JPS6112961B2 - - Google Patents

Info

Publication number
JPS6112961B2
JPS6112961B2 JP53006932A JP693278A JPS6112961B2 JP S6112961 B2 JPS6112961 B2 JP S6112961B2 JP 53006932 A JP53006932 A JP 53006932A JP 693278 A JP693278 A JP 693278A JP S6112961 B2 JPS6112961 B2 JP S6112961B2
Authority
JP
Japan
Prior art keywords
spacer
hot isostatic
melting point
metal
shaped article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53006932A
Other languages
Japanese (ja)
Other versions
JPS5499712A (en
Inventor
Katsuhiko Honma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP693278A priority Critical patent/JPS5499712A/en
Publication of JPS5499712A publication Critical patent/JPS5499712A/en
Publication of JPS6112961B2 publication Critical patent/JPS6112961B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は、熱間静水圧プレス成型法(以下HIP
法という)により、複雑な形状をした異型物品を
容易に成形し、かつ従来種々の問題を有していた
HIP処理後の離型を容易にする新規な異型物品の
HIP法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a hot isostatic press molding method (hereinafter referred to as HIP).
With this method, irregularly shaped articles with complex shapes can be easily formed, and conventionally there were various problems.
New irregularly shaped articles that facilitate release after HIP treatment
It concerns the HIP Act.

中空物品或いは複雑な外形をした物品等の異型
物品のHIP法については、既に幾つかの提案がな
されており、その代表的な方法の1つは、カプセ
ル自体を特殊な加工法により異型物品に対応する
形状に成形してその内部にセラミツクス或いは金
属等の原料粉末を充填してHIP処理する方法であ
るが、カプセルの成形自体が極めて煩雑であり、
又HIP処理後も複雑な形状をしたカプセルを除去
する離型作業も困難を伴なうという問題があつ
た。そこでこの問題を解決する方法として出願人
は先に、単純な形状のカプセル内にスペーサーを
配置して異型物品の形状に対応する空間を形成
し、その内部に原料粉末を充填してHIP処理し、
HIP処理後、スペーサーを抜き取る方法を提案し
た。この方法は、カプセルの製造を極めて容易に
し、スペーサーも単純な形状の場合には容易に抜
き取ることができるため、比較的合理的な方法で
はあるが、スペーサー自体に複雑な形状が要求さ
れる場合には、も早、抜き取ることが不可能であ
り、従つて、用途はスペーサーが単純形状となり
得るものに限られていた。
Several proposals have already been made regarding the HIP method for irregularly shaped articles, such as hollow articles or articles with complex external shapes, and one of the representative methods is to turn the capsule itself into an irregularly shaped article using a special processing method. This method involves molding the capsule into a corresponding shape, filling the inside with raw material powder such as ceramics or metal, and performing HIP processing, but the molding of the capsule itself is extremely complicated;
Furthermore, even after the HIP treatment, there was a problem in that the mold release operation to remove the complicatedly shaped capsules was also accompanied by difficulties. Therefore, as a method to solve this problem, the applicant first placed a spacer inside a simple-shaped capsule to form a space corresponding to the shape of the irregularly shaped article, filled the inside with raw material powder, and performed HIP processing. ,
We proposed a method to remove the spacer after HIP treatment. This method makes it extremely easy to manufacture capsules, and the spacer can be easily extracted if it has a simple shape, so it is a relatively reasonable method, but if the spacer itself is required to have a complex shape. However, it is impossible to remove the spacer immediately, and therefore, its use has been limited to spacers that can have a simple shape.

本発明はこのスペーサーを用いるHIP法の改良
に係り、スペーサーの形状が如何なる形状であろ
うとも容易に除去できるようにすることを目的と
するもので、その特徴とするところは、スペーサ
ーを用いてカプセル内に形成した異型空間内に原
料粉末を充填してHIP処理するに当り、スペーサ
ーの材質を少くともその外層部意HIP処理温度よ
りも高融点で異型物品(原料粉末)の融点よりも
低い融点の金属となし、HIP処理後、該スペーサ
ーの融点以上で、かつ異型物品の融点よりも低い
温度で加熱してスペーサーを溶融流出させる点に
ある。
The present invention relates to an improvement of the HIP method using this spacer, and aims to make it possible to easily remove the spacer regardless of its shape. When filling the raw material powder into the irregular space formed in the capsule and performing HIP processing, the material of the spacer should be selected such that at least its outer layer has a melting point higher than the HIP processing temperature and lower than the melting point of the irregular shaped article (raw material powder). After the HIP treatment, the spacer is melted and flowed out by heating at a temperature higher than the melting point of the spacer and lower than the melting point of the irregularly shaped article.

以下に本発明の具体的内容について説明する。
なお、本発明は以下に例示する内容並びに特許請
求の範囲に示された実施態様に限定されるもので
はなく、本発明思想を逸脱しない範囲で任意の実
施態様を採用し得ることは言う迄もない。
The specific contents of the present invention will be explained below.
It should be noted that the present invention is not limited to the embodiments shown in the contents exemplified below and the claims, and it goes without saying that any embodiment can be adopted without departing from the idea of the present invention. do not have.

第1図は本発明の基本的実施例を示す断面図
で、金属或いはガラス等、通常の材料で構成され
たカプセル1内に、中子としてのスペーサー2を
配置し、カプセル1とスペーサー2とによつて形
成される異型空間内に原料粉末3を充填し、常法
により密封した状態を示している。こゝでスペー
サー2は少くともその外層部がHIP処理温度より
も高融点で原料粉末3の融点より低い金属であつ
て、原料粉末3が高速度鋼、低合金鋼あるいは鉄
粉の如く鉄系金属粉の場合には、スペーサー2は
銅、銅合金、アルミニウム、アルミニウム合金等
が用いられ、これらの素材より切削、プレス等の
適宜の処理を施して所定形状に形成される。この
ようにして得られた被処理体は常法に従つてHIP
処理を受けるが、HIP処理時にスペーサー2が溶
融して原料粉末3の粒子間に侵入したり、原料粉
末3と反応して合金層を形成させないように注意
する必要があり、対策としてはHIP処理温度をス
ペーサー2の融点より低い温度、例えばスペーサ
ーが銅の場合には融点が1083℃であるから大略
1050℃以下の温度、又、スペーサーがアルミニウ
ムの場合には融点が660℃であるから大略630℃以
下の温度、とすれば良い。通常、HIP処理温度は
1000〜1100℃程度が一般に用いられているが、本
発明者等の研究によると鉄系金属粉の場合350℃
程度の温度でも充分に99%以上の緻密化が行なわ
れることが実験的に確認されているので、HIP処
理温度をスペーサーの種類に応じて低下させるこ
とに技術的な問題はない。しかしながら、温度を
低下させると、HIP処理圧力を若干高くするか、
処理時間を若干長くする必要があるのでHIP装置
の仕様により高圧が高くできない場合とか、HIP
処理サイクルの短縮化を希望する場合には、それ
に適合した方法を講ずることが好ましい。
FIG. 1 is a sectional view showing a basic embodiment of the present invention, in which a spacer 2 as a core is placed inside a capsule 1 made of a normal material such as metal or glass, and the capsule 1 and spacer 2 are The figure shows a state in which the raw material powder 3 is filled into the irregular space formed by the method and sealed by a conventional method. Here, at least the outer layer of the spacer 2 is made of a metal with a melting point higher than the HIP treatment temperature and lower than the melting point of the raw material powder 3, and the raw material powder 3 is made of iron-based material such as high speed steel, low alloy steel, or iron powder. In the case of metal powder, the spacer 2 is made of copper, copper alloy, aluminum, aluminum alloy, etc., and is formed into a predetermined shape by subjecting these materials to appropriate processing such as cutting or pressing. The object to be treated thus obtained is subjected to HIP according to the conventional method.
During the HIP process, care must be taken to prevent the spacer 2 from melting and entering between the particles of the raw powder 3 or reacting with the raw powder 3 to form an alloy layer. Set the temperature to a temperature lower than the melting point of Spacer 2, for example, if the spacer is made of copper, the melting point is 1083℃, so approximately
The temperature may be 1050°C or lower, or if the spacer is made of aluminum, the melting point is 660°C, so the temperature may be approximately 630°C or lower. Typically, the HIP processing temperature is
A temperature of about 1000 to 1100℃ is generally used, but according to research by the present inventors, a temperature of 350℃ is used for iron-based metal powder.
It has been experimentally confirmed that 99% or more densification can be achieved even at a temperature of about 100%, so there is no technical problem in lowering the HIP treatment temperature depending on the type of spacer. However, lowering the temperature may require slightly higher HIP pressure or
Because the processing time needs to be slightly longer, there may be cases where high pressure cannot be applied due to the specifications of the HIP equipment, or if the HIP
If it is desired to shorten the processing cycle, it is preferable to adopt a method suitable for shortening the processing cycle.

なお、スペーサーの形状が複雑になると、これ
を切削加工により形成することは極めて煩雑な作
業となるので、このような場合には、複雑形状の
成形に適している鋳造法によりスペーサーを形成
することもできる。この場合、鋳造コストを極力
低く抑えることが望ましいから鉛或いは鉛合金の
如く低融点金属が好ましいが、鉛及び鉛合金の場
合その融点は190℃〜327℃程度であり、上記した
方法で使用するには余りにも融点が低温過ぎるの
で、第2図に示す如くHIP処理温度より高い融点
の材料からなる加工容易な薄板で所定形状に成形
した外層部2b内に、鉛の如くHIP処理温度より
低い融点の金属を内層部2aとして鋳造し、一体
化した複合構造のスペーサー2とすればよい。こ
の鋳造法は一般に衣鋳造と呼ばれている方法であ
り、この方法で鋳造した後、湯口部は内層部が露
出しないように外層部を形成する金属でシールす
ることは言う迄もない。
Furthermore, if the shape of the spacer becomes complex, forming it by cutting becomes extremely complicated work, so in such cases, it is recommended to form the spacer by a casting method that is suitable for molding complex shapes. You can also do it. In this case, it is desirable to keep the casting cost as low as possible, so a metal with a low melting point such as lead or a lead alloy is preferable, but lead and lead alloys have a melting point of about 190°C to 327°C and are used in the method described above. Since the melting point is too low, as shown in Figure 2, a material with a melting point lower than the HIP processing temperature, such as lead, is used in the outer layer 2b, which is formed into a predetermined shape with an easily processable thin plate made of a material with a melting point higher than the HIP processing temperature. The inner layer portion 2a may be cast from a metal having a melting point to form the spacer 2 with an integrated composite structure. This casting method is generally called cloth casting, and it goes without saying that after casting using this method, the sprue is sealed with the metal that forms the outer layer so that the inner layer is not exposed.

又、上述した鉛及び鉛合金等は極めて成形性が
良いので、先ずプレス等の機械加工により、所定
のスペーサー形状に成形し、次いでその表面に、
HIP処理温度より高い融点の金属をメツキ等の手
段により被覆して複合構造のスペーサーとするこ
とも可能である。
Furthermore, since the above-mentioned lead and lead alloys have extremely good formability, they are first formed into a predetermined spacer shape by mechanical processing such as pressing, and then the surface is coated with
It is also possible to make a spacer with a composite structure by coating it with a metal having a melting point higher than the HIP treatment temperature by means such as plating.

かゝる複合構造のスペーサーを用いる場合に
は、内層部2aの低融点金属が溶融しても何らか
問題はないから、温度は直線状に所定温度まで昇
温すればよい。
When such a spacer having a composite structure is used, there is no problem even if the low melting point metal of the inner layer portion 2a melts, so the temperature may be raised linearly to a predetermined temperature.

以上の例はスペーサーを実体金属(溶製材)よ
り成形する場合の例であるが、これを粉末で形成
することも可能である。例えば、通常の粉末鍛造
によりCu粉あるいはAl粉等のHIP処理温度より
低融点の金属粉を所定形状に成形してスペーサー
とすることも可能であるが、この成形工程を省略
するために次の方法を採用することもできる。即
ち、第3図に示すように、カプセル1内に紙或い
は合成樹脂薄板で所定形状に成形した型4を配置
し、その内部にスペーサーとなる金属粉5を充填
し、更にその外周部に原料粉末3を充填する方法
である。この方法においては、型4はHIP処理時
に分解炭化してしまうが、この炭化物層はスペー
サーと原料粉末との反応を防止する作用を為し、
極めて有効である。又、型4の分解によつて水
素、酸素等のガスが発生するが、これらのガスは
スペーサーあるいは製品金属中に殆んど吸収され
てしまうので、これらのガス成分が製品中に含有
されることが好ましくない場合には、スペーサー
を形成する金属粉5を原料粉3よりもこれらのガ
スに対して吸収能の高いものを用いればよい。即
ち、原料粉3が鉄系金属の場合には、スペーサー
をAl粉の如く酸素吸収能の高いもので形成した
り、あるいはAl粉を適宜混合したものとすれば
よく、又、水素ガスに対しては、この吸収能の高
いTiをスペーサーを形成する金属粉中に適量混
合すればよい。
Although the above example is an example in which the spacer is formed from solid metal (molten material), it is also possible to form the spacer from powder. For example, it is possible to use ordinary powder forging to form a metal powder with a melting point lower than the HIP processing temperature, such as Cu powder or Al powder, into a predetermined shape to form a spacer, but in order to omit this forming process, the following method is used. method can also be adopted. That is, as shown in FIG. 3, a mold 4 made of paper or a thin synthetic resin plate into a predetermined shape is placed inside a capsule 1, the inside of the mold 4 is filled with metal powder 5 to serve as a spacer, and the outer periphery of the mold 4 is filled with raw materials. This is a method of filling powder 3. In this method, mold 4 decomposes and carbonizes during the HIP process, but this carbide layer acts to prevent the reaction between the spacer and the raw material powder.
Extremely effective. In addition, gases such as hydrogen and oxygen are generated by the decomposition of type 4, but most of these gases are absorbed into the spacer or product metal, so these gas components are contained in the product. If this is not preferable, the metal powder 5 forming the spacer may have a higher ability to absorb these gases than the raw material powder 3. That is, when the raw material powder 3 is an iron-based metal, the spacer may be formed of a material with high oxygen absorption capacity such as Al powder, or may be appropriately mixed with Al powder. In this case, an appropriate amount of Ti, which has a high absorption capacity, may be mixed into the metal powder forming the spacer.

以上の如き構成のスペーサーを用いて、カプセ
ル中に封入された原料粉末はHIP処理を受けて真
密度の99%以上にまで緻密化され、カプセルは切
削等の適宜の手段により除去されるが、スペーサ
ーは図示の如き形状の場合には、機械的に抜き出
すことは不可能である。そこで本発明では、HIP
成形された異型物品をその融点より低く、かつス
ペーサーの融点以上の温度に加熱することにより
該スペーサーを溶融して流出させる。このように
してスペーサーを除去すれば、スペーサーの形状
が如何なる形状であつても極めて容易に製品から
分離することができ、又、製品に傷をつけること
もない。
Using the spacer configured as above, the raw material powder encapsulated in the capsule is subjected to HIP treatment and densified to more than 99% of its true density, and the capsule is removed by appropriate means such as cutting. If the spacer has the shape shown, it is impossible to extract it mechanically. Therefore, in the present invention, HIP
The spacer is melted and flowed out by heating the shaped article to a temperature below its melting point and above the melting point of the spacer. If the spacer is removed in this way, it can be separated from the product very easily no matter what shape the spacer has, and the product will not be damaged.

特に、この加熱温度をHIP製品の熱処理温度と
一致させれば、製品熱処理工程でスペーサーの除
去(離型)が行なわれるため、スペーサー除去の
ための特別な工程は不要となる。この方法を採用
するためには、スペーサーの材料はHIP製品の熱
処理温度以下の融点の金属でなければならないこ
とは言う迄もない。
In particular, if this heating temperature is made to match the heat treatment temperature of the HIP product, the spacer will be removed (mold released) during the product heat treatment process, so a special process for removing the spacer will be unnecessary. Needless to say, in order to employ this method, the spacer material must be a metal with a melting point below the heat treatment temperature of the HIP product.

なお、スペーサーとして、第2図に示した如き
複合構造のものを使用する場合、外層部2bを残
しておいても問題のない場合、或いは残しておく
ことが望ましい場合には、外層部2bの一端を開
口して内部の低融点金属のみを流出させることも
できる。この場合には、外層部2bの材料は、
HIP処理温度より高い融点の金属であればよく、
別段、HIP製品の融点以下である必要はない。
In addition, when using a spacer with a composite structure as shown in FIG. 2, if there is no problem with leaving the outer layer part 2b, or if it is desirable to leave it, the outer layer part 2b It is also possible to open one end and allow only the low melting point metal inside to flow out. In this case, the material of the outer layer portion 2b is
Any metal with a melting point higher than the HIP treatment temperature is sufficient.
In particular, it does not need to be below the melting point of the HIP product.

なお、スペーサーと製品金属との組合せによつ
ては、その境界部でHIP処理中に反応が生起する
場合もあるので、これを防止するためスペーサー
の外面に通常使用される離型剤を塗布する等、両
者の反応を防止する材料を介在させておく必要が
ある。
Depending on the combination of the spacer and product metal, a reaction may occur at the interface during the HIP process, so to prevent this, a commonly used mold release agent is applied to the outer surface of the spacer. It is necessary to use a material that prevents the reaction between the two.

以上は、スペーサーの代表例として中子の場合
の例を示したが、本発明はこれに限定されるもの
ではなく、歯車の谷部を形成する場合の如く、原
料粉末の周囲に複数個配置する場合その他の任意
の製品のHIP成形に適用できることは勿論であ
る。
Although the above example shows a core as a typical example of a spacer, the present invention is not limited to this, and a plurality of spacers are arranged around the raw material powder, as in the case of forming the trough of a gear. Of course, it can also be applied to HIP molding of any other product.

以上説明した通り、本発明は、スペーサーを少
くともその外層部がHIP処理温度よりも高融点で
製品よりも低融点の金属で形成し、これをHIP処
理後溶融流出させるものであるから、HIP処理後
の離型作業が極めて容易となり、しかもスペーサ
ーはHIP処理時には溶融せず、その後の溶融除去
時にはHIP処理による製品内への溶浸することを
なくしてHIP材の特性を損わず、従つて、従来困
難とされていた異型物品のHIP成形が極めて容易
になり、HIP技術の適用分野を著しく拡大するこ
とが可能となる。
As explained above, in the present invention, at least the outer layer of the spacer is formed of a metal whose melting point is higher than the HIP treatment temperature and lower than that of the product, and this is melted and flowed out after the HIP treatment. The mold release work after treatment is extremely easy, and the spacer does not melt during the HIP treatment, and when it is melted and removed afterwards, it does not infiltrate into the product due to the HIP treatment, so the properties of the HIP material are not impaired. As a result, HIP molding of irregularly shaped articles, which was previously considered difficult, becomes extremely easy, and the fields of application of HIP technology can be significantly expanded.

又、スペーサーの溶融処理温度をHIP製品の熱
処理温度(融点温度ではない)と一致させれば、
熱処理段階で離型が行なわれることになり、従来
人手によつて行なわれていた離型作業が実質的に
省略されることになるため、HIP製品製造工程の
連続化、自動化が容易となる。
Also, if the melting temperature of the spacer matches the heat treatment temperature (not the melting point temperature) of the HIP product,
Since mold release is performed during the heat treatment stage, the mold release work that was conventionally performed manually is essentially omitted, making it easier to continuousize and automate the HIP product manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で使用する被処理体の一例を示
す断面図、第2図は本発明で使用するスペーサー
の他の例を示す断面図、第3図は本発明で使用す
る被処理体の他の例を示す断面図である。 1……カプセル、2……スペーサー、3……原
料粉末。
Fig. 1 is a sectional view showing an example of the object to be processed used in the present invention, Fig. 2 is a sectional view showing another example of the spacer used in the invention, and Fig. 3 is a sectional view showing the object to be processed used in the invention. It is a sectional view showing other examples. 1... Capsule, 2... Spacer, 3... Raw material powder.

Claims (1)

【特許請求の範囲】 1 カプセル1内にスペーサー2を配置して製品
形状に対応する空間を形成し、該空間内にセラミ
ツクス或いは金属粉末からなる原料粉末3を充填
してカプセル1を密封した後、熱間静水圧プレス
法により高密度化処理を行ない、次いでカプセル
1及びスペーサー2を除去することにより異型物
品を成形するに当り、前記スペーサー2を少くと
もその外層部が熱間静水圧処理温度よりも高融点
で、異型物品の融点よりも低い融点の金属とな
し、熱間静水圧プレス成形後、該スペーサーの融
点以上でかつ異型物品の融点より低い温度に加熱
してスペーサー2を溶融流出せしめることを特徴
とする異型物品の熱間静水圧成形法。 2 スペーサー2が熱間静水圧処理温度より低い
融点の金属からなる内層部2aと熱間静水圧処理
温度より高く、かつ異型物品の融点より低い金属
からなる外層部2bとで構成された複合構造であ
る特許請求の範囲第1項記載の異型物品の熱間静
水圧成形法。 3 スペーサー2が熱間静水圧処理温度より低い
融点の金属からなる内層部2aと熱間静水圧処理
温度より高い融点の金属からなる外層部2bとで
構成された複合構造であり、内層部2aのみを溶
融流出させる特許請求の範囲第1項又は第2項記
載の異型物品の熱間静水圧成形法。 4 スペーサーが金属粉末で形成されている特許
請求の範囲第1〜3項の何れかの項に記載の異型
物品の熱間静水圧成形法。 5 スペーサーを構成する金属粉末が、原料粉末
よりも酸素、水素吸収能の高い金属粉末を含むも
のである特許請求の範囲第4項記載の異型物品の
熱間静水圧成形法。 6 スペーサーと原料粉末との間に、熱間静水圧
処理時に両者の反応を防止する材料を介在させる
特許請求の範囲第1〜5項の何れかの項に記載の
異型物品の熱間静水圧成形法。
[Scope of Claims] 1. After placing a spacer 2 in a capsule 1 to form a space corresponding to the shape of the product, filling the space with a raw material powder 3 made of ceramic or metal powder, and sealing the capsule 1. When molding a shaped article by performing densification treatment by hot isostatic pressing and then removing capsule 1 and spacer 2, at least the outer layer of said spacer 2 is heated to the hot isostatic pressing temperature. After hot isostatic press molding, the spacer 2 is melted and flowed out by heating to a temperature higher than the melting point of the spacer and lower than the melting point of the irregular shaped article. 1. A method for hot isostatic pressing of irregularly shaped articles. 2. A composite structure in which the spacer 2 is composed of an inner layer part 2a made of a metal with a melting point lower than the hot isostatic pressure treatment temperature and an outer layer part 2b made of a metal higher than the hot isostatic pressure treatment temperature and lower than the melting point of the irregular shaped article. A hot isostatic pressing method for a profiled article according to claim 1. 3 The spacer 2 has a composite structure composed of an inner layer part 2a made of a metal with a melting point lower than the hot isostatic pressure treatment temperature and an outer layer part 2b made of a metal with a melting point higher than the hot isostatic pressure treatment temperature, and the inner layer part 2a A method for hot isostatic pressing of a irregularly shaped article according to claim 1 or 2, wherein only a part of the product is melted and flowed out. 4. The method for hot isostatic pressing of a irregularly shaped article according to any one of claims 1 to 3, wherein the spacer is formed of metal powder. 5. The hot isostatic pressing method for a irregularly shaped article according to claim 4, wherein the metal powder constituting the spacer contains a metal powder that has a higher oxygen and hydrogen absorption capacity than the raw material powder. 6. Hot isostatic pressure of the irregular shaped article according to any one of claims 1 to 5, wherein a material is interposed between the spacer and the raw material powder to prevent a reaction between the two during hot isostatic pressure treatment. Molding method.
JP693278A 1978-01-24 1978-01-24 Shaping method for material of irregular shape using hydrostatic pressure Granted JPS5499712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP693278A JPS5499712A (en) 1978-01-24 1978-01-24 Shaping method for material of irregular shape using hydrostatic pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP693278A JPS5499712A (en) 1978-01-24 1978-01-24 Shaping method for material of irregular shape using hydrostatic pressure

Publications (2)

Publication Number Publication Date
JPS5499712A JPS5499712A (en) 1979-08-06
JPS6112961B2 true JPS6112961B2 (en) 1986-04-11

Family

ID=11652013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP693278A Granted JPS5499712A (en) 1978-01-24 1978-01-24 Shaping method for material of irregular shape using hydrostatic pressure

Country Status (1)

Country Link
JP (1) JPS5499712A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE885152A (en) * 1979-09-10 1981-03-09 Kelsey Hayes Co PROCESS FOR AGGLOMERATING AND HOT COMPRESSING A POWDER USING A RECYCLABLE CONTAINER
JPS61257402A (en) * 1984-12-25 1986-11-14 Namekawa Tatsuo Method for molding inside surface of irregular shaped hollow metallic article
CN106735189B (en) * 2016-11-24 2019-01-15 中国工程物理研究院材料研究所 A kind of molten metal cladding hot isostatic pressing preparation method of particles reiforced metal-base composition

Also Published As

Publication number Publication date
JPS5499712A (en) 1979-08-06

Similar Documents

Publication Publication Date Title
EP0118702B1 (en) Method of manufacturing a body from powdery material by isostatic pressing
FI84343C (en) Process for making a self-supporting ceramic composite piece and such composite piece
DE2027016A1 (en) Process for compacting metal or ceramic objects
JPS57136505A (en) Sinterable material for intermediate layer between high melting point metal tooth alloy and ceramic tooth
US2744011A (en) Process for the manufacture of sintered articles
JP2634213B2 (en) Method for producing powder molded article by isostatic press
FI91724C (en) Process for manufacturing a metal matrix composite using a negative form of an alloy
DE2913623B2 (en) Powder metallurgical process
JPS6324043B2 (en)
DE2950158C2 (en)
JPS63195203A (en) Composite metal article and its production
JPS5935870B2 (en) Silicon nitride object manufacturing method
JPS6112961B2 (en)
EP0380973A1 (en) Reinforced materials
DE2915831C2 (en)
US2510546A (en) Manufacture of precision articles from powdered material
US2946680A (en) Powder metallurgy
JPH01252738A (en) Manufacture of porous metallic material consisting of iron or its alloy, nickel or its alloy, or titanium or its alloy
US3996047A (en) Method and mold for producing round rods by powder metallurgy
JPH0892605A (en) Core for injection-molding sintered article and production of sintered article using the core
JPS5811319B2 (en) Irregular molding method using hot isostatic pressing
JPS605065A (en) Powder formed body dewaxing process
JPH0625713A (en) Method for sintering cr-base heat-resistant alloy powder
JPS58110603A (en) Production of sintered parts
JPS57158346A (en) Manufacture of composite material