JPS6267133A - Production of fiber reinforced metallic member - Google Patents

Production of fiber reinforced metallic member

Info

Publication number
JPS6267133A
JPS6267133A JP20622685A JP20622685A JPS6267133A JP S6267133 A JPS6267133 A JP S6267133A JP 20622685 A JP20622685 A JP 20622685A JP 20622685 A JP20622685 A JP 20622685A JP S6267133 A JPS6267133 A JP S6267133A
Authority
JP
Japan
Prior art keywords
powder
molded body
fiber
preform
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20622685A
Other languages
Japanese (ja)
Inventor
Seiichi Koike
精一 小池
Toyoko Ooshima
大嶋 豊子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP20622685A priority Critical patent/JPS6267133A/en
Publication of JPS6267133A publication Critical patent/JPS6267133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To produce a high strength fiber reinforced metallic member with high fillability by compacting short fibers of ceramics to form a preform and by surely filling a molten metal into the preform. CONSTITUTION:In the 1st stage, short fibers or whiskers of ceramics are compacted to form a preform. In the 2nd stage, the preform is immersed in a soln. contg. metallic powder which is readily oxidized to generate heat and a binder to impregnate the soln. into the surface layer of the preform. In the 3rd stage, the preform contg. the impregnated soln. is preheated in a nonoxidizing atmosphere in a preheating furnace. In the 3rd stage, the preform contg. the impregnated soln. is preheated in a nonoxidizing atmosphere in a preheating furnace. In the 4th stage, the preheated preform is taken out of the furnace and put in the air, where the metallic powder present in the preform is oxidized to generate heat and a molten metal is rapidly filled into the preform to obtain a fiber reinforced metallic member.

Description

【発明の詳細な説明】 り皇ユ!IU11野 本発明は、繊維強化金属部材の製造方法に係り、特に強
化用繊維成形体に対する溶融金R(マトリックス金属)
の充填を確実に行い得る該製造方法に関するものである
[Detailed Description of the Invention] Riouyu! Field IU11 The present invention relates to a method for manufacturing a fiber-reinforced metal member, and particularly to a method for manufacturing a fiber-reinforced metal member.
The present invention relates to a manufacturing method that can reliably perform filling.

」米且韮 IIH強化金属材料(FRH)とは、マトリックス金属
中に強化繊維を介在させたものであって、該強化t/a
IIとして、金属、金属間化合物、酸化物、窒化物、炭
化物、その他の非金属材m雑が使用される、非金属材系
18Nは、強さ、弾性係数が、密度に比して大きいこと
が特徴であり、マトリックス金属との反応や溶解が少な
く高温において強さの低下割合が少ない等の理由で金属
材系IINよりも優れている。
"Komekani IIH reinforced metal material (FRH) is a material in which reinforcing fibers are interposed in a matrix metal, and the reinforced t/a
As II, non-metallic material 18N, in which metals, intermetallic compounds, oxides, nitrides, carbides, and other non-metallic materials are used, has a strength and an elastic modulus that is large compared to its density. It is superior to metal-based IIN because it reacts with the matrix metal less and dissolves less, and its strength decreases less at high temperatures.

また、溶融金属浸透法による繊維強化金属部材の製造に
おいては、強化繊維(短IJAH1またはウィスカー)
と溶融マトリックス金属との濡れ性に留意しなければな
らず、大部分の繊維−金属の組合せでtよ濡れ竹が悪く
、溶融金属がllli間に浸透し難いため、例えば加圧
鋳造法、真空鋳造法によりlll11間に溶融金属を強
制浸透せしめている。
In addition, in the production of fiber-reinforced metal members by the molten metal infiltration method, reinforcing fibers (short IJAH1 or whiskers)
In most fiber-metal combinations, wettability with the molten matrix metal has to be taken into consideration.For example, pressure casting, vacuum casting, etc. Molten metal is forcibly infiltrated between 11 and 11 by a casting method.

し つと この方法では、強化繊維として使用するIl維成形体を
予熱して、溶融金属の浸透を促進させているが、予熱炉
から取出した繊維成形体を複合化鋳造用金型内に設定し
汀澹を開始するまでに、繊組成型体が温度降下してしま
い、特に、その表面層の温度降下が顕著であるため、汀
澹時点で繊維成形体の温度がマトリックス金属の固相線
以下になる箇所が([じ、イの部分においては、複合化
鋳造中にマトリックス金属が凝固し、充填性の悪化を招
来するだ(jでなく、該凝固部分と、繊緒間に未だ溶融
金属が進入していない未充填部との関係で、作用圧によ
ってmN成形体のI’fl#、変形、υ)れ(充填部に
おける割れ)が発4−46゜斯様な現象は、A1合金に
比して溶融潜熱が小さく、凝固が速やかに進行するMg
合金において特に生じ易く、健全、かつ6強+111の
複合化部材の製造が困難であつIこ。
In this method, the Il fiber molded body used as the reinforcing fiber is preheated to promote penetration of the molten metal, but the fiber molded body taken out from the preheating furnace is placed in a composite casting mold. By the time stagnation begins, the temperature of the fibrous molded body has dropped, and the temperature drop in its surface layer is particularly significant, so that the temperature of the fibrous molded body at the time of stagnation is below the solidus line of the matrix metal. (In the part A, the matrix metal solidifies during composite casting, leading to deterioration of filling properties. 4-46゜Such a phenomenon occurs in the case of A1 alloy. Mg has a smaller latent heat of fusion and solidifies quickly compared to Mg.
This is especially likely to occur in alloys, and it is difficult to manufacture a sound composite member with a strength of 6+111.

11劇り記えt春尺及辛J−1鼓去u1罰本発明の目的
は、綴紐強化金属部材を製造するに当って、繊維成形体
に対する溶融金属の充填を確実に行い、もって欠陥のな
いへ強億の綴紐強化金属部材を得る点にある。
An object of the present invention is to reliably fill a fiber molded body with molten metal in the production of a cord-reinforced metal member, thereby eliminating defects. The goal is to obtain a reinforced metal member with a strong binding cord.

この目的は、セラミック製11 H4rI’E縮成形し
てIl雑成形体になしく第一工程)、これを、酸化、発
熱し易い金属粉末と結合剤を混合して溶液中に浸漬して
、l1lff成形体の少なくとも表面層に該溶液を含浸
させ(第三工程)、溶液含浸後の繊維成形体を非酸化付
雰囲気の予熱炉内で予熱しく第三工程)、繊維成形体を
予熱炉から取出してその内部に含まれる前記金属粉末を
酸化、発熱させ、繊維成形体に対して速やかに溶融金属
を充填させる(第四工程)ことによって達成される。
The purpose of this is to shrink and mold ceramic 11H4rI'E (first step) so that it does not turn into an Il miscellaneous compact (first step), mix it with a metal powder that easily oxidizes and generates heat, and a binder and immerse it in a solution. Impregnating at least the surface layer of the l1lff molded body with the solution (third step), preheating the fiber molded body impregnated with the solution in a preheating furnace in a non-oxidizing atmosphere (third step), and removing the fiber molded body from the preheating furnace. This is achieved by taking out the metal powder contained therein, oxidizing and generating heat, and quickly filling the fiber molded body with molten metal (fourth step).

本発明では、予熱炉から取出したlIN成形体の温度低
下を抑制するために、酸化、発熱し易い金属粉末を、予
熱に先立って、繊維成形体中に含有させておき、繊維成
形体を予熱炉から取出した時に生ずる該金属粉末の酸化
、発熱を利用しており、金属粉末としては、Ti粉末、
Zr粉末、Fe粉末が好適に使用される。この金属粉末
は、結合剤(例、アクリル系樹脂)と共に溶媒(例、ア
セトン)中に混合され、その混合溶液中に繊維成形体を
浸漬することにより、繊維成形体中に含有せしめられる
。溶液中に浸漬したIJAN成形体は、外部に引き出さ
れた後、加熱、乾燥せしめられるが、金属粉末は、結合
剤によって繊H@に固定され、ilH成形体からの離脱
が防什される。
In the present invention, in order to suppress the temperature drop of the IN molded body taken out from the preheating furnace, a metal powder that is easily oxidized and generates heat is contained in the fiber molded body prior to preheating, and the fiber molded body is preheated. It utilizes the oxidation and heat generation of the metal powder that occurs when it is taken out of the furnace, and the metal powder includes Ti powder, Ti powder,
Zr powder and Fe powder are preferably used. This metal powder is mixed with a binder (eg, acrylic resin) in a solvent (eg, acetone), and is incorporated into the fibrous molded body by immersing the fibrous molded body in the mixed solution. The IJAN molded body immersed in the solution is pulled out and then heated and dried, but the metal powder is fixed to the fibers H@ by the binder and prevented from detaching from the ilH molded body.

斯かる本発明方法によれば、内燃機関用ロッカー・アー
ム、連接棒、ピストン等、品質の安定した高強度の各種
構造用部材を得ることができる。
According to the method of the present invention, various structural members of stable quality and high strength, such as rocker arms for internal combustion engines, connecting rods, and pistons, can be obtained.

なお、使用する金属粉末は、王の粒径が小さい程、低温
度において酸化、発熱し易く、径50μm以下のものが
適当であって、特に径10μm以下に設定すると、繊維
成形体中への進入が容易であることから良好な結束を得
ることができる。
The smaller the particle size of the metal powder used, the more likely it is to oxidize and generate heat at low temperatures, so it is appropriate to use a metal powder with a diameter of 50 μm or less, and especially if it is set to a diameter of 10 μm or less, it will not penetrate into the fiber molded product. Since it is easy to enter, good binding can be obtained.

鼠11」− ■S^Cウィスカーの圧縮成形により、線層体積率(V
f)=18%の繊維成形体を作成した。
Mouse 11”- ■By compression molding S^C whiskers, the linear layer volume fraction (V
f) = 18% fiber molded body was created.

■アセトン中に、硬化剤入りアクリル系樹脂(商品名、
オリパイン)25111%を溶解させてなる溶液1tJ
に対して、粒径10μm未満のTi粉末100 orを
添加、混合した溶液11および粒径42〜44μmのT
i粉末100 grを添加、混合した溶液■を、それぞ
れ用意した。
■ Acrylic resin with hardening agent (product name,
1 tJ of solution prepared by dissolving 25111% of Olipain)
Solution 11 was prepared by adding and mixing 100 or of Ti powder with a particle size of less than 10 μm and T with a particle size of 42 to 44 μm.
A solution (2) in which 100 gr of I powder was added and mixed was prepared.

■項目■で得た繊維成形体そのものを比較例試験片Aと
し、該繊維成形体を溶液■に浸漬させたものを本発明側
試験片Bとし、前記未処理mH成形体を溶液■に浸漬さ
せたものを本発明側試験片Cとした。
■The fiber molded body obtained in item (■) itself was designated as Comparative Example Test Piece A, and the fiber molded body immersed in solution (■) was designated as present invention side test piece B, and the untreated mH molded body was immersed in solution (■). This was designated as test piece C of the present invention.

■空気雰囲気、温度700℃の予熱炉に試験片A。■Test piece A was placed in a preheating furnace at a temperature of 700°C in an air atmosphere.

Cを装入し、その温度が700℃に達した後、炉外に取
り出して大気中で放冷させ、その間の温度変化を各別に
測定して、第1図に示した。
C was charged, and after the temperature reached 700° C., it was taken out of the furnace and allowed to cool in the atmosphere, and the temperature changes during that time were measured separately and are shown in FIG.

■溶液T、IIからそれぞれ取り出した試験片B。■Test piece B taken out from solutions T and II, respectively.

Cおよび試験片Aを、アルゴンガス雰囲気、温度700
℃の予熱炉に装入し、それ等の温度が700℃に達した
後、炉外に取り出して大気中で放冷させ、その間の温度
変化を各別に測定して、第2図に示した、また、各試験
片A、B、Cにつぎ、それ等を予熱炉外に取り出した後
における経過時間と時下温度との関係を第3図に示した
C and test piece A were placed in an argon gas atmosphere at a temperature of 700.
℃ preheating furnace, and after the temperature reached 700℃, they were taken out of the furnace and left to cool in the atmosphere, and the temperature changes during that time were measured individually, and the results are shown in Figure 2. In addition, FIG. 3 shows the relationship between the elapsed time and the temperature after each test piece A, B, and C was taken out of the preheating furnace.

〈評価〉 ■第1図について:空気中で加熱した場合、試験片C(
粒径42〜44μmのTλ粉末を含有)は、試験片Δ(
Tλ粉末を含有甘ず)に比してテア温速度が大きく、7
00℃に到る昇温時間は、試験片へに比して試験ハCの
それが約172である。また、試験片Cを炉外に取出し
た時に僅かな温度−haが認められた。いずれの川縁も
、Tλ粉末の酸化、発熱によることは明らかである。
<Evaluation> ■Regarding Figure 1: When heated in air, test piece C (
Containing Tλ powder with a particle size of 42 to 44 μm), the test piece Δ(
The tare temperature rate is higher than that of sweets containing Tλ powder, and 7
The heating time to reach 00° C. was approximately 172 times longer for Test C than for the test piece. Further, when the test piece C was taken out of the furnace, a slight temperature -ha was observed. It is clear that both river edges are caused by oxidation and heat generation of the Tλ powder.

■第2図、第3図について:アルゴンガス中で700℃
に加熱した試験片B(粒径10μm未満のT2粉末を含
有)、試験片Cをか外に取出すと、試験片へには見られ
ない温度上野が認められた。
■Regarding Figures 2 and 3: 700℃ in argon gas
When test piece B (containing T2 powder with a particle size of less than 10 μm) and test piece C that had been heated to a temperature of 100 μm were taken out, a temperature fluctuation that was not observed in the test pieces was observed.

また、炉外に取出した後の鋳湯速度は、試験片A〉試験
片C〉試験片Bの順に小さくなり、放冷開始1分後では
、各試験片の降手瀉度は下記の通りであった。
In addition, the casting speed after taking out of the furnace decreases in the order of test piece A>test piece C>test piece B, and after 1 minute from the start of cooling, the drop rate of each test piece is as follows. Met.

試験片A・・・・・・316℃ 試験片B・・・・・・188℃ 試験片C・・・・・・220℃ この結果から、Tx粉末処理を施さないIBM成形体の
放冷速度は、T尤粉末処理を施した繊維成形体のそれよ
りも遥かに大ぎく、同じT、を粉末処理を施した場合ぐ
も、使用するTi粉末の粒径が小さい方が降温速度が小
さく、より大きな効果が得られることが判る。
Test piece A: 316°C Test piece B: 188°C Test piece C: 220°C From these results, the cooling rate of the IBM compact without Tx powder treatment is much larger than that of a fiber molded body treated with T-powder, whereas when the same T is treated with powder, the smaller the particle size of the Ti powder used, the lower the cooling rate, and the lower the temperature drop rate. It turns out that a great effect can be obtained.

また、通常では、繊維成形体を予熱炉から取出して、こ
れを鋳型に設定し、複合化鋳造を開始するまで約30〜
45秒必要とするが、第3図によれば、その間、試験片
Aは約150〜240℃温度降)し、試験片Bは約10
〜100℃温度降下する。
Normally, the fiber molded body is taken out from the preheating furnace, set in a mold, and takes about 3 to 30 minutes to start composite casting.
According to Figure 3, during that time, test piece A's temperature drops by about 150 to 240 degrees Celsius, and test piece B's temperature drops by about 10 degrees Celsius.
~100°C temperature drop.

以−トの如く、Ti粉未使用の効果が確認され、本発明
によって、健全な複合化鋳造を行い得ることが判る。
As shown above, the effect of not using Ti powder has been confirmed, and it can be seen that sound composite casting can be performed by the present invention.

W1璽2 SλCウィスカーを成形して三個の棒状mH成形体を得
た。各繊維成形体に対し、試験例1と同様なT、を粉末
処理(粉末粒径44μm)を施し、各別にアルゴンガス
雰囲気の予熱炉に装入して、それぞれ600℃、800
℃まで加熱した後、炉外に取り出して放冷した、その間
、各繊維成形体の外周面に付した一本の熱電対をもって
潤度測定を行い、温度変化の状態を第4図ないし第6図
に示した。
Three rod-shaped mH molded bodies were obtained by molding W12 SλC whiskers. Each fiber molded body was subjected to powder treatment (powder particle size: 44 μm) with the same T as in Test Example 1, and charged separately into a preheating furnace in an argon gas atmosphere.
After heating to ℃, it was taken out of the furnace and left to cool.During that time, the moisture content was measured using a thermocouple attached to the outer peripheral surface of each fiber molded body, and the state of temperature change was measured as shown in Figures 4 to 6. Shown in the figure.

く評価〉 第6図によれば、繊維成形体を800℃で15分間加熱
した後、炉外に1■り出すと、その外周面の淘麿が約1
150℃になり、Ti粉末の酸化、発熱が効果的に行わ
れ、また、600℃、700℃に加熱して炉外に取り出
した111N成形体では、直接の澗度十胃が少なく、T
尤粉末の酸化、発熱が不十分であることが判る。
According to Fig. 6, when a fiber molded body is heated at 800°C for 15 minutes and then taken out of the furnace, the aging of the outer peripheral surface is approximately 1.
The temperature reaches 150°C, and the oxidation and heat generation of the Ti powder is effectively carried out.In addition, in the 111N compacts heated to 600°C and 700°C and taken out of the furnace, there is less direct oxidation and T
It can be seen that the oxidation and heat generation of the powder is insufficient.

なお、第7図ないし第9図は、それぞれ第4図ないし第
6図に対比させるために示したものであり、Ti粉末処
理を施さない三個のSzCウィスカー製棒状繊緒成形体
を、各別にアルゴンガス雰囲気の予熱炉に装入して、そ
れぞれ600℃、700’C,800℃まで加熱した後
、炉外に取り出して放冷した結果を示す。
Note that FIGS. 7 to 9 are shown for comparison with FIGS. 4 to 6, respectively, and three rod-shaped fiber cord molded bodies made of SzC whiskers, which are not subjected to Ti powder treatment, are shown in each case. Separately, the samples were placed in a preheating furnace in an argon gas atmosphere and heated to 600°C, 700'C, and 800°C, respectively, and then taken out of the furnace and left to cool.

各図の対比から、Ti粉末処即を施した場合の効果を明
確に理解することができ、本発明により、炉外に取り出
した後のI!維成形体の温度を^目に維持し、もって健
全なる複合化鋳造を行うことが可能である。
From the comparison of each figure, it is possible to clearly understand the effect of applying Ti powder treatment, and according to the present invention, the I! It is possible to maintain the temperature of the fiber molded body at a certain level, thereby achieving sound composite casting.

実=」1−例 SλCウィスカーを圧縮成形して形成したsea成形体
に試験例1におけるTi粉末処即と同様な処即を施した
侵、これをアルゴンガス雰囲気、設定温度800℃の予
熱炉に装入し、目標温度(800℃)に達した繊維成形
体を炉外に取り出し、Ti粉末の酸化、発熱により温度
上昇した繊維成形体を、直ちに、300℃に加熱された
鋳造金型内に設定し、Tλ粉末の酸化、発熱状態下で、
加圧鋳造法により、温度750℃のMCI合金(AST
HAS41材)溶湯を、圧力1000/(g/ cdに
て繊維成形体に充填し、これを放冷、凝固させた。
Example 1 - A sea molded body formed by compression molding SλC whiskers was subjected to a treatment similar to the Ti powder treatment in Test Example 1, and then heated in an argon gas atmosphere in a preheating furnace at a set temperature of 800°C. The fiber molded body that reached the target temperature (800°C) was taken out of the furnace, and the fiber molded body whose temperature rose due to oxidation of the Ti powder and heat generation was immediately placed in a casting mold heated to 300°C. Under the oxidation and exothermic conditions of Tλ powder,
MCI alloy (AST
The molten metal (HAS41 material) was filled into a fiber molded body at a pressure of 1000/(g/cd), and allowed to cool and solidify.

得られた繊維強化金属部材には、欠陥が存在しなかった
There were no defects in the obtained fiber-reinforced metal member.

級−1 ■Ti粉末を用いる場合:Ti粉末の酸化、発熱温度は
700〜800℃であるから、Ti粉末を含有させた繊
維成形体の予熱温度は、これを700℃以上に設定すべ
きである。また、複合化すべきマトリックス金属がAl
1合金、Mg合金等、軽金属であるならば、イれ等の溶
融湯1αが700℃以上であるから、マトリックス金属
溶湯の充填性を良くするために、Ti粉末を含有する繊
維成形体の予熱温度を800℃程度に設定すべきである
Class-1 ■ When using Ti powder: Since the oxidation and exothermic temperature of Ti powder is 700 to 800°C, the preheating temperature of the fiber compact containing Ti powder should be set to 700°C or higher. be. In addition, the matrix metal to be composited is Al.
1 alloy, Mg alloy, etc., the temperature of the molten metal 1α is 700°C or higher, so in order to improve the filling properties of the matrix metal molten metal, preheating of the fiber molded body containing Ti powder is necessary. The temperature should be set at around 800°C.

■7r粉末、[e粉末を用いる場合ニアr粉末、1”e
粉末の酸化、発熱温度は400℃程度であるが、マトリ
ックス金属溶湯の充填性を考rIfiすると、繊維成形
体の予熱温度は、これを600℃以上に設定する必要が
ある。
■7r powder, [near r powder when using e powder, 1”e
The oxidation and exothermic temperature of the powder is about 400°C, but considering the filling properties of the molten matrix metal, the preheating temperature of the fiber molded body needs to be set to 600°C or higher.

l囲夏1浬 以上の説明から明らかな様に、ゼラミツク製繊維を圧縮
成形して繊維成形体になしく第一工程)、これを、酸化
、発熱し易い金属粉末と結合剤を混合して溶液中に浸漬
して、繊維成形体の少なくとも表面層に該溶液を含浸さ
t!(第三工程)、溶液含浸後のmy成形体を非酸化性
雰囲気の予熱炉内で予熱しく第三工程)、繊維成形体を
予熱炉から取出してその内部に含まれる前記金属粉末を
酸化、発熱させ、Il緒成形体に対して速やかに溶融金
属を充填させる(第四工程)ことを特徴とする繊維強化
金属部材の製造方法が提供された。
As is clear from the above explanation, Zeramitsu fibers are compression-molded to form a fiber molded product (the first step), and this is mixed with a metal powder that easily oxidizes and generates heat and a binder. The fiber molded article is immersed in the solution to impregnate at least the surface layer of the fiber molded article with the solution. (Third step), preheating my molded body after solution impregnation in a preheating furnace in a non-oxidizing atmosphere; Third step), taking out the fiber molded body from the preheating furnace and oxidizing the metal powder contained therein; A method for manufacturing a fiber-reinforced metal member is provided, which is characterized by generating heat and quickly filling a molten metal into a molded body (fourth step).

この方法によれば、予熱炉から取り出したI!維成形体
の温度が、Ti粉末の酸化、発熱により上昇するため、
降温速度が遅延化し、結果的に、従来に比して高い温度
の繊維成形体に対して、マトリックス金属の複合化鋳造
を行うことがき、鋳造過程で局部的なマトリックス金属
の凝固が生ずる様なことはなく、充填性が良好であって
、欠陥のない高強度の繊維強化金属部材を得ることがで
きる。
According to this method, the I! Since the temperature of the fiber compact increases due to oxidation and heat generation of the Ti powder,
The cooling rate is delayed, and as a result, composite casting of matrix metal can be performed on fiber molded bodies at a higher temperature than before, and it is possible to perform composite casting of matrix metal, which may cause local solidification of matrix metal during the casting process. Therefore, a high-strength fiber-reinforced metal member with good filling properties and no defects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTi粉末を含有しない繊維成形体(試験片A)
とTλ粉末を含有するam成形体(試験片C)を空気雰
囲気の予熱炉で加熱した後、炉外に取り出し、放冷した
場合の温度変化を示すグラフ、第2図は1尤粉末を含有
しない繊維成形体(試験片A)およびTλ粉末を含有す
る1112成形体(試験片B、C)をアルゴンガス雰囲
気の予熱炉で加熱した後、炉外に取り出し、放冷した場
合の温度変化を示すグラフ、第3図は前記各試験片につ
き、それ等をアルゴンガス雰囲気の予熱炉から取り出し
た後における経過時間と降下温度との関係を示すグラフ
、第4図ないし第6図はTi粉末を含有する繊維成形体
を設定温度600℃、700”C,800℃の予熱炉に
それぞれ装入して加熱した後、炉外に取り出し、放冷し
た場合の温度変化を示すグラフ、第7図ないし第9図は
T^粉末を含有しない繊維成形体を設定温度600℃、
700℃。 800℃の予熱炉にそれぞれ装入して加熱した後、炉外
に取り出し、放冷した場合の温度変化を示1グラフであ
る。
Figure 1 shows a fiber molded body (test piece A) that does not contain Ti powder.
A graph showing the temperature change when an am molded body (test piece C) containing Tλ powder and Tλ powder is heated in a preheating furnace in an air atmosphere, then taken out of the furnace and left to cool. After heating the 1112 molded body containing Tλ powder (test piece A) and the 1112 molded body (test pieces B, C) containing Tλ powder in a preheating furnace in an argon gas atmosphere, they were taken out of the furnace and left to cool. The graph shown in Figure 3 is a graph showing the relationship between the elapsed time and the temperature drop after taking out the test pieces from the preheating furnace in the argon gas atmosphere for each of the above-mentioned test pieces, and Figures 4 to 6 are graphs showing the relationship between Ti powder A graph showing the temperature change when the fiber molded bodies containing the fibers are charged into preheating furnaces with set temperatures of 600°C, 700"C, and 800°C, heated, and then taken out of the furnace and left to cool. Figure 9 shows a fiber molded body containing no T^ powder at a set temperature of 600°C.
700℃. 1 is a graph showing the temperature change when each sample was charged into a preheating furnace at 800° C. and heated, then taken out of the furnace and allowed to cool.

Claims (5)

【特許請求の範囲】[Claims] (1)セラミック製短繊維、またはセラミック製ウィス
カーを圧縮成形して繊維成形体を得る第一工程、 酸化、発熱し易い金属粉末と結合剤を混合した溶液中に
前記繊維成形体を浸漬し、該繊維成形体の少なくとも表
面層に前記溶液を含浸させる第二工程、 該溶液含浸後の繊維成形体を、非酸化性雰囲気の予熱炉
内で予熱する第三工程、 予熱された繊維成形体を大気中に取り出し、該繊維成形
体中に存在する前記金属粉末を酸化、発熱させ、繊維成
形体に対して速やかに溶融金属を充填させる第四工程、 以上、四工程よりなる繊維強化金属部材の製造方法。
(1) A first step of compression molding ceramic short fibers or ceramic whiskers to obtain a fibrous molded body, immersing the fibrous molded body in a solution containing a binder and a metal powder that easily oxidizes and generates heat; a second step of impregnating at least the surface layer of the fiber molded body with the solution; a third step of preheating the fiber molded body impregnated with the solution in a preheating furnace in a non-oxidizing atmosphere; The fourth step is to take out the metal powder in the atmosphere, oxidize and heat the metal powder present in the fiber molded body, and quickly fill the fiber molded body with molten metal. Production method.
(2)前記セラミック製繊維が、SiC繊維であること
を特徴とする特許請求の範囲第1項に記載された繊維強
化金属部材の製造方法。
(2) The method for manufacturing a fiber-reinforced metal member according to claim 1, wherein the ceramic fibers are SiC fibers.
(3)前記溶融金属が、Mg合金であることを特徴とす
る特許請求の範囲第1項、または第2項に記載された繊
維強化金属部材の製造方法。
(3) The method for manufacturing a fiber-reinforced metal member according to claim 1 or 2, wherein the molten metal is an Mg alloy.
(4)前記金属粉末が、Ti粉末、Zr粉末、Fe粉末
なる群から選択される少なくとも一種であることを特徴
とする特許請求の範囲第1項、第2項または第3項に記
載された繊維強化金属部材の製造方法。
(4) The metal powder described in claim 1, 2, or 3 is characterized in that the metal powder is at least one selected from the group consisting of Ti powder, Zr powder, and Fe powder. A method for manufacturing a fiber-reinforced metal member.
(5)前記繊維成形体の予熱温度が600℃以上である
ことを特徴とする特許請求の範囲第1項、第2項、第3
項または第4項に記載された繊維強化金属部材の製造方
法。
(5) Claims 1, 2, and 3, characterized in that the preheating temperature of the fiber molded body is 600°C or higher.
A method for producing a fiber-reinforced metal member according to item 4.
JP20622685A 1985-09-20 1985-09-20 Production of fiber reinforced metallic member Pending JPS6267133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20622685A JPS6267133A (en) 1985-09-20 1985-09-20 Production of fiber reinforced metallic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20622685A JPS6267133A (en) 1985-09-20 1985-09-20 Production of fiber reinforced metallic member

Publications (1)

Publication Number Publication Date
JPS6267133A true JPS6267133A (en) 1987-03-26

Family

ID=16519850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20622685A Pending JPS6267133A (en) 1985-09-20 1985-09-20 Production of fiber reinforced metallic member

Country Status (1)

Country Link
JP (1) JPS6267133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997022566A1 (en) * 1995-12-15 1997-06-26 Westinghouse Electric Corporation Oxide ceramic composite for high temperature environment device, method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997022566A1 (en) * 1995-12-15 1997-06-26 Westinghouse Electric Corporation Oxide ceramic composite for high temperature environment device, method and system

Similar Documents

Publication Publication Date Title
JPS609837A (en) Manufacture of composite material
US5791397A (en) Processes for producing Mg-based composite materials
FI91724C (en) Process for manufacturing a metal matrix composite using a negative form of an alloy
KR20010049712A (en) Preform for magnesium metal matrix composites
JPH01234536A (en) Production of aluminum/magnesium alloy containing refractory particles
JPS60210351A (en) Production of fiber reinforced light metal cast piece by diecasting
US2530853A (en) Method of casting
EP0380973B1 (en) Reinforced materials
US5286560A (en) Method for increasing the wettability of aluminum metal to alumina containing fibers
JPS6267133A (en) Production of fiber reinforced metallic member
JPH0620639B2 (en) Carbon fiber reinforced magnesium alloy member
JPS6240409B2 (en)
JPH0638978B2 (en) Method for producing composite material using redox reaction
US3770492A (en) Method of manufacture of materials from polycrystalline filaments
JPS5943835A (en) Production of frm from sic whisker
JPS6354056B2 (en)
JPH01279716A (en) Manufacture of metal-based composite material
JPH03138304A (en) Manufacture of porous sintered hard alloy
JP2000271728A (en) Production of composite stock with non-pressurize impregnating permeation method
FR2556623A1 (en) METHOD FOR MOLDING A MODEL LOST OF METALS, MOLDS FOR CARRYING OUT SAID METHOD, AND PROCESS FOR PRODUCING SAID MOLDS
JPS62156066A (en) Production of composite metallic material
JP2001508832A (en) Metal-ceramic structural element-its structure and its manufacture
JPH09184031A (en) Production of metal matrix composite material
JP2792192B2 (en) Method for producing titania whisker reinforced Al-based composite material
JPS63238968A (en) Manufacture of metal base composite material