JP2009127116A - Method for producing metal matrix carbon fiber-reinforced composite material - Google Patents

Method for producing metal matrix carbon fiber-reinforced composite material Download PDF

Info

Publication number
JP2009127116A
JP2009127116A JP2007306345A JP2007306345A JP2009127116A JP 2009127116 A JP2009127116 A JP 2009127116A JP 2007306345 A JP2007306345 A JP 2007306345A JP 2007306345 A JP2007306345 A JP 2007306345A JP 2009127116 A JP2009127116 A JP 2009127116A
Authority
JP
Japan
Prior art keywords
carbon fiber
metal
composite material
carbon
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007306345A
Other languages
Japanese (ja)
Inventor
Tomonori Yamane
伴紀 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007306345A priority Critical patent/JP2009127116A/en
Publication of JP2009127116A publication Critical patent/JP2009127116A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a metal matrix carbon fiber-reinforced composite material where the shape of a carbon fiber-reinforced material is free, and the type of a carbon fiber-reinforced material can be freely selected. <P>SOLUTION: In Fig.(a), a metal-impregnated body 35 is discharged from a high pressure vessel 31 together with a solidified molten metal, and in Fig.(b), to the metal-impregnated body 35, parts 28a, 28a of a carbon fiber-reinforced carbon composite material 28 are cut as shown in arrows (2), (2). In Fig.(c), the remainders 28b, 28b of the remaining carbon fiber-reinforced carbon composite material 28 are stripped off at the parts of arrows (3), (3), so as to obtain a metal matrix carbon fiber-reinforced composite material 36 as shown in Fig.(d). Even in a carbon fiber base material easy to deform, by surrounding the same with a carbon fiber hardened laminate enough in rigidity, its rigidity as the whole can be secured. In this way, the type of a carbon fiber base material can be optionally selected, and the shape thereof can be freely set as well. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属に炭素繊維強化材を複合化してなる金属基炭素繊維強化複合材料の製造方法の改良に関する。   The present invention relates to an improvement in a method for producing a metal-based carbon fiber reinforced composite material obtained by combining a carbon fiber reinforcing material with a metal.

金属基炭素繊維強化複合材料は、母材金属を炭素繊維で強化することにより、金属の特性と炭素繊維の特性の両方を兼ね備えた複合材料である。このような金属基炭素繊維強化複合材料に適用することができる製造方法が各種提案されている。そのなかで、炭素繊維強化材を金属で含浸する製造方法が知られている(例えば、特許文献1参照。)。
特開2004−322172公報(第6頁、図3)
A metal-based carbon fiber reinforced composite material is a composite material that combines both the properties of a metal and the properties of carbon fiber by reinforcing the base metal with carbon fibers. Various manufacturing methods that can be applied to such metal-based carbon fiber reinforced composite materials have been proposed. Among them, a production method in which a carbon fiber reinforcing material is impregnated with a metal is known (for example, see Patent Document 1).
JP 2004-322172 A (6th page, FIG. 3)

特許文献1を次図に基づいて説明する。
図9は従来の技術の基本原理を説明する図であり、(a)に示すように、支持板101に、円筒形状の炭素繊維強化材102を立てる。この炭素繊維強化材102は、耐火性粘結剤103を用いて支持板101に固定する。その上で、上面が開口している容器104に収める。
Patent document 1 is demonstrated based on the following figure.
FIG. 9 is a diagram for explaining the basic principle of the conventional technique. As shown in FIG. 9A, a cylindrical carbon fiber reinforcing material 102 is erected on a support plate 101. The carbon fiber reinforcing material 102 is fixed to the support plate 101 using a refractory binder 103. Then, it is stored in a container 104 whose upper surface is open.

(b)に示すように容器104に溶融金属106を注入する。この溶融金属106は炭素繊維強化材102が没するまで注入する。次に、容器104にピストン107を嵌め、このピストン107を下降させる。ピストン107の押圧作用で、溶融金属106の圧力が高まる。溶融金属106が高圧力であるほど、炭素繊維強化材102に迅速に浸透させることができる。   As shown in (b), molten metal 106 is poured into the container 104. The molten metal 106 is injected until the carbon fiber reinforcing material 102 dies. Next, the piston 107 is fitted into the container 104, and the piston 107 is lowered. The pressure of the molten metal 106 is increased by the pressing action of the piston 107. The higher the pressure of the molten metal 106, the quicker the carbon fiber reinforcement 102 can penetrate.

次に、全体を冷却させることで(c)に示すように、凝固金属108で囲われた金属基炭素繊維強化複合材料109を得ることができる。すなわち、容器104から取り外し、凝固金属108を除去し、耐火性粘結剤103及び支持板101を取り外すことで、(d)に示す金属基炭素繊維強化複合材料109単体を得ることができる。   Next, by cooling the whole, as shown in (c), the metal-based carbon fiber reinforced composite material 109 surrounded by the solidified metal 108 can be obtained. That is, by removing from the container 104, removing the solidified metal 108, and removing the refractory binder 103 and the support plate 101, the metal-based carbon fiber reinforced composite material 109 shown in (d) can be obtained.

ところで、(a)に示す炭素繊維強化材102は、炭素繊維に樹脂を含浸させ加熱処理により硬化させた後、更に熱処理を施し、硬化した樹脂を炭素化して多孔質化するとともに耐熱性を上げたものである。
この場合、金属基炭素繊維強化複合材料にしたときに、母材としての金属の他に樹脂が炭素化したものが残るため、任意の立体形状の金属基炭素繊維強化複合材料は高強度化することが困難である。
By the way, the carbon fiber reinforcing material 102 shown in (a) is obtained by impregnating carbon fiber with a resin and curing it by heat treatment, and then performing a heat treatment to carbonize the cured resin to make it porous and increase heat resistance. It is a thing.
In this case, when the metal-based carbon fiber reinforced composite material is used, since the resin is carbonized in addition to the metal as the base material, the metal-based carbon fiber reinforced composite material having an arbitrary three-dimensional shape has high strength. Is difficult.

一方、仮に炭素繊維基材を炭素繊維のみにすれば、母材は金属のみとなり高強度化が可能となるが、自重又は外力により簡単に変形するので、任意の立体形状で金属基炭素繊維強化複合材料を得ることができない。
また、炭素繊維強化材102にはある程度の耐熱性も要求されるため、炭素繊維強化材102の種類にも制限がある。
すなわち、従来の技術によれば、炭素繊維強化材の形状や種類に制限があり、この制限を緩和することができる技術が求められる。
On the other hand, if the carbon fiber base material is made of only carbon fibers, the base material can be made only of metal and high strength can be achieved, but it can be easily deformed by its own weight or external force. A composite material cannot be obtained.
Further, since the carbon fiber reinforcing material 102 is required to have a certain degree of heat resistance, the type of the carbon fiber reinforcing material 102 is also limited.
That is, according to the conventional technique, there is a limitation on the shape and type of the carbon fiber reinforcing material, and a technique capable of relaxing this limitation is required.

本発明は、炭素繊維強化材の形状が自由で、炭素繊維強化材の種類を自由に選択することができる金属基炭素繊維強化複合材料の製造方法を提供することを課題とする。   An object of the present invention is to provide a method for producing a metal-based carbon fiber reinforced composite material in which the shape of the carbon fiber reinforcing material is free and the type of the carbon fiber reinforcing material can be freely selected.

請求項1に係る発明は、母材としての金属に炭素繊維強化材を複合化してなる金属基炭素繊維強化複合材料の製造方法において、
前記金属基炭素繊維強化複合材料の基となる炭素繊維基材と、この基材とは別に炭素繊維に樹脂を含浸させてなる炭素繊維プリプレグとを準備し、前記炭素繊維基材が芯になるように前記炭素繊維プリプレグで挟み、変形させて所望の形状に整えた積層体を得る工程と、
前記炭素繊維プリプレグ中の樹脂を硬化させ強度を高めるために前記積層体を加熱処理することにより炭素繊維硬化積層体を得る工程と、
ハンドリングが容易になった炭素繊維硬化積層体を高温炉に入れて炭素繊維基材を黒鉛化処理すると共に前記炭素繊維硬化積層体中の樹脂を炭素化させることにより、黒鉛化炭素繊維基材を炭素繊維強化炭素複合材で覆った形態の中間体を得る工程と、
この中間体に溶融金属を接触させ、前記炭素繊維強化炭素複合材を通過した前記溶融金属を、前記黒鉛化炭素繊維基材に含浸させることで、中間体に金属が含浸してなる金属含浸体を得る工程と、
この金属含浸体から前記炭素繊維強化炭素複合材を除去することで、金属に炭素繊維強化材を複合化してなる金属基炭素繊維強化複合材料を得る工程とからなることを特徴とする。
The invention according to claim 1 is a method for producing a metal-based carbon fiber reinforced composite material obtained by combining a carbon fiber reinforcing material with a metal as a base material.
A carbon fiber base material to be a base of the metal base carbon fiber reinforced composite material and a carbon fiber prepreg obtained by impregnating carbon fiber with a resin are prepared separately from the base material, and the carbon fiber base material is a core. So as to obtain a laminate that is sandwiched between the carbon fiber prepregs and deformed to prepare a desired shape;
A step of obtaining a carbon fiber cured laminate by heat-treating the laminate to cure the resin in the carbon fiber prepreg and increase the strength;
The graphitized carbon fiber substrate is obtained by placing the carbon fiber cured laminate that has become easy to handle into a high-temperature furnace to graphitize the carbon fiber substrate and carbonizing the resin in the carbon fiber cured laminate. Obtaining an intermediate in a form covered with a carbon fiber reinforced carbon composite;
A metal-impregnated body in which the intermediate body is impregnated with a metal by bringing the molten metal into contact with the intermediate body and impregnating the graphitized carbon fiber base material with the molten metal that has passed through the carbon fiber-reinforced carbon composite material. Obtaining
And removing the carbon fiber reinforced carbon composite material from the metal impregnated body to obtain a metal-based carbon fiber reinforced composite material obtained by combining the carbon fiber reinforced material with the metal.

請求項1に係る発明では、炭素繊維基材を、炭素繊維プリプレグで囲うようにした。炭素繊維プリプレグは加熱処理を施すことで炭素繊維プリプレグ中の樹脂が硬化し、剛性を付与する。変形しやすい炭素繊維基材であっても剛性に富む炭素繊維硬化積層体で囲うことで全体として剛性を確保することができる。これにより炭素繊維基材の種類を任意に選ぶことができ、形状も自由に設定することができる。
なお、炭素繊維硬化積層体は高温炉で高温処理することで樹脂が炭素化して多孔質体となり、後工程で溶融金属が通過しうるようにするため、炭素繊維硬化積層体の存在が複合材料の製造に支障をきたすことはない。同時に、炭素繊維基材が黒鉛化処理され耐熱性が向上するため、この点においても炭素繊維基材の種類を自由に選択することができる。
In the invention according to claim 1, the carbon fiber base material is surrounded by the carbon fiber prepreg. The carbon fiber prepreg is heated to cure the resin in the carbon fiber prepreg and impart rigidity. Even if the carbon fiber base material is easily deformed, the rigidity can be ensured as a whole by enclosing it with a rigid carbon fiber laminate. Thereby, the kind of carbon fiber base material can be chosen arbitrarily, and a shape can also be set freely.
The carbon fiber cured laminate is treated with a high temperature in a high-temperature furnace, so that the resin is carbonized to become a porous body, and the presence of the carbon fiber cured laminate is a composite material so that molten metal can pass through in a subsequent process. There will be no hindrance to the manufacture of At the same time, since the carbon fiber base material is graphitized to improve heat resistance, the type of the carbon fiber base material can be freely selected also in this respect.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。
図1は積層体を得る工程から炭素繊維硬化積層体を得る工程までの説明図であり、(a)に示すように、下位炭素繊維プリプレグ11と、下位黒鉛シート12と、炭素繊維基材13と、上位黒鉛シート14と、上位炭素繊維プリプレグ15とを準備する。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is an explanatory view from the step of obtaining a laminate to the step of obtaining a carbon fiber cured laminate, and as shown in FIG. 1 (a), a lower carbon fiber prepreg 11, a lower graphite sheet 12, and a carbon fiber substrate 13 are shown. Then, an upper graphite sheet 14 and an upper carbon fiber prepreg 15 are prepared.

下位炭素繊維プリプレグ11は、炭素繊維基材13の保護ケース(保護型)の役割を果たすメンバーであり、例えば、高弾性炭素繊維を、フィラメントの数が6で平織り又は綾織りし、繊維方向が0°であるものと90°であるものを交互に10枚重ねたものに、フェノール樹脂を適量含浸させてなる。
なお、含浸する樹脂は、焼成して炭素繊維強化炭素複合材になったときに強度を保つ必要があることから、残炭率が高いフェノール樹脂が好ましい。
下位黒鉛シート12は、離型材の役割を果たすメンバーであり、例えば0.2mm程度のシートである。
The lower carbon fiber prepreg 11 is a member that plays the role of a protective case (protective type) for the carbon fiber base material 13. For example, high-elasticity carbon fibers are plain-woven or twill-woven with 6 filaments, and the fiber direction is An appropriate amount of phenol resin is impregnated on 10 sheets of 0 ° and 90 ° alternately stacked.
The resin to be impregnated is preferably a phenol resin having a high residual carbon ratio because it is necessary to maintain strength when fired into a carbon fiber reinforced carbon composite material.
The lower graphite sheet 12 is a member that plays a role of a release material, and is, for example, a sheet of about 0.2 mm.

炭素繊維基材13は、本発明の金属基炭素繊維強化複合材料における炭素繊維強化材の基となる主要メンバーであり、例えば、高弾性炭素繊維を、フィラメントの数が6で平織り又は綾織りし、繊維方向が0°であるものと90°であるものを交互に10枚重ねたものを使用する。
炭素繊維基材は、焼成したときの残炭率が低い方が金属基炭素繊維強化複合材になったときに強度が高い。炭素繊維基材は、炭素繊維のままが良いが成形性を考慮しアクリル樹脂を適用含浸させてなるものが好ましい。
The carbon fiber base material 13 is a main member that is a base of the carbon fiber reinforcing material in the metal-based carbon fiber reinforced composite material of the present invention. For example, a high elastic carbon fiber is plain-woven or twill-woven with 6 filaments. The fiber direction is 0 ° and 90 °, and 10 layers are alternately stacked.
The carbon fiber base material has a higher strength when the remaining carbon ratio when fired becomes a metal-based carbon fiber reinforced composite material. The carbon fiber base material may be a carbon fiber, but is preferably one obtained by applying and impregnating an acrylic resin in consideration of moldability.

上位黒鉛シート14は、下位黒鉛シート12と同一で差し支えない。
上位炭素繊維プリプレグ15は、下位炭素繊維プリプレグ11と同一で差し支えない。
The upper graphite sheet 14 may be the same as the lower graphite sheet 12.
The upper carbon fiber prepreg 15 may be the same as the lower carbon fiber prepreg 11.

(b)に示すように、下位炭素繊維プリプレグ11、下位黒鉛シート12、炭素繊維基材13、上位黒鉛シート14及び上位炭素繊維プリプレグ15を積層してなる積層体16を、オートクレーブ17に投入する。オートクレーブ17は、ヒータ18と排気装置19を備えた真空加熱炉である。積層体16は、例えば、0.6MPaの圧力下で100℃、2時間の条件で加熱し、続いて、0.6MPaの圧力下で150℃、1.5時間の条件で加熱処理される。   As shown in (b), a laminate 16 formed by laminating the lower carbon fiber prepreg 11, the lower graphite sheet 12, the carbon fiber base material 13, the upper graphite sheet 14 and the upper carbon fiber prepreg 15 is put into an autoclave 17. . The autoclave 17 is a vacuum heating furnace provided with a heater 18 and an exhaust device 19. The laminated body 16 is heated, for example, under conditions of 100 ° C. and 2 hours under a pressure of 0.6 MPa, and subsequently heat-treated under conditions of 150 ° C. and 1.5 hours under a pressure of 0.6 MPa.

この合計3.5時間、100〜150℃の加熱により、上部炭素繊維プリプレグ15は想像線で示すように垂れて、下部炭素繊維プリプレグ11に接触し、一体化する。並行して、炭素繊維プリプレグ11、15に含まれている樹脂が適度に硬化する。この結果、炭素繊維硬化積層体21を得ることができる。   By heating at 100 to 150 ° C. for a total of 3.5 hours, the upper carbon fiber prepreg 15 hangs down as shown by an imaginary line and comes into contact with the lower carbon fiber prepreg 11 to be integrated. In parallel, the resin contained in the carbon fiber prepregs 11 and 15 is appropriately cured. As a result, the carbon fiber cured laminate 21 can be obtained.

図2は中間体を得る工程の説明図であり、(a)に示すように、ヒータ22と排気装置23とガス吹込み管24を備えた高温炉25に、炭素繊維硬化積層体21を投入して、炭化処理及び黒鉛化処理を行う。
炭化処理では、排気装置23で真空排気を実施し、次にガス吹込み管24でアルゴンガスを吹込み、ヒータ22で6時間をかけて1000℃まで昇温し、1000℃に達したら30分保持する。
黒鉛化処理では、アルゴンガス雰囲気中で、8時間をかけて2000℃まで昇温し、2000℃に達したら30分保持する。
FIG. 2 is an explanatory view of a process for obtaining an intermediate. As shown in FIG. 2A, the carbon fiber cured laminate 21 is put into a high temperature furnace 25 equipped with a heater 22, an exhaust device 23, and a gas blowing pipe 24. Then, carbonization treatment and graphitization treatment are performed.
In the carbonization treatment, evacuation is performed by the exhaust device 23, argon gas is then blown by the gas blowing pipe 24, the temperature is raised to 1000 ° C. over 6 hours by the heater 22, and 30 minutes when the temperature reaches 1000 ° C. Hold.
In the graphitization treatment, the temperature is raised to 2000 ° C. over 8 hours in an argon gas atmosphere, and when it reaches 2000 ° C., it is held for 30 minutes.

(b)は(a)のb部拡大図であり、高温処理により、炭素繊維硬化積層体中の樹脂が炭素化して、炭素繊維26とともに炭素繊維強化炭素複合材28となる。
すなわち、炭素繊維を黒鉛化処理すると共に炭素繊維硬化積層体中の樹脂を炭素化させることにより、黒鉛化炭素繊維基材27を炭素繊維強化炭素複合材28で覆った形態の中間体29を得ることができる。
(B) is an enlarged view of part b of (a), and the resin in the carbon fiber cured laminate is carbonized by the high temperature treatment, and becomes a carbon fiber reinforced carbon composite material 28 together with the carbon fibers 26.
That is, the carbon fiber is graphitized and the resin in the carbon fiber cured laminate is carbonized to obtain an intermediate 29 in a form in which the graphitized carbon fiber base material 27 is covered with the carbon fiber reinforced carbon composite material 28. be able to.

図3は金属含浸体を得る工程の説明図であり、(a)に示すように、上面を開放した高圧容器31に中間体29を移す。そして、高圧容器31内を窒素ガス雰囲気とし、90分かけて750℃に加熱し、そこへ鍋32からアルミニウムの溶融金属33を注ぐ。
次に、(b)に示すように、高圧容器31にピストン34を嵌め、窒素ガス雰囲気で溶融金属33の圧力が50〜100MPaになるように、このピストン34を下げる。すると、溶融金属33は、矢印(1)、(1)のように、炭素繊維強化炭素複合材28を通過し、中心の黒鉛化炭素繊維基材27に含浸する。
FIG. 3 is an explanatory diagram of a process for obtaining a metal-impregnated body. As shown in FIG. 3A, the intermediate body 29 is transferred to the high-pressure vessel 31 whose upper surface is open. Then, the inside of the high-pressure vessel 31 is placed in a nitrogen gas atmosphere, heated to 750 ° C. over 90 minutes, and the molten metal 33 of aluminum is poured from the pan 32 there.
Next, as shown in (b), the piston 34 is fitted into the high-pressure vessel 31, and the piston 34 is lowered so that the pressure of the molten metal 33 becomes 50 to 100 MPa in a nitrogen gas atmosphere. Then, the molten metal 33 passes through the carbon fiber reinforced carbon composite material 28 and impregnates the center graphitized carbon fiber substrate 27 as indicated by arrows (1) and (1).

図4は金属基炭素繊維強化複合材料を得る工程の説明図であり、(a)に示すように、高圧容器31から凝固した溶融金属とともに金属含浸体35を取り出す。
そして、(b)に示すように金属含浸体35に対し、矢印(2)、(2)のように炭素繊維強化炭素複合材28の一部28a、28aを切除する。
次に、(c)に示すように、残っていた炭素繊維強化炭素複合材28の残部28b、28bを、矢印(3)、(3)の部位ではぎ取る。
FIG. 4 is an explanatory view of a process for obtaining a metal-based carbon fiber reinforced composite material. As shown in FIG. 4A, the metal impregnated body 35 is taken out from the high-pressure vessel 31 together with the solidified molten metal.
And as shown to (b), part 28a, 28a of the carbon fiber reinforced carbon composite material 28 is cut out with respect to the metal impregnated body 35 as shown by arrows (2) and (2).
Next, as shown in (c), the remaining portions 28b and 28b of the remaining carbon fiber reinforced carbon composite material 28 are removed at the portions indicated by arrows (3) and (3).

以上の結果、(d)に示す金属基炭素繊維強化複合材料36を得ることができる。この金属基炭素繊維強化複合材料36は、アルミニウムを母材とし炭素繊維で強化した複合材であることは言うまでもない。   As a result, the metal-based carbon fiber reinforced composite material 36 shown in (d) can be obtained. Needless to say, the metal-based carbon fiber reinforced composite material 36 is a composite material made of aluminum as a base material and reinforced with carbon fibers.

以上の製造方法で得られた金属基炭素繊維強化複合材料36は、平板形状材である。本発明方法では、円筒のような曲面形状の金属基炭素繊維強化複合材料を得ることもできる。その具体例を別実施例として以下に説明する。   The metal-based carbon fiber reinforced composite material 36 obtained by the above manufacturing method is a flat plate-shaped material. In the method of the present invention, a metal-based carbon fiber reinforced composite material having a curved shape such as a cylinder can also be obtained. A specific example will be described below as another embodiment.

図5は別実施例に係る積層体を得る工程から炭素繊維硬化積層体を得る工程までの説明図であり、(a)に示すように、下位炭素繊維プリプレグ11と、下位黒鉛シート12と、炭素繊維基材13と、上位黒鉛シート14と、上位炭素繊維プリプレグ15と、巻付け用の型15aとを準備する。   FIG. 5 is an explanatory view from the step of obtaining a laminate according to another example to the step of obtaining a carbon fiber cured laminate, and as shown in (a), the lower carbon fiber prepreg 11, the lower graphite sheet 12, A carbon fiber substrate 13, an upper graphite sheet 14, an upper carbon fiber prepreg 15, and a winding die 15a are prepared.

そして、巻付け用の型15aが芯になるように、巻付け、(b)に示す積層体16を得る。   And it winds so that the type | mold 15a for winding may become a core, and the laminated body 16 shown to (b) is obtained.

次に、(c)に示すように、積層体16を、オートクレーブ17に投入する。オートクレーブ17は、ヒータ18と排気装置19を備えた真空加熱炉である。積層体16は、例えば、0.6MPaの圧力下で100℃、2時間の条件で加熱し、続いて、0.6MPaの圧力下で150℃、1.5時間の条件で加熱処理される。   Next, as shown in (c), the laminate 16 is put into an autoclave 17. The autoclave 17 is a vacuum heating furnace provided with a heater 18 and an exhaust device 19. The laminated body 16 is heated, for example, under conditions of 100 ° C. and 2 hours under a pressure of 0.6 MPa, and subsequently heat-treated under conditions of 150 ° C. and 1.5 hours under a pressure of 0.6 MPa.

この合計3.5時間、100〜150℃の加熱により、炭素繊維プリプレグ11、15に含まれている樹脂が適度に硬化する。この結果、炭素繊維硬化積層体21を得ることができる。
オートクレーブ17から、巻付け用の型15aごと硬化した炭素繊維硬化積層体21を取り出し、巻付け用の型15aを抜き、円筒状の炭素繊維硬化積層体21を得る。
The resin contained in the carbon fiber prepregs 11 and 15 is appropriately cured by heating at 100 to 150 ° C. for a total of 3.5 hours. As a result, the carbon fiber cured laminate 21 can be obtained.
From the autoclave 17, the carbon fiber cured laminate 21 cured together with the winding mold 15 a is taken out, and the winding mold 15 a is pulled out to obtain a cylindrical carbon fiber cured laminate 21.

図6は別実施例に係る中間体を得る工程の説明図であり、(a)に示すように、ヒータ22と排気装置23とガス吹込み管24を備えた高温炉25に、炭素繊維硬化積層体21を投入して、炭化処理及び黒鉛化処理を行う。
炭化処理では、排気装置23で真空排気を実施し、次にガス吹込み管24でアルゴンガスを吹込み、ヒータ22で6時間をかけて1000℃まで昇温し、1000℃に達したら30分保持する。
黒鉛化処理では、アルゴンガス雰囲気中で、8時間をかけて2000℃まで昇温し、2000℃に達したら30分保持する。
FIG. 6 is an explanatory view of a process of obtaining an intermediate according to another embodiment. As shown in FIG. 6A, a high temperature furnace 25 equipped with a heater 22, an exhaust device 23, and a gas blowing tube 24 is cured with carbon fiber. The laminated body 21 is thrown in and carbonization and graphitization are performed.
In the carbonization treatment, evacuation is performed by the exhaust device 23, argon gas is then blown by the gas blowing pipe 24, the temperature is raised to 1000 ° C. over 6 hours by the heater 22, and 30 minutes when the temperature reaches 1000 ° C. Hold.
In the graphitization treatment, the temperature is raised to 2000 ° C. over 8 hours in an argon gas atmosphere, and when it reaches 2000 ° C., it is held for 30 minutes.

(b)は(a)のb部拡大図であり、高温処理により、炭素繊維プリプレグ中の樹脂が炭素化して、炭素繊維26とともに炭素繊維強化炭素複合材28となる。
すなわち、炭素繊維を黒鉛化処理すると共に炭素繊維プリプレグ中の樹脂を炭素化させることにより、黒鉛化炭素繊維基材27を炭素繊維強化炭素複合材28、28で挟んだ形態の中間体29を得ることができる。
(B) is an enlarged view of part b of (a), and the resin in the carbon fiber prepreg is carbonized by the high temperature treatment, and becomes a carbon fiber reinforced carbon composite material 28 together with the carbon fibers 26.
That is, the carbon fiber is graphitized and the resin in the carbon fiber prepreg is carbonized to obtain an intermediate 29 in a form in which the graphitized carbon fiber base material 27 is sandwiched between the carbon fiber reinforced carbon composite materials 28 and 28. be able to.

図7は別実施例に係る金属含浸体を得る工程の説明図であり、(a)に示すように、上面を開放した高圧容器31に中間体29を移す。そして、高圧容器31内を窒素ガス雰囲気とし、90分をかけて750℃に加熱し、そこへ鍋32からアルミニウムの溶融金属33を注ぐ。
次に、(b)に示すように、高圧容器31にピストン34を嵌め、窒素ガス雰囲気で溶融金属33の圧力が50〜100MPaになるように、このピストン34を下げる。すると、溶融金属33は、矢印(4)、(4)のように、炭素繊維強化炭素複合材28、28を通過し、中心の黒鉛化炭素繊維基材27に含浸する。これで、金属含浸体35を得ることができる。
FIG. 7 is an explanatory view of a process for obtaining a metal impregnated body according to another embodiment. As shown in FIG. 7A, the intermediate body 29 is transferred to the high-pressure vessel 31 having an open upper surface. Then, the inside of the high-pressure vessel 31 is placed in a nitrogen gas atmosphere, heated to 750 ° C. over 90 minutes, and a molten metal 33 of aluminum is poured from the pan 32 into the high-pressure vessel 31.
Next, as shown in (b), the piston 34 is fitted into the high-pressure vessel 31, and the piston 34 is lowered so that the pressure of the molten metal 33 becomes 50 to 100 MPa in a nitrogen gas atmosphere. Then, the molten metal 33 passes through the carbon fiber reinforced carbon composite materials 28 and 28 as indicated by arrows (4) and (4), and impregnates the center graphitized carbon fiber base material 27. Thus, the metal impregnated body 35 can be obtained.

図8は別実施例に係る金属基炭素繊維強化複合材料を得る工程の説明図であり、(a)金属含浸体35をプレスマシーンにかけて、矢印(5)、(5)、(5)、(5)のように、炭素繊維強化炭素複合材28、28をはぎ取る。   FIG. 8 is an explanatory view of a process for obtaining a metal-based carbon fiber reinforced composite material according to another embodiment. (A) The metal impregnated body 35 is applied to a press machine, and arrows (5), (5), (5), ( As in 5), the carbon fiber reinforced carbon composites 28, 28 are peeled off.

以上の結果、(b)に示す円筒形状の金属基炭素繊維強化複合材料36を得ることができる。この金属基炭素繊維強化複合材料36は、例えば、内径が110mmで、厚さが2mmで、高さが100mmの円筒であり、アルミニウムを母材とし炭素繊維で強化した複合材であることは言うまでもない。   As a result, the cylindrical metal-based carbon fiber reinforced composite material 36 shown in (b) can be obtained. The metal-based carbon fiber reinforced composite material 36 is, for example, a cylinder having an inner diameter of 110 mm, a thickness of 2 mm, and a height of 100 mm, and is a composite material reinforced with aluminum and a carbon fiber as a base material. Yes.

以上の説明から明らかなように、本発明は、炭素繊維基材を、炭素繊維プリプレグで囲うようにした。炭素繊維プリプレグは加熱処理を施すことで炭素繊維プリプレグ中の樹脂が硬化し、剛性を付与する。変形しやすい炭素繊維基材であっても剛性に富む炭素繊維硬化積層体で囲うことで全体として剛性を確保することができる。これにより炭素繊維基材の種類を任意に選ぶことができ、形状も自由に設定することができる。   As is apparent from the above description, in the present invention, the carbon fiber base material is surrounded by the carbon fiber prepreg. The carbon fiber prepreg is heated to cure the resin in the carbon fiber prepreg and impart rigidity. Even if the carbon fiber base material is easily deformed, the rigidity can be ensured as a whole by enclosing it with a rigid carbon fiber laminate. Thereby, the kind of carbon fiber base material can be chosen arbitrarily, and a shape can also be set freely.

(実験例)
本発明に係る実験例を以下に述べる。なお、本発明は実験例に限定されるものではない。
(Experimental example)
Experimental examples according to the present invention will be described below. Note that the present invention is not limited to experimental examples.

○試料1〜試料6における共通条件:
・下部炭素繊維プリプレグ(以下、下部プリプレグと記す。)は、高弾性炭素繊維、フィラメント数6、平織り、クロス目付215g/mの条件の炭素繊維(平織り使用のものを「高弾性炭素繊維A」と呼ぶ。)に、フェノール樹脂を含有率35%にして含浸させ、得られたシートを、積層方法0°/90°の条件で10枚積層したものを使用する。
○ Common conditions for sample 1 to sample 6:
The lower carbon fiber prepreg (hereinafter referred to as the lower prepreg) is a high elastic carbon fiber, a filament number of 6, a plain weave, a carbon fiber having a cloth basis weight of 215 g / m 2 (a plain weave used is a “high elastic carbon fiber A In this case, a sheet obtained by laminating 10 sheets of phenol resin at a content rate of 35% and laminating 10 sheets under the condition of the laminating method 0 ° / 90 ° is used.

・炭素繊維基材は、高弾性炭素繊維A(高弾性炭素繊維、フィラメント数6、平織り、クロス目付215g/mの条件の炭素繊維)に、フェノール樹脂などの樹脂(樹脂の種類及び含有率は表1に示す。)を含浸させ、得られたシートを、積層方法0°/90°の条件で10枚積層したものを使用する。
・上部炭素繊維プリプレグ(以下、上部プリプレグ)は、下部プリプレグと同一とする。
・製造方法は、図1〜図4に示す方法による。
The carbon fiber base material is a high elastic carbon fiber A (high elastic carbon fiber, 6 filaments, plain weave, carbon fiber with a cloth basis weight of 215 g / m 2 ) and a resin such as phenol resin (type and content of resin) Is impregnated in Table 1), and a sheet obtained by laminating 10 sheets under the condition of the laminating method 0 ° / 90 ° is used.
-The upper carbon fiber prepreg (hereinafter, upper prepreg) is the same as the lower prepreg.
-A manufacturing method is based on the method shown in FIGS.

○試料7における条件:
・下部プリプレグは、高弾性炭素繊維A(高弾性炭素繊維、フィラメント数6、平織り、クロス目付215g/mの条件の炭素繊維)に、フェノール樹脂を含有率35%にして含浸させ、得られたシートを、積層方法0°/90°の条件で10枚積層したものを使用する。
○ Conditions for sample 7:
The lower prepreg is obtained by impregnating high elastic carbon fiber A (high elastic carbon fiber, filament number 6, plain weave, carbon fiber with a cloth basis weight of 215 g / m 2 ) with a phenol resin content of 35%. 10 sheets are laminated under the condition of the laminating method 0 ° / 90 °.

・炭素繊維基材は、高強度炭素繊維、フィラメント数6、綾織り、クロス目付220g/mの条件の炭素繊維(綾織り使用のものを「高強度炭素繊維B」と呼ぶ。)に、フェノール樹脂などの樹脂(樹脂の種類及び含有率は表1に示す。)を含浸させ、得られたシートを、積層方法0°/90°の条件で10枚積層したものを使用する。
・上部プリプレグは、下部プリプレグと同一とする。
・製造方法は、図1〜図4に示す方法による。
The carbon fiber base material is a high-strength carbon fiber, a filament number of 6, a twill weave, and a carbon fiber having a cloth basis weight of 220 g / m 2 (the one using a twill weave is called “high-strength carbon fiber B”). A sheet obtained by impregnating a resin such as a phenol resin (the type and content of the resin is shown in Table 1) and laminating 10 sheets obtained under a laminating method of 0 ° / 90 ° is used.
・ The upper prepreg is the same as the lower prepreg.
-A manufacturing method is based on the method shown in FIGS.

以上に述べた試料1〜7における条件及び引張り強さなどの評価を次表に示す。   The conditions such as the conditions and tensile strength in the samples 1 to 7 described above are shown in the following table.

Figure 2009127116
Figure 2009127116

・試料1は、炭素繊維基材に樹脂を含浸させなかったので、黒鉛化処理後、残炭率は0%である。100MPaでアルミニウム溶湯を含浸させた。炭素繊維強化炭素複合材を剥がして得た複合材の引張り強さは、560MPaであった。
・試料2は、炭素繊維基材に35質量%のフェノール樹脂を含浸させた。黒鉛化処理後、残炭率は約50%であった。100MPaでアルミニウム溶湯を含浸させた。炭素繊維強化炭素複合材を剥がして得た複合材の引張り強さは、340MPaであった。
・試料3は、炭素繊維基材に35質量%のエポキシ樹脂を含浸させた。黒鉛化処理後、残炭率は約30%であった。100MPaでアルミニウム溶湯を含浸させた。炭素繊維強化炭素複合材を剥がして得た複合材の引張り強さは、430MPaであった。
試料1〜3から、残留炭素が多いほど強度が低下することが確認できた。
-Since the sample 1 did not impregnate the carbon fiber base material with resin, the residual carbon ratio is 0% after the graphitization treatment. The molten aluminum was impregnated at 100 MPa. The tensile strength of the composite material obtained by peeling off the carbon fiber reinforced carbon composite material was 560 MPa.
In sample 2, a carbon fiber base material was impregnated with 35% by mass of a phenol resin. After the graphitization treatment, the residual carbon ratio was about 50%. The molten aluminum was impregnated at 100 MPa. The tensile strength of the composite material obtained by peeling off the carbon fiber reinforced carbon composite material was 340 MPa.
In sample 3, a carbon fiber base material was impregnated with 35% by mass of an epoxy resin. After the graphitization treatment, the residual carbon ratio was about 30%. The molten aluminum was impregnated at 100 MPa. The tensile strength of the composite material obtained by peeling off the carbon fiber reinforced carbon composite material was 430 MPa.
From Samples 1 to 3, it was confirmed that the strength decreased as the amount of residual carbon increased.

・試料4は、炭素繊維基材に15質量%のアクリル樹脂を含浸させた。黒鉛化処理後、残炭率は、ほぼ0%であった。100MPaでアルミニウム溶湯を含浸させた。炭素繊維強化炭素複合材を剥がして得た複合材の引張り強さは、560MPaであった。
アクリル樹脂の含有量を15質量%にすることで、残留炭素をほぼ0%にすることができ、高い引張り強さを得ることができた。
In sample 4, a carbon fiber base material was impregnated with 15% by mass of an acrylic resin. After the graphitization treatment, the residual carbon ratio was almost 0%. The molten aluminum was impregnated at 100 MPa. The tensile strength of the composite material obtained by peeling off the carbon fiber reinforced carbon composite material was 560 MPa.
By setting the content of the acrylic resin to 15% by mass, the residual carbon could be almost 0%, and high tensile strength could be obtained.

・試料5は、炭素繊維基材に15質量%のアクリル樹脂を含浸させた。黒鉛化処理後、残炭率は、ほぼ0%であった。50MPaでアルミニウム溶湯を含浸させた。炭素繊維強化炭素複合材を剥がして得た複合材の引張り強さは、530MPaであった。
試料4に対して、鋳造圧力を100MPaから50MPaに下げたところ、若干下がったものの高い強度を得ることができた。
In sample 5, a carbon fiber base material was impregnated with 15% by mass of an acrylic resin. After the graphitization treatment, the residual carbon ratio was almost 0%. The molten aluminum was impregnated at 50 MPa. The tensile strength of the composite material obtained by peeling off the carbon fiber reinforced carbon composite material was 530 MPa.
When the casting pressure was lowered from 100 MPa to 50 MPa for Sample 4, high strength could be obtained although the pressure was slightly reduced.

・試料6は、炭素繊維基材に15質量%のアクリル樹脂を含浸させた。1000℃で加熱処理した。黒鉛化処理後、残炭率は、ほぼ0%であった。50MPaでアルミニウム溶湯を含浸させた。炭素繊維強化炭素複合材を剥がして得た複合材の引張り強さは、110MPaであった。
加熱処理温度が1000℃であるため、炭素繊維基材の黒鉛化が未了若しくは不十分であり耐熱性が不足したため、十分な強度が得られなかった。
In sample 6, a carbon fiber base material was impregnated with 15% by mass of an acrylic resin. Heat treatment was performed at 1000 ° C. After the graphitization treatment, the residual carbon ratio was almost 0%. The molten aluminum was impregnated at 50 MPa. The tensile strength of the composite material obtained by peeling off the carbon fiber reinforced carbon composite material was 110 MPa.
Since the heat treatment temperature was 1000 ° C., graphitization of the carbon fiber substrate was incomplete or insufficient, and heat resistance was insufficient, so that sufficient strength could not be obtained.

・試料7は、炭素繊維基材に15質量%のアクリル樹脂を含浸させた。黒鉛化処理後、残炭率は、ほぼ0%であった。50MPaでアルミニウム溶湯を含浸させた。炭素繊維強化炭素複合材を剥がして得た複合材の引張り強さは、530MPaであった。
試料7は試料5に対し、耐熱性の低い高強度炭素繊維を炭素繊維基材として使用したが、本発明における黒鉛化処理によって耐熱性が向上し、金属基炭素繊維強化複合材料において高い強度を得ることが可能となった。
Sample 7 was a carbon fiber substrate impregnated with 15% by mass of acrylic resin. After the graphitization treatment, the residual carbon ratio was almost 0%. The molten aluminum was impregnated at 50 MPa. The tensile strength of the composite material obtained by peeling off the carbon fiber reinforced carbon composite material was 530 MPa.
Sample 7 uses high-strength carbon fiber having low heat resistance as a carbon fiber base material compared to sample 5, but the heat resistance is improved by the graphitization treatment in the present invention, and the metal-based carbon fiber reinforced composite material has high strength. It became possible to get.

○試料8〜試料10における共通条件:
・下部プリプレグは、高弾性炭素繊維A(高弾性炭素繊維、フィラメント数6、平織り、クロス目付215g/mの条件の炭素繊維)に、フェノール樹脂を含有率35%にして含浸させ、得られたシートを、積層方法0°/90°の条件で10枚積層したものを使用する。
○ Common conditions for Sample 8 to Sample 10:
The lower prepreg is obtained by impregnating high elastic carbon fiber A (high elastic carbon fiber, filament number 6, plain weave, carbon fiber with a cloth basis weight of 215 g / m 2 ) with a phenol resin content of 35%. 10 sheets are laminated under the condition of the laminating method 0 ° / 90 °.

・炭素繊維基材は、高弾性炭素繊維A(高弾性炭素繊維、フィラメント数6、平織り、クロス目付215g/mの条件の炭素繊維)に、アクリル樹脂を含有率15%にして含浸させ、得られたシートを、積層方法0°/90°の条件で10枚積層したものを使用する。
・上部プリプレグは、下部プリプレグと同一とする。
・製造方法は、図5〜図8に示す方法による。
The carbon fiber base material is impregnated with a high elastic carbon fiber A (high elastic carbon fiber, filament number 6, plain weave, carbon fiber with a cloth basis weight of 215 g / m 2 ) with an acrylic resin content of 15%, A sheet obtained by laminating 10 sheets under the condition of the laminating method 0 ° / 90 ° is used.
・ The upper prepreg is the same as the lower prepreg.
-A manufacturing method is based on the method shown in FIGS.

○試料11における条件:
・下部プリプレグは、高弾性炭素繊維A(高弾性炭素繊維、フィラメント数6、平織り、クロス目付215g/mの条件の炭素繊維)に、フェノール樹脂を含有率35%にして含浸させ、得られたシートを、積層方法0°/90°の条件で10枚積層したものを使用する。
○ Conditions for sample 11:
The lower prepreg is obtained by impregnating high elastic carbon fiber A (high elastic carbon fiber, filament number 6, plain weave, carbon fiber with a cloth basis weight of 215 g / m 2 ) with a phenol resin content of 35%. 10 sheets are laminated under the condition of the laminating method 0 ° / 90 °.

・炭素繊維基材は、高強度炭素繊維B(高強度炭素繊維、フィラメント数6、綾織り、クロス目付220g/mの条件の炭素繊維)に、アクリル樹脂を含有率15%にして含浸させ、得られたシートを、積層方法0°/90°の条件で10枚積層したものを使用する。
・上部プリプレグは、下部プリプレグと同一とする。
・製造方法は、図5〜図8に示す方法による。
The carbon fiber base material is impregnated with high strength carbon fiber B (high strength carbon fiber, filament number 6, twill weave, carbon fiber with a cloth basis weight of 220 g / m 2 ) with an acrylic resin content of 15%. A sheet obtained by laminating 10 sheets under the condition of the laminating method 0 ° / 90 ° is used.
・ The upper prepreg is the same as the lower prepreg.
-A manufacturing method is based on the method shown in FIGS.

以上に述べた試料8〜11における条件及び評価を次表に示す。   The conditions and evaluations for Samples 8 to 11 described above are shown in the following table.

Figure 2009127116
Figure 2009127116

・試料8は、100MPaでアルミニウム溶湯を含浸させた。炭素繊維強化炭素複合材を剥がして得た複合材を観察したところ、アルミニウムの含浸状況は良好であった。しかし、得られた製品に割れが認められた。
・試料9は、75MPaでアルミニウム溶湯を含浸させた。炭素繊維強化炭素複合材を剥がして得た複合材を観察したところ、アルミニウムの含浸状況は良好であった。しかし、得られた製品に割れが認められた。
・試料10は、50MPaでアルミニウム溶湯を含浸させた。炭素繊維強化炭素複合材を剥がして得た複合材を観察したところ、アルミニウムの含浸状況、製品の外観共に良好であった。
試料8〜10によれば、鋳造圧力は高すぎると良くないことが分かった。
-Sample 8 was impregnated with molten aluminum at 100 MPa. When the composite material obtained by peeling off the carbon fiber reinforced carbon composite material was observed, the impregnation of aluminum was good. However, cracks were observed in the obtained product.
-Sample 9 was impregnated with molten aluminum at 75 MPa. When the composite material obtained by peeling off the carbon fiber reinforced carbon composite material was observed, the impregnation of aluminum was good. However, cracks were observed in the obtained product.
-Sample 10 was impregnated with molten aluminum at 50 MPa. When the composite material obtained by peeling off the carbon fiber reinforced carbon composite material was observed, both the impregnation condition of aluminum and the appearance of the product were good.
According to Samples 8 to 10, it was found that the casting pressure was not good if it was too high.

・試料11は、50MPaでアルミニウム溶湯を含浸させた。炭素繊維強化炭素複合材を剥がして得た複合材を観察したところ、アルミニウムの含浸状況、製品の外観共に良好であった。
試料11は試料10に対し、耐熱性の低い高強度炭素繊維を炭素繊維基材として使用したが本発明における黒鉛化処理によって耐熱性が向上したため、アルミニウムの含浸状況、製品の外観に差がでなかった。
-Sample 11 was impregnated with molten aluminum at 50 MPa. When the composite material obtained by peeling off the carbon fiber reinforced carbon composite material was observed, both the impregnation condition of aluminum and the appearance of the product were good.
Sample 11 uses high-strength carbon fiber with low heat resistance as a carbon fiber base material, but the heat resistance is improved by the graphitization treatment in the present invention, so that there is a difference in the impregnation condition of aluminum and the appearance of the product. There wasn't.

尚、本発明の金属基炭素繊維強化複合材料の製造方法は、実施の形態では円筒形状に適用したが、炭素繊維基材を炭素繊維プリプレグで挟み、変形させて所望の形状にできる限り適用可能であり、その他の形状に適用することは差し支えない。   In addition, although the manufacturing method of the metal-based carbon fiber reinforced composite material of the present invention is applied to the cylindrical shape in the embodiment, it can be applied as much as possible to the desired shape by sandwiching the carbon fiber base material with the carbon fiber prepreg and deforming it. It can be applied to other shapes.

本発明の金属基炭素繊維強化複合材料の製造に好適である。   It is suitable for producing the metal-based carbon fiber reinforced composite material of the present invention.

積層体を得る工程から炭素繊維硬化積層体を得る工程までの説明図である。It is explanatory drawing from the process of obtaining a laminated body to the process of obtaining a carbon fiber hardening laminated body. 中間体を得る工程の説明図である。It is explanatory drawing of the process of obtaining an intermediate body. 金属含浸体を得る工程の説明図である。It is explanatory drawing of the process of obtaining a metal impregnation body. 金属基炭素繊維強化複合材料を得る工程の説明図である。It is explanatory drawing of the process of obtaining a metal-based carbon fiber reinforced composite material. 別実施例に係る積層体を得る工程から炭素繊維硬化積層体を得る工程までの説明図である。It is explanatory drawing from the process of obtaining the laminated body which concerns on another Example to the process of obtaining a carbon fiber hardening laminated body. 別実施例に係る中間体を得る工程の説明図である。It is explanatory drawing of the process of obtaining the intermediate body which concerns on another Example. 別実施例に係る金属含浸体を得る工程の説明図である。It is explanatory drawing of the process of obtaining the metal impregnation body which concerns on another Example. 別実施例に係る金属基炭素繊維強化複合材料を得る工程の説明図である。It is explanatory drawing of the process of obtaining the metal group carbon fiber reinforced composite material which concerns on another Example. 従来の技術の基本原理を説明する図である。It is a figure explaining the basic principle of the prior art.

符号の説明Explanation of symbols

11、15…プリプレグ(炭素繊維プリプレグ)、13…炭素繊維基材、16…積層体、21…炭素繊維硬化積層体、25…高温炉、27…黒鉛化炭素繊維基材、28…炭素繊維強化炭素複合材、29…中間体、33…溶融金属、35…金属含浸体、36…金属基炭素繊維強化複合材料。   DESCRIPTION OF SYMBOLS 11, 15 ... Prepreg (carbon fiber prepreg), 13 ... Carbon fiber base material, 16 ... Laminated body, 21 ... Carbon fiber hardening laminated body, 25 ... High temperature furnace, 27 ... Graphitized carbon fiber base material, 28 ... Carbon fiber reinforcement Carbon composite material, 29 ... intermediate, 33 ... molten metal, 35 ... metal impregnated body, 36 ... metal-based carbon fiber reinforced composite material.

Claims (1)

母材としての金属に炭素繊維強化材を複合化してなる金属基炭素繊維強化複合材料の製造方法において、
前記金属基炭素繊維強化複合材料の基となる炭素繊維基材と、この基材とは別に炭素繊維に樹脂を含浸させてなる炭素繊維プリプレグとを準備し、前記炭素繊維基材が芯になるように前記炭素繊維プリプレグで挟み、変形させて所望の形状に整えた積層体を得る工程と、
前記炭素繊維プリプレグ中の樹脂を硬化させ強度を高めるために前記積層体を加熱処理することにより炭素繊維硬化積層体を得る工程と、
ハンドリングが容易になった炭素繊維硬化積層体を高温炉に入れて炭素繊維基材を黒鉛化処理すると共に前記炭素繊維硬化積層体中の樹脂を炭素化させることにより、黒鉛化炭素繊維基材を炭素繊維強化炭素複合材で覆った形態の中間体を得る工程と、
この中間体に溶融金属を接触させ、前記炭素繊維強化炭素複合材を通過した前記溶融金属を、前記黒鉛化炭素繊維基材に含浸させることで、中間体に金属が含浸してなる金属含浸体を得る工程と、
この金属含浸体から前記炭素繊維強化炭素複合材を除去することで、金属に炭素繊維強化材を複合化してなる金属基炭素繊維強化複合材料を得る工程とからなることを特徴とする金属基炭素繊維強化複合材料の製造方法。
In the method for producing a metal-based carbon fiber reinforced composite material obtained by combining a carbon fiber reinforcing material with a metal as a base material,
A carbon fiber base material to be a base of the metal base carbon fiber reinforced composite material and a carbon fiber prepreg obtained by impregnating carbon fiber with a resin are prepared separately from the base material, and the carbon fiber base material is a core. So as to obtain a laminate that is sandwiched between the carbon fiber prepregs and deformed to prepare a desired shape;
A step of obtaining a carbon fiber cured laminate by heat-treating the laminate to cure the resin in the carbon fiber prepreg and increase the strength;
The graphitized carbon fiber substrate is obtained by placing the carbon fiber cured laminate that has become easy to handle into a high-temperature furnace to graphitize the carbon fiber substrate and carbonizing the resin in the carbon fiber cured laminate. Obtaining an intermediate in a form covered with a carbon fiber reinforced carbon composite;
A metal-impregnated body in which the intermediate body is impregnated with the metal by bringing the molten metal into contact with the intermediate body and impregnating the graphitized carbon fiber base material with the molten metal that has passed through the carbon fiber-reinforced carbon composite material. Obtaining
A metal-based carbon comprising a step of obtaining a metal-based carbon fiber reinforced composite material obtained by compounding a carbon fiber reinforced material with a metal by removing the carbon fiber-reinforced carbon composite material from the metal-impregnated body. A method for producing a fiber-reinforced composite material.
JP2007306345A 2007-11-27 2007-11-27 Method for producing metal matrix carbon fiber-reinforced composite material Pending JP2009127116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306345A JP2009127116A (en) 2007-11-27 2007-11-27 Method for producing metal matrix carbon fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007306345A JP2009127116A (en) 2007-11-27 2007-11-27 Method for producing metal matrix carbon fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2009127116A true JP2009127116A (en) 2009-06-11

Family

ID=40818348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306345A Pending JP2009127116A (en) 2007-11-27 2007-11-27 Method for producing metal matrix carbon fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2009127116A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015086291A1 (en) * 2013-12-13 2015-06-18 Schunk Kohlenstofftechnik Gmbh Method for producing a composite component formed by carbon fibers coated with pyrolitic carbon
EP2853321A4 (en) * 2012-05-21 2015-08-05 Teijin Ltd Manufacturing method for molded resin product with metal insert
RU2688524C1 (en) * 2018-01-16 2019-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for increasing permeability of pores of graphite workpiece
RU2688525C1 (en) * 2018-01-16 2019-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for increasing permeability of pores of graphite workpiece
RU2688557C1 (en) * 2018-01-16 2019-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for increasing permeability of pores of graphite workpiece
RU2688558C1 (en) * 2018-01-16 2019-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for increasing permeability of pores of graphite workpiece
RU2688560C1 (en) * 2018-01-16 2019-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for increasing permeability of pores of a graphite workpiece
RU2688773C1 (en) * 2018-01-16 2019-05-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for increasing permeability of pores of a graphite workpiece
RU2688772C1 (en) * 2018-01-16 2019-05-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for increasing permeability of pores of a graphite workpiece
US10674609B2 (en) 2014-03-31 2020-06-02 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling
CN113183565A (en) * 2021-06-03 2021-07-30 河南工业大学 Preparation method of carbon fiber reinforced sliding current collecting material for high-speed train
CN113910641A (en) * 2021-10-11 2022-01-11 成都锐美特新材料科技有限公司 Carbon fiber composite material product, preparation method thereof and wearable seat

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853321A4 (en) * 2012-05-21 2015-08-05 Teijin Ltd Manufacturing method for molded resin product with metal insert
WO2015086291A1 (en) * 2013-12-13 2015-06-18 Schunk Kohlenstofftechnik Gmbh Method for producing a composite component formed by carbon fibers coated with pyrolitic carbon
WO2015086290A1 (en) * 2013-12-13 2015-06-18 Schunk Kohlenstofftechnik Gmbh Method for producing a pyrolytic carbon layer/carbon fiber composite component
US10674609B2 (en) 2014-03-31 2020-06-02 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling
RU2688558C1 (en) * 2018-01-16 2019-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for increasing permeability of pores of graphite workpiece
RU2688557C1 (en) * 2018-01-16 2019-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for increasing permeability of pores of graphite workpiece
RU2688525C1 (en) * 2018-01-16 2019-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for increasing permeability of pores of graphite workpiece
RU2688560C1 (en) * 2018-01-16 2019-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for increasing permeability of pores of a graphite workpiece
RU2688773C1 (en) * 2018-01-16 2019-05-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for increasing permeability of pores of a graphite workpiece
RU2688772C1 (en) * 2018-01-16 2019-05-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for increasing permeability of pores of a graphite workpiece
RU2688524C1 (en) * 2018-01-16 2019-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for increasing permeability of pores of graphite workpiece
CN113183565A (en) * 2021-06-03 2021-07-30 河南工业大学 Preparation method of carbon fiber reinforced sliding current collecting material for high-speed train
CN113910641A (en) * 2021-10-11 2022-01-11 成都锐美特新材料科技有限公司 Carbon fiber composite material product, preparation method thereof and wearable seat
CN113910641B (en) * 2021-10-11 2023-06-02 成都锐美特新材料科技有限公司 Carbon fiber composite material product, preparation method thereof and wearable seat

Similar Documents

Publication Publication Date Title
JP2009127116A (en) Method for producing metal matrix carbon fiber-reinforced composite material
JP6276514B2 (en) Method of making internal cavities and mandrels therefor in ceramic matrix composites
CN100532329C (en) Preparation method of carbon-silicon carbide base composite material toughened by carbon fiber
CN109231992A (en) A kind of high damage tolerance C/C-SiC composite material and its preparation and regulation method
CN114702328A (en) SiC nanowire network reinforced layered porous SiC ceramic and preparation method thereof
KR100307509B1 (en) Ceramic-Containing Carbon / Carbon Composites and Manufacturing Method Thereof
JP2011046543A (en) Carbon fiber-reinforced carbon composite material and method for manufacturing the same
CN106007768A (en) Preparation method of high-strength and light-weight carbon-carbon composite thermal insulation material
JP4049356B2 (en) Method for producing molded body made of C / C material
CN115572174A (en) Preparation method of carbon-carbon composite material, carbon-carbon composite material and application thereof
JP2011093758A (en) Carbonaceous material
JP2002255664A (en) C/c composite material and production method therefor
KR101466910B1 (en) Fiber reinforced ceramic composite comprising oxidation barrier layer and manufacturing method
JP3109928B2 (en) Method for producing carbon fiber reinforced carbon composite material
CN105503226B (en) A kind of ultra-thin carbon-based composite panel and preparation method
JP3288408B2 (en) Manufacturing method of general-purpose carbon fiber reinforced carbon material
JP4420371B2 (en) Manufacturing method of screw member made of C / C material
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP4980524B2 (en) Carbon-ceramic composite, metal object transport roller, and molten aluminum stirring shaft
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP4437617B2 (en) Method for producing carbon fiber reinforced SiC composite material
JP3983401B2 (en) Method for producing molded body made of C / C material
JP2003012374A (en) Method of manufacturing carbon fiber reinforcing carbon material
CN117229068A (en) Preparation method and application of high-fiber volume fraction composite material
EP3804937A1 (en) Method for manufacturing fiber-reinforced plastic from prepreg