item and manufacture thereof
JPH11508201A (en) Coating method, manufacturing method of ceramic-metal structure, bonding method, and structure formed by them
JP3350394B2 (en) Graphite composite silicon carbide sintered body, graphite composite silicon carbide sintered composite, and mechanical seal
CA2145161A1 (en) Method for making a ceramic metal composite
JPS5895647A (en) Manufacture of silicon nitride/boron nitride composite material
US4049428A (en) Metal porous abradable seal
US5928583A (en) Process for making ceramic bodies having a graded porosity
EP0401836A1 (en) A composite substrate
JPS61127664A (en) Silicon carbide sliding material
US5441764A (en) Method of manufacturing a compound body and the resulting body
JPS6225635B2 (en)
JP4803872B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JPS6077176A (en) Manufacture of aluminum nitride sintered body
JPH0632655A (en) Diamond sintered compact and its production
JP2718777B2 (en) Method for producing reaction sintered ceramic member
JP2002503622A (en) Si / C / N based polymer-pyrolysis-ceramic as raw material for tribological use
JPH0687674A (en) Clad fine material and production thereof
JPS59207883A (en) Manufacture of aluminum nitride sintered body
JPH0218364A (en) Fiber reinforced mullite composite material subjected to particle dispersion strengthening and production thereof
Amin Friction characteristics of lubricated copper surfaces with controlled asperity sizes
JPH0274669A (en) Carbon fiber-reinforced carbon material having oxidation resistance and production thereof
JPS583024B2 (en) Seizouhouhou
JPH04342471A (en) Reacted sintered composite ceramic, its production and sliding member using the same