JPS63324A - Fiber reinforced plastic composite and its preparation - Google Patents

Fiber reinforced plastic composite and its preparation

Info

Publication number
JPS63324A
JPS63324A JP61143874A JP14387486A JPS63324A JP S63324 A JPS63324 A JP S63324A JP 61143874 A JP61143874 A JP 61143874A JP 14387486 A JP14387486 A JP 14387486A JP S63324 A JPS63324 A JP S63324A
Authority
JP
Japan
Prior art keywords
fibers
silica
glasses
alumina
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61143874A
Other languages
Japanese (ja)
Inventor
Senichi Yamada
山田 銑一
Shinichi Towata
真一 砥綿
Taketami Yamamura
武民 山村
Toshihiro Ishikawa
敏弘 石川
Masaki Shibuya
昌樹 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP61143874A priority Critical patent/JPS63324A/en
Publication of JPS63324A publication Critical patent/JPS63324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain the title composite having uniform dispersion of fiber, less residual stress and anisotropy, and excellent wear resistance, by injecting or infiltrating plastic into a specific fibrous material comprising a heat-resistant material or a fabric made of the material and thereafter molding and solidifying it. CONSTITUTION:In gaps among fibers of 10-70vol% (based on a composite) continuous filaments or a fabric prepared therefrom, comprising one or more members selected from among ceramic such as SiC, Si3N4, Al2O3, SiO2, ZrO2, BC, TiC etc., glasses such as borosilicate glass, high-silica glass etc., and heat- resistant materials such as carbon, metals intermetallic compd. etc., are laid with short fibers, whiskers or powder comprising one or more of the above described heat-resistant materials in a vol. fraction of 0.5-500% to obtains a fibrous material or a fabric prepd. therefrom. Next, a plastic such as a (modified) epoxy resin, a polyester resin etc., is injected or infiltrated into it and the composite is molded and solidified.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ミ繊維強化プラスチック複合体(FRP)及
びその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fiber-reinforced plastic composite (FRP) and a method for producing the same.

(従来の技術) 従来、エポキシ樹脂、変性エポキシ樹脂、ポリエステル
樹脂、ポリイミド樹脂等のプラスチック類を強化する繊
維としては、表面処理された炭素繊維が広く使用されて
いる。
(Prior Art) Conventionally, surface-treated carbon fibers have been widely used as fibers for reinforcing plastics such as epoxy resins, modified epoxy resins, polyester resins, and polyimide resins.

(発明が解決しようとする問題点) しかしながら、強化繊維を使用して注入法又は含浸法で
FRPを製造すると、繊維がかたより繊維の分布が粗い
部分と密な部分とが生じやすい。このため、FRP中の
繊維体積率(Vf)の制御が困難であり、特にVfが小
さい場合に強化繊維が均一に分散したF RPが得難く
、FRP本来の特色である設計の自由度が損なわれてい
た。
(Problems to be Solved by the Invention) However, when reinforcing fibers are used to manufacture FRP by an injection method or an impregnation method, the fibers tend to be distributed in rough areas and dense areas. For this reason, it is difficult to control the fiber volume fraction (Vf) in FRP, and especially when Vf is small, it is difficult to obtain FRP with uniformly dispersed reinforcing fibers, which impairs the degree of freedom in design that is the original feature of FRP. It was

また、連続繊維のみで強化したFWPでは強度の異方性
が犬きぐ、繊維の長さ方向の強度は太さいが、それと直
角方向の強度はきわめて小さくなる。短繊維のみを使用
したFRPは等方性ではあるが、その強度は一般に低い
Furthermore, in FWP reinforced with only continuous fibers, the anisotropy of strength is extremely high; the strength in the longitudinal direction of the fibers is large, but the strength in the direction perpendicular to it is extremely small. Although FRP using only short fibers is isotropic, its strength is generally low.

本発明は上記従来技術における問題点を解決するための
ものであり、その目的とするところは、マトリックスと
なるプラスチック中に連続繊維を均一に分散させること
により繊維体積率を制御でき、又、互いに特性の異なる
連続繊維と耐熱“性物質の短徹維、ウィスカ又は粉末と
を組み合わせることにより、異方性や残留応力、耐磨耗
性等の機械的特性が向上した連続繊維強化プラスチック
複合体及びその製法を提供することにある。
The present invention is intended to solve the above-mentioned problems in the prior art, and its purpose is to control the fiber volume percentage by uniformly dispersing continuous fibers in the plastic matrix, and to Continuous fiber-reinforced plastic composites with improved mechanical properties such as anisotropy, residual stress, and abrasion resistance are produced by combining continuous fibers with different properties with short fibers, whiskers, or powder of heat-resistant materials. Our goal is to provide the manufacturing method.

(問題点を解決するための手段) すなわち本発明の線維強化プラスチック複合体は、炭化
ケイ素、窒化ケイ素、アルミナ、シリカ、アルミナ−シ
リカ、ジルコニア、ベリリア、炭化ボロン、炭化チタン
等のセラミック・ホウケイ酸塩ガラス、高シリカ含有ガ
ラス、アルミノケイ酸塩ガラスなどのガラス、炭素、金
属、金属間化合物等の耐熱性物質より選択された少なく
とも1種からなる連続繊維、又は該繊維から作製された
織物と、 該連続繊、雄の繊維間隙に介在する炭化ケイ素。
(Means for Solving the Problems) That is, the fiber-reinforced plastic composite of the present invention is made of ceramics such as silicon carbide, silicon nitride, alumina, silica, alumina-silica, zirconia, beryllia, boron carbide, titanium carbide, etc. Continuous fibers made of at least one selected from glasses such as salt glass, high silica-containing glass, and aluminosilicate glass, and heat-resistant substances such as carbon, metals, and intermetallic compounds, or woven fabrics made from the fibers; Silicon carbide is interposed between the continuous fibers and the male fibers.

窒化ケイ素、アルミナ、シリカ、アルミナ−シリカ、ジ
ルコニア、ベリリア、炭化ボロン、炭化チタン等のセラ
ミック、ホウケイ酸塩ガラス。
Ceramics such as silicon nitride, alumina, silica, alumina-silica, zirconia, beryllia, boron carbide, titanium carbide, borosilicate glasses.

高シリカ含有ガラス、アルミノケイ酸塩ガラスなどのガ
ラス、炭素、金属、金属間化合物等の耐!A性物質より
選択された少なくとも1種からなる短繊維、ウィスカ又
は粉末とを、 マトリックスであるプラスチック中に均一に分散したこ
とを特徴とする。
High silica glass, aluminosilicate glass and other glasses, carbon, metals, intermetallic compounds, etc. It is characterized in that short fibers, whiskers, or powder made of at least one selected from A-type substances are uniformly dispersed in a plastic matrix.

連続繊維としては前記セラミック、ホウケイ酸塩ガラス
、高シリカ含有ガラス、アルミノケイ酸塩ガラスなどの
ガラス又は耐熱性非金属例えば炭素、ホウ素、あるいは
耐熱性金属、合金、若しくは金属間化合物例えばモリブ
デン、タングステン、鋼、ステンレス、鋼Cu Zn 
、 Fekt、等の材料ようなる繊維を単独又は組合せ
て用いることができる。繊維の太さや断面形状等の性状
は用途に応じて選択する。
Continuous fibers may be ceramics, glasses such as borosilicate glasses, high-silica glasses, aluminosilicate glasses, heat-resistant nonmetals such as carbon, boron, or heat-resistant metals, alloys, or intermetallic compounds such as molybdenum, tungsten, Steel, stainless steel, steel Cu Zn
, Fekt, etc. can be used alone or in combination. Properties such as fiber thickness and cross-sectional shape are selected depending on the application.

連続繊維を使用する方法は、線維そのものを単軸方向、
多軸方向に引き揃えて使用する方法、あるいは該繊維を
平織、繻子織、模紗織、綾織、からみ織、らせん織物、
三次元織物等の各種織物にして使用する方法、あるいは
チ冒ツブドファイバーとして使用する方法等がある。
In the method of using continuous fibers, the fibers themselves are uniaxially
A method in which the fibers are aligned in multiple directions, or the fibers are used in plain weave, satin weave, patterned weave, twill weave, leno weave, spiral weave,
There are methods of using it in various fabrics such as three-dimensional fabrics, and methods of using it as a chiselled fiber.

連続繊維の繊維間隙に介在させる短繊維、ウィスカ又は
粉末を構成する耐熱性物質としては、炭化ケイ素、窒化
ケイ素、アルミナ、シリカ、アルミナ−シリカ、ジルコ
ニア、ベリリア、炭化ボロン、炭化チタンのようなセラ
ミック、ガラス、炭素、金属、金属間化合物が挙げられ
る。
Heat-resistant substances constituting the short fibers, whiskers, or powder interposed between the fiber gaps of continuous fibers include silicon carbide, silicon nitride, alumina, silica, alumina-silica, zirconia, beryllia, boron carbide, and ceramics such as titanium carbide. , glass, carbon, metals, and intermetallic compounds.

耐熱性物質の短繊維、ウィスカ又は粉末の割合は、連続
繊維に対して0.5〜500容量チであることが好まし
い。
The proportion of short fibers, whiskers or powder of the heat-resistant material is preferably 0.5 to 500 by volume to the continuous fibers.

次に本発明においてマトリックスとして用いるプラスチ
ックとしては、エポキシ樹脂、変性エポキシ樹脂、ポリ
エステル樹脂、ポリイミド樹脂、フェノール樹脂、ポリ
ウレタン樹脂、ポリアミド樹脂、ポリカーボネート樹脂
、シリコン樹脂、フェノキシ樹脂、ポリフェニレンサル
ファイド、フッ素樹脂、炭化水素樹脂、含ノ・ロゲン系
樹脂、アクリル酸系樹脂、及びABS樹脂、超高分子量
ポリエチレン、変性ポリフェニレンオキサイド、ポリス
チレン等を挙げることができる。これらのプラスチック
は単独又は組合せて用いることができる。
Next, the plastics used as a matrix in the present invention include epoxy resin, modified epoxy resin, polyester resin, polyimide resin, phenol resin, polyurethane resin, polyamide resin, polycarbonate resin, silicone resin, phenoxy resin, polyphenylene sulfide, fluororesin, and carbonized resin. Examples include hydrogen resin, hydrogen-containing resin, acrylic acid resin, ABS resin, ultra-high molecular weight polyethylene, modified polyphenylene oxide, and polystyrene. These plastics can be used alone or in combination.

本発明のプラスチック複合体に用いる強化用繊維は懸濁
浸漬法により好適に製造することができる。
The reinforcing fibers used in the plastic composite of the present invention can be suitably produced by a suspension dipping method.

懸濁浸漬法の一例としては、ボビン等に巻きつけた連続
線維又は適当数の連続繊維を束ねた連続繊維束を巻戻し
て、あるいは連続繊維から作製された織物を、短繊維、
ウィスカ又は粉末の少なくとも1種を懸濁した液体中に
浸漬し、連続繊維又は織物の繊維の各々の表面に短繊維
、ライス力又は粉末を付着させる方法が挙げられる。
An example of the suspension dipping method is to unwind continuous fibers wound around a bobbin or a continuous fiber bundle made by bundling an appropriate number of continuous fibers, or to transform a woven fabric made from continuous fibers into short fibers,
Examples include a method of immersing in a liquid in which at least one of whiskers or powder is suspended, and attaching short fibers, Rice force, or powder to the surface of each continuous fiber or fiber of a woven fabric.

繊維数の多い連続繊維束又は織物を浸漬する場合には、
超音波により振動を与えて、短繊維、ウィスカ又は粉末
を各繊維に均一に付着させることが好ましい。超音波の
振動数は10〜2000K Hz程度が便利である。
When dipping continuous fiber bundles or fabrics with a large number of fibers,
It is preferable to apply vibration using ultrasonic waves to uniformly adhere short fibers, whiskers, or powder to each fiber. The frequency of ultrasonic waves is conveniently about 10 to 2000 KHz.

懸濁液は水でもよいが、有機溶剤、例えばエタノール、
メタノール、アセト/が好ましく使用される。懸濁液と
して上記有機溶媒を使用すると、繊維がサイジングされ
ている場合には、サイジング剤の溶解により短繊維等の
付着が容易となり、また揮発性が水に比較して高いので
乾燥が早く、生産性が向上する利点がある。
The suspension may be in water, but it may also be in an organic solvent, such as ethanol,
Methanol and acetate are preferably used. When the above-mentioned organic solvent is used as a suspension, when the fibers are sized, short fibers, etc. can be easily attached by dissolving the sizing agent, and drying is quick because the solvent has higher volatility than water. This has the advantage of improving productivity.

懸濁液中の短繊維、ウィスカ又番は粉末の濃度は特に制
限されないが、過度に小さいと連続繊維に均一に付着せ
ず、過度に多いと付着量が多くなりすぎるだめ、0.5
〜30 ?/lであることが好ましい。
The concentration of short fibers, whiskers, or powder in the suspension is not particularly limited, but if it is too small, it will not adhere uniformly to the continuous fibers, and if it is too large, the amount of adhesion will be too large, so 0.5
~30? /l is preferred.

こうして得られた繊維体又はその織物から容易にl” 
RPを製造することができる。その製造方法としては、
ハンドレイアップ法、マツチドメタルダイ法、ブレーク
アウェイ法、フィラメントワインディング法、ホットプ
レス法、オートクレーブ法、連続引抜き法等、又はこれ
に準じた方法が挙げられる。−例としてホットプレス法
を挙げると、この方法によれば、繊維体又はその織物に
プラスチックを含浸させた後、予備硬化してプリプレグ
シートを調製し、このシートをffl;ML、ついでホ
ットプレスで加圧、加熱して板状の複合体とすることが
できる。
From the thus obtained fibrous body or its woven fabric, l”
RP can be manufactured. The manufacturing method is
Examples include hand lay-up method, mated metal die method, breakaway method, filament winding method, hot press method, autoclave method, continuous drawing method, and methods similar thereto. - Taking the hot press method as an example, according to this method, a fibrous body or its fabric is impregnated with plastic and then precured to prepare a prepreg sheet, which is then subjected to ffl; ML and then hot press. It can be made into a plate-like composite by applying pressure and heating.

(実 施 例) 以下の実施例において本発明を更に詳細に説明する。な
お2、本発明は下記実施例に限定されるものではない。
(Examples) The present invention will be explained in further detail in the following examples. 2. The present invention is not limited to the following examples.

実施例1 炭化ケイ素ウィスカ(平均直径約(1,2μ、平均長さ
約100μ)52をエタノール1tの入った処理槽に投
入した後、超音波振動を与えて懸濁させ、懸濁液を調整
した。
Example 1 Silicon carbide whiskers (average diameter approximately (1.2μ, average length approximately 100μ) 52 were placed in a treatment tank containing 1 ton of ethanol, and then suspended by applying ultrasonic vibration to adjust the suspension. did.

炭化ケイ素繊維の繊維束(500本糸)をボビンから巻
戻し、浸漬時間が約15秒となるように可動ロールによ
って訓節し、上記懸濁液中に浸漬し、ついで加圧ロール
により押圧した後、ボビンに巻取り、室温、大気中で乾
燥した。繊維束10m当たりウィスカが0.02 ?付
着していた。
A fiber bundle (500 threads) of silicon carbide fibers was unwound from the bobbin, knotted with a movable roll so that the immersion time was about 15 seconds, immersed in the suspension, and then pressed with a pressure roll. Thereafter, it was wound up onto a bobbin and dried in the air at room temperature. 0.02 whiskers per 10m of fiber bundle? It was attached.

この処理した繊維束を一軸方向に揃え、これに市ffi
のビスフェノールA型エポキシ樹脂を含浸させ、予備硬
化させ、厚さ0.15rItmのプリプレグを得た。こ
れを積層した後、170℃、7kq/−で4時間ホット
プレスして、厚さ2 mm  の複合体を得た。
This treated fiber bundle is aligned in one axis direction, and the city ffi is placed on it.
The prepreg was impregnated with bisphenol A type epoxy resin and precured to obtain a prepreg with a thickness of 0.15 rItm. After laminating these, hot pressing was carried out at 170° C. and 7 kq/− for 4 hours to obtain a composite with a thickness of 2 mm.

この複合体の断面を走査型電子顕微鏡で調べたところ、
炭化ケイ素ウィスカが繊維表面に一部付着し、またマト
リックスである樹脂中に均一に分散して、繊維は複合体
中で互いに接することなく分散していることが認められ
た。この複合体の繊維含有量は55容量チであった。複
合体の引張強度は160 kq/d、層間剪断強度は1
0kf/−であった。
When we examined a cross section of this complex using a scanning electron microscope, we found that
It was observed that silicon carbide whiskers were partially attached to the fiber surface and were uniformly dispersed in the matrix resin, and the fibers were dispersed in the composite without coming into contact with each other. The fiber content of this composite was 55 volumes. The tensile strength of the composite is 160 kq/d, and the interlaminar shear strength is 1
It was 0kf/-.

実施例2 実施例1で使用した炭化ケイ素ウィスカ及び窒化ケイ素
ウィスカ(平均直径約0.3μ、平均長さ約200μ)
各52を併用し、さらに浸漬時間を20秒とした以外は
実施例1と同様の方法を繰り返した。繊維束10m当た
りのウィスカの付着量は0.03 tであった。
Example 2 Silicon carbide whiskers and silicon nitride whiskers used in Example 1 (average diameter approximately 0.3μ, average length approximately 200μ)
The same method as in Example 1 was repeated except that 52 of each were used in combination and the immersion time was changed to 20 seconds. The amount of whiskers deposited per 10 m of fiber bundle was 0.03 t.

上記繊維束を一方向にシート状に揃え、これニー市販フ
ェノール・ノボラック型変性エポキシ樹脂を含浸させた
後、予備硬化させて、厚さOm 15 mmのプリプレ
グシートを得た。このシートを積層した後、170℃、
17−/−で4時間ホットプレスして、厚さ2 vtm
  の複合体を得た。
The fiber bundles were arranged in a sheet shape in one direction, impregnated with a commercially available phenol-novolac type modified epoxy resin, and then precured to obtain a prepreg sheet with a thickness of Om 15 mm. After laminating these sheets, 170℃,
Hot pressed at 17-/- for 4 hours to a thickness of 2 vtm.
The complex was obtained.

複合体の繊維含量は55容量チであった。The fiber content of the composite was 55% by volume.

この複合体の断面を走査型電子顕微鏡で調べたところ、
繊維問題には多数のウィスカが認められ、連続繊維同志
の接触が殆ど認められなかった。複合体の引張強度は1
70 kq/j、層間剪断強度は10にダ/−であった
When we examined a cross section of this complex using a scanning electron microscope, we found that
A large number of whiskers were observed in the fiber problem, and almost no contact between continuous fibers was observed. The tensile strength of the composite is 1
70 kq/j, and the interlaminar shear strength was 10 da/-.

(発明の効果) 本発明の複合体は、連続繊維、耐熱性物質の短繊維ウィ
スカ又は粉末、及びマトリックスとなるプラスチックの
種々の組合せが可能であり、広い範囲にわたる要求特性
を満たすことができる。また、複合体中に繊維が均一に
分散し、かつ複合体中での連続繊維同志の接触が極めて
少ないので、連+読礒維の繊維軸に直角方向の強度が著
しく改善される。
(Effects of the Invention) The composite of the present invention can be made of various combinations of continuous fibers, short fiber whiskers or powder of a heat-resistant material, and plastic as a matrix, and can satisfy a wide range of required properties. Furthermore, since the fibers are uniformly dispersed in the composite and there is very little contact between continuous fibers in the composite, the strength of the continuous fibers in the direction perpendicular to the fiber axis is significantly improved.

更に本発明の製法は前記の優れた特性を有する複合体を
容易に得ることができるので実用1優れた方法である。
Furthermore, the production method of the present invention is an excellent method for practical use because it can easily produce a composite having the above-mentioned excellent properties.

Claims (5)

【特許請求の範囲】[Claims] (1)炭化ケイ素、窒化ケイ素、アルミナ、シリカ、ア
ルミナ−シリカ、ジルコニア、ベリリア、炭化ボロン、
炭化チタン等のセラミック、ホウケイ酸塩ガラス、高シ
リカ含有ガラス、アルミノケイ酸塩ガラスなどのガラス
、炭素、金属、金属間化合物等の耐熱性物質より選択さ
れた少なくとも1種からなる連続繊維、又は該繊維から
作製された織物と、 該連続繊維の繊維間隙に介在する炭化ケイ素、窒化ケイ
素、アルミナ、シリカ、アルミナ−シリカ、ジルコニア
、ベリリア、炭化ボロン、炭化チタン等のセラミック、
ホウケイ酸塩ガラス、高シリカ含有ガラス、アルミノケ
イ酸塩ガラスなどのガラス、炭素、金属、金属間化合物
等の耐熱性物質より選択された少なくとも1種からなる
短繊維、ウィスカ又は粉末とを、 マトリックスであるプラスチック中に均一に分散したこ
とを特徴とする繊維強化プラスチック複合体。
(1) Silicon carbide, silicon nitride, alumina, silica, alumina-silica, zirconia, beryllia, boron carbide,
Continuous fibers made of at least one selected from ceramics such as titanium carbide, glasses such as borosilicate glasses, high silica-containing glasses, and aluminosilicate glasses, and heat-resistant substances such as carbon, metals, and intermetallic compounds; A woven fabric made from fibers, and ceramics such as silicon carbide, silicon nitride, alumina, silica, alumina-silica, zirconia, beryllia, boron carbide, and titanium carbide interposed between the fibers of the continuous fibers.
In a matrix, short fibers, whiskers or powder consisting of at least one selected from glasses such as borosilicate glass, high silica content glass and aluminosilicate glass, and heat-resistant substances such as carbon, metals and intermetallic compounds are used. A fiber-reinforced plastic composite characterized by being uniformly dispersed in a certain plastic.
(2)連続繊維に対する耐熱性物質の短繊維、ウィスカ
又は粉末の体積率が0.5〜500%であることを特徴
とする特許請求の範囲第1項記載の繊維強化プラスチッ
ク複合体。
(2) The fiber-reinforced plastic composite according to claim 1, wherein the volume ratio of the short fibers, whiskers, or powder of the heat-resistant substance to the continuous fibers is 0.5 to 500%.
(3)連続繊維の配合割合が、複合体に対して10〜7
0容量%であることを特徴とする特許請求の範囲第1項
記載の繊維強化プラスチック複合体。
(3) The blending ratio of continuous fibers to the composite is 10 to 7
The fiber-reinforced plastic composite according to claim 1, characterized in that the content is 0% by volume.
(4)炭化ケイ素、窒化ケイ素、アルミナ、シリカ、ア
ルミナ−シリカ、ジルコニア、ベリリア、炭化ボロン、
炭化チタン等のセラミック、ホウケイ酸塩ガラス、高シ
リカ含有ガラス、アルミノケイ酸塩ガラスなどのガラス
、炭素、金属、金属間化合物等の耐熱性物質より選択さ
れた少なくとも、種からなる連続繊維と、該連続繊維の
繊維間隙に介在する炭化ケイ素、窒化ケイ素、アルミナ
、シリカ、アルミナ−シリカ、ジルコニア、ベリリア、
炭化ボロン、炭化チタン等のセラミック、ホウケイ酸塩
ガラス、高シリカ含有ガラス、アルミノケイ酸塩ガラス
などのガラス、炭素、金属、金属間化合物等の耐熱性物
質より選択された少なくとも1種からなる短繊維、ウィ
スカ又は粉末とからなる繊維体、又は該繊維体から作製
された織物に、プラスチックを注入又は含浸した後、成
形、固化させることを特徴とする繊維強化プラスチック
複合体の製法。
(4) Silicon carbide, silicon nitride, alumina, silica, alumina-silica, zirconia, beryllia, boron carbide,
continuous fibers consisting of at least seeds selected from ceramics such as titanium carbide, glasses such as borosilicate glasses, high silica-containing glasses, aluminosilicate glasses, heat-resistant materials such as carbon, metals, and intermetallic compounds; Silicon carbide, silicon nitride, alumina, silica, alumina-silica, zirconia, beryllia, interposed in the fiber gaps of continuous fibers,
Short fibers made of at least one selected from ceramics such as boron carbide and titanium carbide, glasses such as borosilicate glass, high silica-containing glass, and aluminosilicate glass, and heat-resistant substances such as carbon, metals, and intermetallic compounds. , whiskers or powder, or a fabric made from the fibers, which is injected or impregnated with plastic, and then molded and solidified.
(5)繊維体又は繊維体の織物が、連続繊維又はその織
物に、耐熱性物質の短繊維、ウィスカ又は粉末を付着さ
せることにより製造されたものであることを特徴とする
特許請求の範囲第4項に記載の繊維強化プラスチック複
合体の製法。
(5) The fibrous body or the woven fabric of the fibrous body is manufactured by attaching short fibers, whiskers, or powder of a heat-resistant substance to continuous fibers or a woven fabric thereof. A method for producing a fiber-reinforced plastic composite according to item 4.
JP61143874A 1986-06-19 1986-06-19 Fiber reinforced plastic composite and its preparation Pending JPS63324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61143874A JPS63324A (en) 1986-06-19 1986-06-19 Fiber reinforced plastic composite and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61143874A JPS63324A (en) 1986-06-19 1986-06-19 Fiber reinforced plastic composite and its preparation

Publications (1)

Publication Number Publication Date
JPS63324A true JPS63324A (en) 1988-01-05

Family

ID=15349011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61143874A Pending JPS63324A (en) 1986-06-19 1986-06-19 Fiber reinforced plastic composite and its preparation

Country Status (1)

Country Link
JP (1) JPS63324A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370248U (en) * 1989-11-13 1991-07-15
US5182660A (en) * 1990-08-03 1993-01-26 Rohm Co., Ltd. Back-light type liquid crystal display
US6612709B2 (en) 1993-03-03 2003-09-02 Fujitsu Display Technologies Corporation Lighting device and display device using the lighting device
JP2011116986A (en) * 2009-12-01 2011-06-16 Siemens Ag Fiber-reinforced plastic material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370248U (en) * 1989-11-13 1991-07-15
US5182660A (en) * 1990-08-03 1993-01-26 Rohm Co., Ltd. Back-light type liquid crystal display
US6612709B2 (en) 1993-03-03 2003-09-02 Fujitsu Display Technologies Corporation Lighting device and display device using the lighting device
US6986600B2 (en) 1993-03-03 2006-01-17 Sharp Kabushiki Kaisha Lighting device and display device using the lighting device
JP2011116986A (en) * 2009-12-01 2011-06-16 Siemens Ag Fiber-reinforced plastic material

Similar Documents

Publication Publication Date Title
US4778722A (en) Reinforcing fibers and composite materials reinforced with said fibers
US4961990A (en) Fibrous material for composite materials, fiber-reinforced composite materials produced therefrom, and process for producing same
US4680224A (en) Reinforced plastic
JP4180520B2 (en) COMPOSITE MATERIAL, ITS MANUFACTURING METHOD AND USE THEREOF
JP5158778B2 (en) Epoxy resin impregnated yarn and its use for producing preforms
EP0272648A2 (en) Method for producing carbon fiber reinforced thermoplastic resin product
US5955194A (en) Silicon carboxide composite reinforced with ceramic fibers having a surface enriched in boron nitride
JP2001002794A (en) Unidirectional tape of carbon fiber and its production
JPS63324A (en) Fiber reinforced plastic composite and its preparation
JP3321627B2 (en) Manufacturing method of continuous fiber reinforced thermoplastic composite.
JPH0412894B2 (en)
Balasubramanian Introduction to composite materials
JP4671890B2 (en) Prepreg
WO2013011256A1 (en) Method for manufacturing a nanocomposite material
US4921518A (en) Method of making short fiber reinforced glass and glass-ceramic matrix composites
JPH0259327A (en) Continuous manufacture of resin moldings
JPS62299568A (en) Inorganic fiber for composite material
JPH06254848A (en) Thermoplastic prepreg fabric and laminate from the same
US4961971A (en) Method of making oxidatively stable water soluble amorphous hydrated metal oxide sized fibers
JPH02125706A (en) Manufacture of carbon fiber bundle
JPS63120169A (en) Reinforcing inorganic fiber and reinforced composite
JPS62297332A (en) Inorganic fiber reinforced plastic composite material and production thereof
JPS63289034A (en) Thermoplastic resin composition and its production
JPH0353333B2 (en)
JPH03199235A (en) Fiber reinforced resin molded article