JPS6077176A - Manufacture of aluminum nitride sintered body - Google Patents
Manufacture of aluminum nitride sintered bodyInfo
- Publication number
- JPS6077176A JPS6077176A JP58182741A JP18274183A JPS6077176A JP S6077176 A JPS6077176 A JP S6077176A JP 58182741 A JP58182741 A JP 58182741A JP 18274183 A JP18274183 A JP 18274183A JP S6077176 A JPS6077176 A JP S6077176A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- sintered body
- sintering
- sintering aid
- aluminum nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は常圧焼結によって窒化アルミニウム焼結体を製
造する方法の改良に1列う−る。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention is directed to an improvement in a method for producing an aluminum nitride sintered body by pressureless sintering.
窒化アルミニウムは安定性Kfれ、常温、高温での強度
が高く、シかも化学的耐性にも優れているため、耐熱材
−料として有用であるばかシでなく、その高熱伝導性、
高電気絶縁性から電子工業用の放熱板としても有望な材
料でめる。Aluminum nitride is useful as a heat-resistant material because of its stability, high strength at room and high temperatures, and excellent chemical resistance.
It is a promising material as a heat sink for the electronic industry due to its high electrical insulation properties.
かかる窒化アルミニウムは通常、融点を持たず。Such aluminum nitride typically has no melting point.
2200℃以上の高温で分解するため、薄膜作製などの
場合を除いては焼結体として用いられることが多い。Since it decomposes at high temperatures of 2200° C. or higher, it is often used as a sintered body, except in cases such as thin film production.
ところで、窒化アルミニウム焼結体の製造方法としては
、従来よシ反応焼結法、常圧焼結法或いはホットブレス
法などが採用されている。Incidentally, as a method for producing an aluminum nitride sintered body, conventionally, a reaction sintering method, an atmospheric pressure sintering method, a hot press method, etc. have been adopted.
反応焼結法では得られた焼結体が多孔質となシ、しかも
形状によっては内部に未反応の金属が残存する可能性が
ある。し力・して、緻密な蟹化アルミニウム焼結体を得
るため(Cは主に常圧焼結法又はホットブレス法が採用
されでいる。常圧焼結法では高密度化を図るためには焼
結助剤の添加が必要であシ、通常アルカリ土類金属や希
土類金属の化合物が用いられている。ホットブレス法で
は原料として窒化アルミニウム粉末単独、もしくは助剤
が添加された窒化アルミニウム粉末を用いる。In the reactive sintering method, the obtained sintered body is not porous, and depending on the shape, unreacted metal may remain inside. In order to obtain a dense aluminum crabide sintered body (for C, the normal pressure sintering method or the hot press method is mainly adopted. In the normal pressure sintering method, in order to achieve high density It is necessary to add a sintering aid, and compounds of alkaline earth metals or rare earth metals are usually used.In the hot-breathing method, the raw material is aluminum nitride powder alone or aluminum nitride powder with an additive added. Use.
しかしながら、前記ホットブレス法は生産性が低く、し
かもコストが高騰化するという欠点があった。これに対
し、常圧焼結法はせ脆化が容易でかつ低コスト化が可能
であるが、次に示すような欠点があった。However, the hot-breath method has the drawbacks of low productivity and high costs. On the other hand, although pressureless sintering can easily cause embrittlement and can reduce costs, it has the following drawbacks.
即ち、常圧焼結法で用いられる焼結助剤は一般に高温で
の蒸気圧が比較的に西<、焼結時に粉末成形体の表面付
近の焼結助剤が蒸発飛散する。その結果、焼結体の表面
付近が緻密化しなくなったシ、或いは製品の形状によっ
ては焼結体が大巾に変形するという欠点があった。この
傾向はアルカリ土類金属化合物を焼結助剤として用いた
ときに特に著しく、また焼結体の形状が平板状の場合の
ように表面積/体積比が大きい程、著しい。なお、表面
付近での焼結助剤の蒸発についてはXMA (X線マイ
クロアナライザ)やEDX (螢光X線分析)Kよって
確認括れている。このようなことから、常圧焼結法によ
シ高密度、無変形め窒化アルミニウム焼結体を得る方法
の開発が要望されている。That is, the sintering aid used in the pressureless sintering method generally has a relatively low vapor pressure at high temperatures, and the sintering aid near the surface of the powder compact evaporates and scatters during sintering. As a result, the sintered body has the disadvantage that the vicinity of the surface thereof is no longer densified, or that the sintered body is significantly deformed depending on the shape of the product. This tendency is particularly remarkable when an alkaline earth metal compound is used as a sintering aid, and the larger the surface area/volume ratio is, as in the case where the sintered body is flat, the more remarkable it is. The evaporation of the sintering aid near the surface was confirmed by XMA (X-ray microanalyzer) and EDX (fluorescent X-ray analysis). For these reasons, there is a demand for the development of a method for obtaining a high-density, non-deformable aluminum nitride sintered body by pressureless sintering.
本発明は常圧焼結法での成形体の表mJ付近での焼結助
剤の蒸発飛散を抑制して変形のない高密度の窒化アルミ
ニウム焼結体を製造する方法を提供しようとするもので
ある。The present invention aims to provide a method for manufacturing a high-density aluminum nitride sintered body without deformation by suppressing the evaporation and scattering of a sintering aid near the surface mJ of a molded body in the pressureless sintering method. It is.
以下1本発明の詳細な説明する。 The present invention will be explained in detail below.
まず、窒化アルミニウム粉末に易蒸発性の焼結助剤を添
加し、ボールミル等を用いて充分に混合した後、この混
合物にバインダを加えて造粒、整粒を行なう。ここに用
いる窒化アルミニウム粉末は平均粒径で数μm以下、よ
シ好ましくは1μm以下のものを用いることが望ましい
。前記易蒸発性の焼結助剤としては、例えばMgO。First, an easily evaporable sintering aid is added to aluminum nitride powder, and the mixture is sufficiently mixed using a ball mill or the like. A binder is then added to the mixture, and the mixture is granulated and sized. The aluminum nitride powder used here preferably has an average particle size of several μm or less, preferably 1 μm or less. Examples of the easily evaporable sintering aid include MgO.
CaO、SrO、BaO* MgC03r CaCO3
,SrCO3゜B aCO3等のアルカリ金属化合物、
Y2O3或いはLa2O3,CeO2,Pr02 、
Nd’205 、 Sm2O3等の希土類元素化合物を
用いることができ、その低高温での蒸発が問題となる焼
結助剤でを〕ればいかなるものも使用できる。CaO, SrO, BaO* MgC03r CaCO3
, SrCO3゜B aCO3 and other alkali metal compounds,
Y2O3 or La2O3, CeO2, Pr02,
Rare earth element compounds such as Nd'205 and Sm2O3 can be used, and any sintering aid can be used as long as its evaporation at low and high temperatures is a problem.
次いで、前記造粒粉を金型成形法、静水圧ブレス法、そ
の他シート成形法等によシ成形した後、窒素ガス気流中
にて700℃程度まで加熱して脱脂(バインダの除去)
を行なう。Next, the granulated powder is molded by a molding method, an isostatic pressing method, another sheet molding method, etc., and then heated to about 700°C in a nitrogen gas stream to degrease (remove the binder).
Do the following.
次いで、脱脂した成形体の表面付近の焼結助剤分圧を外
部からの蒸発した焼結助剤によシ高めた状態で常圧焼結
を行なう。具体的には次のような方法によシ成形体を常
圧焼結する。Next, pressureless sintering is performed with the partial pressure of the sintering aid near the surface of the degreased compact being increased by the sintering aid evaporated from the outside. Specifically, the molded body is pressureless sintered by the following method.
■ 脱脂した成形体を、該成形体と同組成もしくは焼結
助剤過剰組成の粉末が充填された容器に埋込み、蓋で密
封した後、N2芽囲気中にて1700〜1820℃程度
で常圧焼結を行なう。■ The degreased molded body is embedded in a container filled with powder of the same composition as the molded body or with an excess composition of sintering aid, and after being sealed with a lid, it is heated at about 1700 to 1820°C under normal pressure in an N2 atmosphere. Perform sintering.
上記充填用粉末中の窒化アルミニウム粉末は数十μm程
度の大きな粒子を使用する場合と、成形体の出発材料で
ある窒化アルミニウム粉末と同程度の微細な粒子を使用
する場合とがりる。The aluminum nitride powder in the above-mentioned filling powder may be large particles of about several tens of micrometers, or it may be particles as fine as the aluminum nitride powder that is the starting material for the compact.
上記充填用粉末中の焼結助剤の蚤は成形体と同一、もし
くはやや過剰にすることが必要である。充填用粉末中の
焼結助剤の量が成形体中のそれよシも少ないと、成形体
表面付近の焼結助剤分圧を充分に高められず、その焼結
助剤の蒸発飛散を防止できない。一方、充填用粉末中の
焼結助剤の量が多くなシ過ぎると、成形体表面付近の焼
結助剤分圧は高まるものの、成形体表面付近の焼結助剤
分圧がす<7i:!ll、不均一な焼結がなされる。し
かも、充填用粉末を焼結助剤を発生源として用いる方法
では成形体と充填用粉末の組成が大巾に異なると、成形
体と充填用粉末の接触部、非接触部の間で密度の局部的
な不均一を生じ、かえって焼結体の変形の原因となる。It is necessary that the amount of fleas of the sintering aid in the above-mentioned filling powder be the same as that of the molded article, or be slightly excessive. If the amount of sintering aid in the filling powder is less than that in the compact, the partial pressure of the sintering aid near the surface of the compact cannot be sufficiently increased, and the evaporation and scattering of the sintering aid may be prevented. Cannot be prevented. On the other hand, if the amount of sintering aid in the filling powder is too large, the partial pressure of the sintering aid near the surface of the compact will increase, but the partial pressure of the sintering aid near the surface of the compact will be <7i. :! ll, non-uniform sintering occurs. Moreover, in the method of using a sintering aid for the filling powder as a generation source, if the composition of the compact and the filling powder differs widely, the density will change between the contact area and the non-contact area between the compact and the filling powder. This causes local non-uniformity and causes deformation of the sintered body.
このようなことから、充填用粉末中の焼結助剤の量は、
成形体中のそれの1〜10倍の範囲にすることが望まし
い。具体的には、成形体の組成として窒化アルミニウム
(AzN)粉末にCaCO3を1重量%添加したものを
用いた場合には、 AtN粉末にCaCO3を1〜51
量饅添加した充填用粉末を使用することが望ましい。For this reason, the amount of sintering aid in the filling powder is
It is desirable to make the range 1 to 10 times that in the molded body. Specifically, when the composition of the compact is aluminum nitride (AzN) powder with 1% by weight of CaCO3 added, 1 to 51% of CaCO3 is added to AtN powder.
It is preferable to use a filler powder that has been added with a certain amount.
上記充填用粉末の粒径選定については、−概に限定でき
ないが、成形体の形状が比較的複雑な場合、或いは焼結
時の変形を極力抑制したい場合には比較的細かい粒径(
例えば0.1重数μm〕にすることが望ましい。但し、
細か過ぎると、充填用粉末自体が相互に強固に焼結した
シ、焼結体と固着する場合があるので好ましくない。Regarding the selection of the particle size of the above-mentioned filling powder, there are no general restrictions, but if the shape of the compact is relatively complex or if it is desired to suppress deformation during sintering as much as possible, a relatively fine particle size (
For example, it is desirable to set the number of layers to 0.1 μm]. however,
If it is too fine, the filling powder itself may firmly adhere to each other and the sintered body, which is not preferable.
一方、成形体の形状が単純な場合には、粗い粒子を使用
することによって、充填用粉末自体の焼結や焼結体への
固着を防止できる。On the other hand, when the shape of the molded body is simple, by using coarse particles, it is possible to prevent the filling powder itself from sintering or from sticking to the sintered body.
■ また、易発性焼結助剤の混合系の場合。■Also, in the case of a mixed system of easy-to-form sintering aids.
易発性の差がおっても、その混合系充填用粉−中の分圧
粉−中て蒸発飛散を防止できる。具体的には成形体の組
成として、 AtN粉にCaCO31重量%、5rCO
s 1重量%のを・添加した混合系の場合、充填用粉末
中の添加量は上記■と同様であるが、CaOがSrOよ
り易発性であるため、充填用粉末中のCaCO3,5r
CO,の添加比率はCaC0≧S r Co sが望ま
しい。このような混合系 −
の場合は焼結時の変形が少なく均一な焼結体が得られる
。Even if there is a difference in susceptibility, evaporation and scattering can be prevented in the partially compressed powder in the mixed filling powder. Specifically, the composition of the molded body was as follows: AtN powder, 1% by weight of CaCO3, 5rCO
In the case of a mixed system containing 1% by weight of CaCO3,5r in the filling powder, the amount added in the filling powder is the same as in (2) above, but since CaO is more easily formed than SrO, the amount of CaCO3,5r in the filling powder is
The addition ratio of CO is desirably CaC0≧S r Cos. In the case of such a mixed system, a uniform sintered body with little deformation during sintering can be obtained.
しかして、本発明によれば窒化アルミニウム成形体の表
面付近の焼結助剤分圧を外部からの蒸発した焼結助剤に
よシ高めた状態で常圧焼結を行なうことによって、成形
体表面付近からの焼結助剤の蒸発、飛散を抑制できるた
め、表面を含む全体が均一に高密度化され、かつ変形の
ない寸法精度の高い窒化アルミニウム焼結体を得ること
ができる。According to the present invention, the aluminum nitride compact is sintered under normal pressure with the partial pressure of the sintering aid near the surface increased by the sintering aid evaporated from the outside. Since evaporation and scattering of the sintering aid from near the surface can be suppressed, it is possible to obtain an aluminum nitride sintered body whose entire surface including the surface is uniformly densified and which is free from deformation and has high dimensional accuracy.
次に1本発明の詳細な説明する。 Next, one aspect of the present invention will be explained in detail.
実施例1
平均粒径0.9μmのAtN粉末例市販の高純度CaC
O3試薬を1重量%添加して混合粉200gを調製し、
これにパラフィンを7重量%添加して造粒した。つづい
て、この造粒粉を300kg/′crn2の圧力条件で
冷間成形して37×37×6tmの板状の成形体を作製
した。ひきつづき、この成形体を粒径1.2μmのAt
N粉中に埋め込み窒素ガス芥囲気中で200℃まで加熱
し、そのまま12時間保持した後、600Cまで加熱し
てパラフィンの除去(脱脂)を行なった。Example 1 Example of AtN powder with average particle size of 0.9 μm Commercially available high purity CaC
Add 1% by weight of O3 reagent to prepare 200g of mixed powder,
Paraffin was added in an amount of 7% by weight and granulated. Subsequently, this granulated powder was cold-formed under a pressure condition of 300 kg/'crn2 to produce a plate-shaped compact of 37 x 37 x 6 tm. Subsequently, this molded body was coated with At having a particle size of 1.2 μm.
It was embedded in N powder and heated to 200° C. in a nitrogen gas atmosphere, held as such for 12 hours, and then heated to 600° C. to remove paraffin (degreasing).
次いで、脱脂した成形体を、AtN粉末に高純度CaC
O5を2重1t%添加した平均粒径1.2μmの粉末が
充填された黒鉛製容器に埋め込んだ後、蓋を用いて容器
を密封し、窒素ガス中にて1780℃、2時間の常圧焼
結を行なってAtN焼結体を製造した。Next, the degreased molded body is mixed with AtN powder and high-purity CaC.
After embedding it in a graphite container filled with powder with an average particle size of 1.2 μm to which 1 t% of O5 was added, the container was sealed with a lid and incubated at 1780°C in nitrogen gas at normal pressure for 2 hours. Sintering was performed to produce an AtN sintered body.
比較例1
脱脂した成形体をAtN粉末の敷粉上に配置して上記実
施例1と同様に常圧焼結を行なってAtN焼結体を製造
した。Comparative Example 1 A degreased molded body was placed on a bed of AtN powder, and pressureless sintering was performed in the same manner as in Example 1 to produce an AtN sintered body.
比較例2
脱脂した成形体をAtN粉末が充填された黒鉛製容器内
に埋め込み、蓋を用いて容器内を密封した後、実施例1
と同様に常圧焼結を行なってAtN焼結体を製造した。Comparative Example 2 After embedding the degreased molded body in a graphite container filled with AtN powder and sealing the inside of the container using a lid, Example 1
An AtN sintered body was produced by pressureless sintering in the same manner as in the above.
しかして、本実施例1及び比較例1,2によシ得たAt
N焼結体について相対密度、変形度及び焼結体の性状を
調べた。その結果を下記表に示す。なお、変形度は焼結
体の対角線を基準にして中央部と周縁部との反シの最大
値を測定するととくよ請求めた。Therefore, the At obtained in Example 1 and Comparative Examples 1 and 2
The relative density, degree of deformation, and properties of the N sintered body were investigated. The results are shown in the table below. In addition, the degree of deformation is specifically claimed to be determined by measuring the maximum value of the diagonal between the central part and the peripheral part with reference to the diagonal line of the sintered body.
上表よル明らかな如く、比較例Jにょシ得たAtN f
JF、粘体は下面側が極度Ke、縮して変形度が大きく
なシ、シかも密度も低い。また、比較例2忙よシ得たA
tN焼結体は変形度が比較的低いものの1表面付近から
のCaOの蒸発に起因して高密度化が十分に図られず、
しかも断面が表面と内部で層状となシネ均一に焼結され
ている。As is clear from the above table, the AtN f obtained in Comparative Example J
JF: The lower surface of the viscous material has extreme Ke, shrinks and deforms to a large degree, and has a low density. Also, Comparative Example 2 Busyoshi obtained A
Although the tN sintered body has a relatively low degree of deformation, it cannot be sufficiently densified due to the evaporation of CaO from near the surface.
Moreover, the cross section is sintered uniformly in layers on the surface and inside.
これに対し、本実施例1によシ得たAtN焼結体は変形
も少なく高密度で、断面で、観察した焼結むらも少ない
。On the other hand, the AtN sintered body obtained in Example 1 has less deformation, higher density, and less sintering unevenness observed in cross section.
実施例2,3
実施例1と同様な方法で作製した脱脂成形体を、AtN
粉末1c Cocosを1重量%添加した平均粒径1.
2μmの粉末が充填された黒鉛製容器に埋め込んだ後蓋
を用いて容器を密封し、実施例と同様に常圧焼結してA
tN焼結体を製造した。Examples 2 and 3 Degreased molded bodies produced in the same manner as in Example 1 were treated with AtN
Powder 1c Added 1% by weight of Cocos, average particle size 1.
After embedding the powder in a graphite container filled with 2 μm powder, the container was sealed using a lid and sintered under normal pressure in the same manner as in the example.
A tN sintered body was manufactured.
実施例3
実施例2と同組成のAAN−Ca COs粉末を170
0℃で熱処理した後、乳鉢で10〜50μm程度に粉砕
し、これを黒鉛製容器に充填した。つづいて、この容器
内に実施例1と同様な脱脂成形体を埋め込み、蓋を用い
て容器を密封した後、実施例1と同様に常圧焼結してA
tN焼結体を製造した。Example 3 AAN-Ca COs powder with the same composition as Example 2 was
After heat-treating at 0°C, it was ground to about 10 to 50 μm in a mortar and filled into a graphite container. Next, a degreased molded body similar to that in Example 1 was embedded in this container, the container was sealed using a lid, and then pressureless sintered in the same manner as in Example 1.
A tN sintered body was manufactured.
しかして、実施例2,3によシ得た焼結体の変形度を調
べた。その結果、実施例2の焼結体の変形度は0.2〜
0.4程度とやや大きく、実施例3の焼結体の変形度は
01〜0.2程度と小さかった。一方、各焼結体の他の
特性については、いずれも均質で強度的にも40〜50
kg/IIII++2の値を示した。The degree of deformation of the sintered bodies obtained in Examples 2 and 3 was then examined. As a result, the degree of deformation of the sintered body of Example 2 was 0.2~
The degree of deformation of the sintered body of Example 3 was small at about 0.01 to 0.2. On the other hand, regarding other properties of each sintered body, they are all homogeneous and have a strength of 40 to 50.
kg/III++2.
実施例4
平均粒径1.5μmのAtN粉末99.5重量%と平均
粒径1.8μmのCaO粉末0.5重量%とを配合した
混合粉末にパラフィン5重量%を添加し混練した。つづ
いて、この混練物を2 tonA”の成形圧で成形して
30X30X5tmmの板状の成形体を作製した。次い
で、この成形体をN2気流中でi4ラフインを除去した
後、黒鉛製容器内に前記混合粉末と同種の粉末と共に入
れ、蓋で密封した。Example 4 5% by weight of paraffin was added to a mixed powder of 99.5% by weight of AtN powder with an average particle size of 1.5 μm and 0.5% by weight of CaO powder with an average particle size of 1.8 μm and kneaded. Subsequently, this kneaded product was molded at a molding pressure of 2 ton A" to produce a plate-shaped molded product of 30 x 30 x 5 tmm. Next, after removing the i4 rough-in from this molded product in a N2 gas flow, it was placed in a graphite container. It was placed together with the same type of powder as the mixed powder and sealed with a lid.
この後、窒素気流中にて1800℃、60分間焼結を行
なった。Thereafter, sintering was performed at 1800° C. for 60 minutes in a nitrogen stream.
比較例3
板状の成形体のみを黒鉛製容器に入れ、蓋で密封して焼
結を行なった以外、実施例4と同様な方法によ、り A
tN焼結体を製造した。Comparative Example 3 The same method as in Example 4 was carried out except that only the plate-shaped molded body was placed in a graphite container, sealed with a lid, and sintered.
A tN sintered body was manufactured.
しかして、実施例4及び比較例3の焼結過程での成形体
表面付近のCaO濃度を測定したところ、図に示す特性
図を得た。なお1図中のAは本実施例4の濃度特性線を
、Bは比較例3の濃度特性線を、夫々示す。この図よシ
明らかな如く外部からの蒸気化し九〇aOを与えないで
焼結した比較例3の方法では表面とそれよシ内部側との
CaO濃度が著しく異なることがわかる。これに対し、
混合粉末と同種の粉末と共に成形体を黒鉛製容器に入れ
て焼結する方法、つまシ外部からの蒸気化したCaOに
よシ成形体表面付近の分圧を高めて焼結を行なった本実
施例4の方法では成形体表面とその内側部分との間のC
aO濃度がほとんどないことがわかる。Therefore, when the CaO concentration near the surface of the molded body during the sintering process of Example 4 and Comparative Example 3 was measured, the characteristic diagram shown in the figure was obtained. In FIG. 1, A indicates the density characteristic line of Example 4, and B indicates the density characteristic line of Comparative Example 3. As is clear from this figure, in the method of Comparative Example 3, in which sintering was performed without externally vaporizing 90aO, the CaO concentration between the surface and the inside was significantly different. On the other hand,
A method in which the compact is placed in a graphite container together with powder of the same type as the mixed powder, and sintered.This method involves sintering by increasing the partial pressure near the surface of the compact using vaporized CaO from outside the container. In the method of Example 4, the C between the surface of the compact and its inner part is
It can be seen that there is almost no aO concentration.
実際、実施例4のA/=N焼結体は変形度が01〜0.
2と小さく、かつ理論密度に対して98チの相対密度を
有すると共に均質で昼緻密質のものであった。In fact, the A/=N sintered body of Example 4 has a deformation degree of 01 to 0.
It was as small as 2, had a relative density of 98 cm to the theoretical density, and was homogeneous and day-dense.
実施例5
平均粒、径1,2μmのAtN粉末99重fiチと平均
粒径0.8μmのY2O3粉末1重fit %とを配合
した混合粉末にパラフィンを5重量%添加し、混練した
彼、この混線物を実施例4と同様に成形して板状の成形
体を作製した。つづいて、この成形体をN2気流中にて
・母ラフインを除去した後、黒鉛製容器内に前記混合粉
末と同種の粉末と共に入れ、蓋で密封した。この後、N
2気流中にて1800℃、60分間焼結を行なった。Example 5 5% by weight of paraffin was added to a mixed powder of 99% AtN powder with an average particle diameter of 1.2 μm and 1% by weight Y2O3 powder with an average particle size of 0.8 μm, and the mixture was kneaded. This mixed wire material was molded in the same manner as in Example 4 to produce a plate-shaped molded body. Subsequently, after removing the mother rough-in from this molded body in a N2 gas flow, it was placed in a graphite container together with a powder of the same type as the mixed powder, and the container was sealed with a lid. After this, N
Sintering was performed at 1800° C. for 60 minutes in two air streams.
得られた実施例5のAtN焼結体は変形度が0.1〜0
.2と小さく、かつ理論密度に対して98.4%の相対
密度を有すると共に均質で高緻密質のものであった。The obtained AtN sintered body of Example 5 had a deformation degree of 0.1 to 0.
.. 2, had a relative density of 98.4% of the theoretical density, and was homogeneous and highly dense.
実施例6
平均粒径1.2μmのAtN粉末99重量%と、平均粒
径0.7μmのS r Co 3粉末0.5重量%と、
平均粒径0.9μmのCa C03粉末0.5 M量チ
とを配合した混合粉末を調製し、これを用いて実施例4
と同一条件で焼結したところ、変形度が極めて小さく、
均質で高緻密質のAtN焼結体を得ることができた。Example 6 99% by weight of AtN powder with an average particle size of 1.2 μm, 0.5% by weight of S r Co 3 powder with an average particle size of 0.7 μm,
A mixed powder was prepared by blending Ca C03 powder with an average particle size of 0.9 μm in an amount of 0.5 M, and this was used to conduct Example 4.
When sintered under the same conditions as , the degree of deformation was extremely small.
A homogeneous and highly dense AtN sintered body could be obtained.
以上詳述した如く、本発明によれば常圧焼結法に際し、
成形体表面付近での焼結助剤の蒸発飛散を抑制して変形
のない寸法精度が高く、均質でかつ高密度の窒化アルミ
ニウム焼結体を極めて簡単に製造し得る方法を提供でき
る。As detailed above, according to the present invention, during the pressureless sintering method,
It is possible to provide a method that can extremely easily produce a homogeneous, high-density aluminum nitride sintered body that is free from deformation and has high dimensional accuracy by suppressing evaporation and scattering of the sintering aid near the surface of the molded body.
図面は実施例4及び比較例3の焼結過程での成形体表面
付近のCaO濃度分布を示す特性図1ある。
出願人代理人 弁理士 鈴 江 武 彦床 刃杉イイ(
表面 々・ら0距角佳The drawing is a characteristic diagram 1 showing the CaO concentration distribution near the surface of the compact during the sintering process of Example 4 and Comparative Example 3. Applicant's agent Patent attorney Takeshi Suzue Hikotoko Hasugi (
Surface Z・ra0 distance angle good
Claims (2)
添カルだ後成形する工程と、この成形体の表面付近の焼
結助剤分圧を外ff1s力・らの蒸発した焼結助剤によ
シ高めた状態で常圧焼結を行なう工程とを具備したこと
を特徴とする窒化アルミニウム焼結体の製造方法。(1) A step of adding an easily evaporable sintering aid to aluminum nitride powder and then forming it, and reducing the partial pressure of the sintering aid near the surface of the compact to the evaporated sintering aid with an external force of 1. A method for producing an aluminum nitride sintered body, comprising the step of performing pressureless sintering in a state where a chemical agent is elevated.
金鴎及びそれらの化合物力為ら選ばれる1種又は2種以
上の混合物であることを特徴とする特許請求の範囲第1
項記載の窒イしアルミニウム焼結体の製−遣方法。(2) Claim 1, characterized in that the easily evaporable sintering aid is one or a mixture of two or more selected from alkaline earth metals, rare earth metals, and compounds thereof.
A method for manufacturing a nitrided aluminum sintered body as described in 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58182741A JPS6077176A (en) | 1983-09-30 | 1983-09-30 | Manufacture of aluminum nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58182741A JPS6077176A (en) | 1983-09-30 | 1983-09-30 | Manufacture of aluminum nitride sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6077176A true JPS6077176A (en) | 1985-05-01 |
JPS6128629B2 JPS6128629B2 (en) | 1986-07-01 |
Family
ID=16123620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58182741A Granted JPS6077176A (en) | 1983-09-30 | 1983-09-30 | Manufacture of aluminum nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6077176A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5063183A (en) * | 1985-08-13 | 1991-11-05 | Tokuyama Soda Kabushiki Kaisha | Sinterable aluminum nitride composition, sintered body from this composition and process for producing the sintered body |
US5077245A (en) * | 1987-01-30 | 1991-12-31 | Kyocera Corporation | Aluminum nitride-based sintered body and process for the production thereof |
US5124284A (en) * | 1989-06-07 | 1992-06-23 | Kyocera Corporation | Aluminum nitride sintered body |
US5154863A (en) * | 1985-10-31 | 1992-10-13 | Kyocera Corporation | Aluminum nitride-based sintered body and process for the production thereof |
JP2007063124A (en) * | 1998-07-10 | 2007-03-15 | Sumitomo Electric Ind Ltd | Ceramic substrate |
-
1983
- 1983-09-30 JP JP58182741A patent/JPS6077176A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5063183A (en) * | 1985-08-13 | 1991-11-05 | Tokuyama Soda Kabushiki Kaisha | Sinterable aluminum nitride composition, sintered body from this composition and process for producing the sintered body |
US5154863A (en) * | 1985-10-31 | 1992-10-13 | Kyocera Corporation | Aluminum nitride-based sintered body and process for the production thereof |
US5077245A (en) * | 1987-01-30 | 1991-12-31 | Kyocera Corporation | Aluminum nitride-based sintered body and process for the production thereof |
US5124284A (en) * | 1989-06-07 | 1992-06-23 | Kyocera Corporation | Aluminum nitride sintered body |
JP2007063124A (en) * | 1998-07-10 | 2007-03-15 | Sumitomo Electric Ind Ltd | Ceramic substrate |
Also Published As
Publication number | Publication date |
---|---|
JPS6128629B2 (en) | 1986-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7318756B2 (en) | Manufacturing method of sintered body, structure and composite structure | |
JPS59207882A (en) | Manufacture of aluminum nitride sintered body | |
JPS5820782A (en) | Silicon nitride sintered body and manufacture | |
JPS6077176A (en) | Manufacture of aluminum nitride sintered body | |
JPS62288156A (en) | Manufacture of magnesia sintered body | |
JPS59207883A (en) | Manufacture of aluminum nitride sintered body | |
JP2642184B2 (en) | Method for producing aluminum nitride-hexagonal boron nitride sintered body | |
JPS5891059A (en) | Composite ceramic sintered body and manufacture | |
JP3159350B2 (en) | Highly dense silicon nitride sintered body and method for producing the same | |
JPH03218977A (en) | Production of aluminum nitride sintered body | |
JPS59217673A (en) | Manufacture of high density silicon nitride reaction sintered body | |
JP2784551B2 (en) | Aluminum nitride substrate | |
JPH06279124A (en) | Production of silicon nitride sintered compact | |
JPS61286267A (en) | Manufacture of aluminum nitride base sintered body | |
JPS6042280A (en) | Manufacture of aluminum nitride sintered body | |
JPS63233081A (en) | Manufacture of aluminum nitride sintered body | |
JPS63230574A (en) | Manufacture of aluminum nitride sintered body | |
JPS61291462A (en) | Manufacture of sintered body comprising tianium oxonitride inside and titanium nitride on surface | |
JPH01241849A (en) | Aluminum nitride substrate with excellent surface smoothness and manufacture thereof | |
JPS63206360A (en) | Manufacture of aluminum nitride sintered body | |
JPS6110069A (en) | High strength minute silicon nitride sintered body and manufacture | |
JPS6236069A (en) | Manufacture of aluminum nitride sintered body | |
JPH01172271A (en) | Production of sintered body of boron nitride | |
JPS605551B2 (en) | Manufacturing method for highly thermally conductive ceramics | |
JP2003246675A (en) | Setter material for firing aluminum nitride, production method thereof and setter |