JPS5935870B2 - Silicon nitride object manufacturing method - Google Patents
Silicon nitride object manufacturing methodInfo
- Publication number
- JPS5935870B2 JPS5935870B2 JP52008198A JP819877A JPS5935870B2 JP S5935870 B2 JPS5935870 B2 JP S5935870B2 JP 52008198 A JP52008198 A JP 52008198A JP 819877 A JP819877 A JP 819877A JP S5935870 B2 JPS5935870 B2 JP S5935870B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- porous layer
- temperature
- silicon nitride
- impermeable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
- C04B35/593—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/1208—Containers or coating used therefor
- B22F3/1216—Container composition
- B22F3/1241—Container composition layered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/1208—Containers or coating used therefor
- B22F3/125—Initially porous container
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
- Powder Metallurgy (AREA)
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】
粉末を互いに焼結させることによる高密度(理論密度の
90%以上)を有する物体を窒化ケイ素で製造する際に
は均衡圧搾の使用は多くの利点を示す。DETAILED DESCRIPTION OF THE INVENTION The use of isostatic pressing shows many advantages in producing objects with silicon nitride with high densities (greater than 90% of the theoretical density) by sintering the powders together.
すなわち製造された物体は圧力があらゆる面に及ぶため
にすべての方向にほぼ同一の強度を有するが、他の製造
方法ではこうはならない。That is, the manufactured object has approximately the same strength in all directions because the pressure is applied on all sides, whereas this is not the case with other manufacturing methods.
その上圧搾に続いて工具による、例えば研削による機械
加工抜きで、すなわち実質的に行わないで圧搾によって
直接複雑な形状の物体を製造することができ、これは窒
化ケイ素が非常に高い硬度を有していることのために非
常に重要である。Moreover, objects of complex shapes can be produced directly by pressing without subsequent machining with tools, e.g. by grinding, i.e. with virtually no machining, since silicon nitride has a very high hardness. It's very important for what you do.
均衡圧搾の別の重要な特性は圧搾工具の使用が避けられ
、従って又必要とされる高圧及び高温、それぞれ少なく
とも20MPa及び1600℃によって起される工具の
使用と関連した非常に重要な材料問題を避けられること
である。Another important characteristic of isostatic squeezing is that the use of squeezing tools is avoided, thus also avoiding the very important material problems associated with the use of tools caused by the required high pressures and temperatures, at least 20 MPa and 1600° C., respectively. It can be avoided.
均衡圧搾及びそれと関連した窒化ケイ素粉末の焼結の前
に、プラスチック カプセルのようなたわむ物質の密封
カプセル中に配置された粉末に圧搾を施すことによって
粉末を予備成形して扱いやすい粉末物体にするのが適切
である。Prior to isostatic pressing and associated sintering of the silicon nitride powder, the powder is preformed into a manageable powder object by pressing the powder placed in a sealed capsule of flexible material, such as a plastic capsule. is appropriate.
圧縮は室温又は焼結と関連する圧搾中の温度よりもかな
り低い別の温度で、少なくとも100MPaの圧力で、
仮の結合剤を使用しないで有利に行うことができる。The compaction is at room temperature or another temperature significantly lower than the temperature during compaction associated with sintering, and at a pressure of at least 100 MPa;
It can advantageously be carried out without the use of temporary binders.
製品はその後に機械加工によって所望の形状にすること
ができる。The product can then be machined into the desired shape.
予備成形のためには、なかんずく、窯業製品を製造する
ための通常の技法をも使用することができる。For the preforming, inter alia, also the customary techniques for producing ceramic products can be used.
次に窒化ケイ素粉末は通常成形する前に仮の結合剤、例
えばメチル セルロース、硝酸セルロース、アクリル系
結合剤、ろう又はろうの混合物と混合する。The silicon nitride powder is then usually mixed with a temporary binder, such as methyl cellulose, cellulose nitrate, an acrylic binder, a wax or a mixture of waxes, before shaping.
予備成形粉末物体が実質的に結合剤を含有しな(なるよ
うに予備成形後に加熱によって結合剤を追い出す。The binder is driven off by heating after preforming so that the preformed powder body is substantially free of binder.
予備成形粉末物体は焼結温度で均衡圧搾を施されるので
、所望のち密な焼結製品を得るためには、圧搾する前に
減圧させることができ、且つ圧搾中にそれと関連して使
用される圧力媒質、通常はガス、が粉末物体中に浸透す
るのを用土することのできるケーシング中に封じ込めな
げればならない。Since the preformed powder body is subjected to isostatic pressing at the sintering temperature, it can be depressurized before pressing and used in conjunction with it during pressing in order to obtain the desired dense sintered product. The pressure medium, usually a gas, must be contained in a casing that can prevent the pressure medium, usually a gas, from penetrating into the powder body.
もちろんケーシングは粉末物体の細孔中に浸透させない
ために、圧搾中には十分高い強度すなわち粘度をも有し
ていなければならない。Of course, the casing must also have a sufficiently high strength or viscosity during compression to prevent penetration into the pores of the powder body.
ケーシングとしてガラスの予備成形カプセルを使用する
場合には、これは高い焼結温度で流失又は粉末物体中に
浸透しないためには高融点タイプでなげればならないが
、ガラスは軟化する場合に予備成形粉末物体のくぼみ及
び他の凹所に集められるのを防ぐことはできない。If a preformed capsule of glass is used as a casing, this must be of a high melting point type in order to not run off or penetrate into the powder body at high sintering temperatures, but if the glass softens the preform It is not possible to prevent powder objects from collecting in cavities and other recesses.
これが、窒化ケイ素及びガラスの熱膨張係数の相違のた
めに、冷却中に焼結物体の突出部分に損傷をもたらすこ
とがよくある。This often results in damage to the protruding parts of the sintered body during cooling due to the difference in thermal expansion coefficients of silicon nitride and glass.
それよりも、高融点ガラス粒子の懸濁物中に予備成形粉
末物体を浸漬し、あるいはある他の方法で物体をこのよ
うなガラス粒子の層で取り巻き、次に粒子が粉末物体の
周囲にち密なケーシングを形成するような温度で真空中
でそれを加熱することによって即座にケーシングを形成
させることができる。Rather, a preformed powder object is immersed in a suspension of high-melting glass particles, or in some other way the object is surrounded by a layer of such glass particles, and the particles are then tightly packed around the powder object. A casing can be formed instantly by heating it in vacuum at a temperature that will form a casing.
最後に記載した方法では薄(することができ、且つ粉末
物体の形状に順応し、従って焼結物体上へのガラスの集
積並びにそれに伴う不利益をも避けるケーシングを適用
することができる。The last-mentioned method makes it possible to apply a casing that is thin and adapts to the shape of the powder body, thus also avoiding the accumulation of glass on the sintered body and the associated disadvantages.
しかしながらガラスは窒化ケイ素の焼結中に流失又は粉
末物体中に浸透しないために高融解タイプでなければな
らないので、この方法にはち密なケーシングは高温度で
始めて得られるという事実と関連した重大な欠点を有し
ている。However, since the glass must be of a high melting type in order not to be washed away or penetrate into the powder body during the sintering of the silicon nitride, this method has a significant disadvantage associated with the fact that a dense casing can only be obtained at high temperatures. It has its drawbacks.
ち密なケーシングは高温でだけ得られるという事実は、
焼結された物体の品質劣化を結果する窒素の離脱を受け
る窒化ケイ素の解離を避けろことができないことを意味
している。The fact that dense casings are obtained only at high temperatures
This means that it is impossible to avoid the dissociation of the silicon nitride, which undergoes nitrogen elimination, which results in a deterioration of the quality of the sintered object.
本発明は焼結物体上に有害なガラスの蓄積を起すことな
く、且つ有害な窒化ケイ素の解離を防止する、窒化ケイ
素の予備成形粉末物体の周囲にち密なケーシングを得る
問題を解決するものである。The present invention solves the problem of obtaining a dense casing around a preformed powder body of silicon nitride without causing harmful glass build-up on the sintered body and preventing harmful silicon nitride dissociation. be.
本発明によって均質な組成を有し且つ均質な特性を有す
る窒化ケイ素の複雑な部品の製造をさせることができる
。The invention allows the production of complex parts of silicon nitride with homogeneous composition and homogeneous properties.
本発明は予備成形粉末物体に対して第一物質の内側多孔
質層を適用し、且つこの外側に第二物質の外側多孔質層
を適用し、内側多孔質層はできるだけ第二物質と協同し
て窒化ケイ素に対する焼結温度よりも低い温度で圧力媒
質に対して不浸透性の層に転化させることができ、且つ
外側多孔質層は内側多孔質層に対する温度よりも低い温
度で圧力媒質に対して不浸透性の層に転化させることが
でき、その後予備成形物体に最初に脱気を施し、且つ外
側多孔質層で圧力媒質に不浸透性の層を形成するのに必
要であるが、内側多孔質層を多孔質に維持する温度まで
の加熱を施し、次に内側多孔質層で圧力媒質に不浸透性
の層を形成するのに必要な温度までの加熱を施し、一方
これらの層の内側のガス圧力よりも大きい圧力な該層の
外側に維持し、且つ次に予備成形製品の均衡圧搾を行う
ことを特徴とする、均衡圧搾する前に予備成形物体に脱
気を施し、窒化ケイ素を焼結するのに必要な温度におい
て圧力媒質で窒化ケイ素粉末の予備成形物体を均衡圧搾
することによって窒化ケイ素で物体を製造する方法に関
するものである。The present invention applies an inner porous layer of a first material to the preformed powder object, and an outer porous layer of a second material applied outside this, the inner porous layer cooperating as much as possible with the second material. can be converted into a layer impermeable to the pressure medium at a temperature below the sintering temperature for silicon nitride, and the outer porous layer is impermeable to the pressure medium at a temperature below the temperature for the inner porous layer. It is necessary to first degas the preformed object and form a layer impermeable to the pressure medium with the outer porous layer, but with the inner porous layer. Heating is applied to a temperature that keeps the porous layers porous, and then heating is applied to the temperature necessary to form a layer impermeable to the pressure medium in the inner porous layer, while The preformed object is degassed before isostatic pressing, characterized by maintaining a pressure on the outside of the layer that is greater than the gas pressure inside and then performing isostatic pressing of the preformed product. The invention relates to a method for producing objects from silicon nitride by isostatic pressing of preformed objects of silicon nitride powder with a pressure medium at the temperatures necessary to sinter the silicon nitride powder.
内側多孔質層中の該第−物質としては5iO296,7
重量%、B2032.9重量%及びAl2030.4重
量%を含有するバイコール(Vycor )ガラス、更
に石英ガラス及び加熱中にガス浸透性カラス層を形成す
る物質、例えば5i02及びB2O3の粒子の混合物の
ような高融解ガラスの粉末を使用することができる。The second substance in the inner porous layer is 5iO296,7
Vycor glass containing 2.9% by weight of B203 and 0.4% by weight of Al203, as well as quartz glass and a substance that forms a gas-permeable glass layer during heating, such as a mixture of particles of 5i02 and B2O3. High melting glass powder can be used.
又内側多孔質層中の該第−物質としてはモリブデン、タ
ングステン及び他の耐火金属のような圧力媒質に対して
不浸透性の金属層を形成することのできる高融解金属物
質の粉末を使用することもできる。The primary material in the inner porous layer is a powder of a high-melting metallic material capable of forming a metallic layer impermeable to pressure media, such as molybdenum, tungsten and other refractory metals. You can also do that.
外側多孔質層中の該第二物質としてば5i0280.3
重量%、B20312.2重量%、A12032.8重
量%、Na204.0重量%、K2O0,4重量%及び
Ca00.3重量%を含有するパイレックス(Pyre
x )ガラス、更に5iO258重量%、B2039重
量%、Al20320重量%、Ca0 5重量%及びM
g0 8重量%を含有するケイ酸アルミニウム、5i0
260重量%、Al20320重量%、Ca015重量
%及びMg0 5重量%を含有するケイ酸アルミニウム
、及び加熱中にガス不浸透性ガラス層を形成する物質、
例えばSiO2、B2O3、Al2O3及びアルカリ並
びにアルカリ土類金属酸化物の粒子の混合物のような低
融解ガラスの粉末を使用することができる。The second substance in the outer porous layer is 5i0280.3
Pyrex (Pyre
x) Glass, further 5iO2 58% by weight, B2039% by weight, Al20320% by weight, Ca0 5% by weight and M
Aluminum silicate, 5i0 containing g0 8% by weight
aluminum silicate containing 260% by weight, 20% by weight of Al203, 15% by weight of Ca0 and 5% by weight of Mg0, and a substance that forms a gas-impermeable glass layer during heating;
Low melting glass powders can be used, such as mixtures of particles of SiO2, B2O3, Al2O3 and alkali and alkaline earth metal oxides.
各が0.05ないし1mmの範囲内の厚さを有するのが
適切である2個の多孔質層はなかんずく予備成形粉末物
体を粒状化物質の懸濁液中に浸漬するか、あるいは溶射
噴霧又は他の熱的噴霧によって適用することができる。The two porous layers, each suitably having a thickness in the range from 0.05 to 1 mm, are prepared inter alia by immersing the preformed powder body in a suspension of granulated material, or by thermal spraying or spraying. Can be applied by other thermal sprays.
粒子は適切には0、■ないし100μの範囲内の粒度を
有することができる。The particles may suitably have a particle size in the range 0, 1 to 100 microns.
脱気は適切に開始し、且つ予備成形粉末物体の寸法で決
まる時間の間室部において継続させる。Degassing is suitably initiated and allowed to continue in the chamber for a time determined by the dimensions of the preformed powder object.
継続減圧下で外側多孔質層が圧力媒質に対して不浸透性
の層に転化されるように温度を上げる。Under continued reduced pressure, the temperature is increased so that the outer porous layer is converted into a layer impermeable to the pressure medium.
これがなされる場合には封入された粉末物対にガス圧力
媒質で圧力を適用して温度上昇の継続中に窒化ケイ素の
解離するのを防止することができる。If this is done, pressure can be applied to the encapsulated powder pair with a gas pressure medium to prevent dissociation of the silicon nitride during continued temperature rise.
温度上昇の継続中に層がガラス又はガラス形成物質から
成る場合には外側層中のガラスは内側多孔質層中の物質
と反応し、同時にますます高融点のガラスを形成し、且
つ同時に層を圧力媒質に対して不浸透性に維持し、且つ
最後に外側層中のガラスが流れ去ることができるように
なる前に、内側多孔質層の最も内側の部分で、圧力に対
して不浸透性のガラス層が形成される。If the layer consists of glass or glass-forming material during the continuation of the temperature increase, the glass in the outer layer reacts with the material in the inner porous layer, forming at the same time a glass of increasingly higher melting point, and at the same time increasing the temperature of the layer. impermeable to the pressure medium and finally in the innermost part of the inner porous layer before the glass in the outer layer can flow away. A glass layer is formed.
この最後に形成されたガラス層は予備成形製品の均衡圧
搾を焼結温度で行う場合に、粉末物体の周囲にち密なケ
ーシングを形成する。This last-formed glass layer forms a dense casing around the powder body when isostatic pressing of the preformed product is carried out at sintering temperatures.
内側の多孔質層中に金属物質を、又外側多孔質層にガラ
ス又はガラス形成物質を使用する場合には、外側多孔質
層から形成されるガラス層は少なくとも内側金属層が転
化して不浸透性層になってしまうまでは不浸透性層とし
て作用する。If a metallic material is used in the inner porous layer and a glass or glass-forming material is used in the outer porous layer, the glass layer formed from the outer porous layer will be impermeable by conversion of at least the inner metal layer. It acts as an impermeable layer until it becomes a sexual layer.
外側多孔質層が不浸透性層に転化させられる温度は60
0ないし1100℃の範囲内にあるのが適切であり、且
つ内側多孔質層が不浸透性層に転化させられる温度は1
300ないし1600℃の範囲内にある。The temperature at which the outer porous layer is converted into an impermeable layer is 60
The temperature at which the inner porous layer is converted into an impermeable layer is suitably within the range of 0 to 1100°C, and the temperature at which the inner porous layer is converted to an impermeable layer is 1.
It is within the range of 300 to 1600°C.
しかしながら外側層が気密になった後に行うことのでき
る均衡圧力の下で内側層を圧搾する場合には、温度10
00ないし1300℃の問題も起るかも知れなし・。However, when squeezing the inner layer under isostatic pressure, which can be done after the outer layer has become airtight, the temperature 10
00 to 1300 degrees Celsius may also cause problems.
このような圧搾に対しては大きさ20ないし300MP
a程度の圧力が必要である。For such squeezing, size 20 to 300 MP
A pressure of about a is required.
粉末物体の焼結は少なくとも1600℃、好ましくは1
600ないし1900℃において行う。The powder body is sintered at a temperature of at least 1600°C, preferably at 1
It is carried out at 600 to 1900°C.
予備成形された窒化ケイ素物体の焼結中の圧力は酸化マ
グネシウムのような焼結促進添加剤を窒化ケイ素に添加
しておいたか否かに左右される。The pressure during sintering of the preformed silicon nitride body depends on whether sintering promoting additives such as magnesium oxide have been added to the silicon nitride.
このような添加剤を使用しない場合には圧力は少なくと
も100MPa、好ましくは200ないし300MPa
になるべきである。If such additives are not used, the pressure is at least 100 MPa, preferably between 200 and 300 MPa.
should be.
焼結促進添加剤を使用する場合にはもつと低い圧力を使
用することができるけれども少な(とも20MPa が
適切である。Although lower pressures can be used when using sintering accelerating additives, less (20 MPa is suitable).
添付の図面を参考にして実施態様を記載して本発明を非
常に詳細に説明するが、図面中、第1図は2個の多孔質
層を有する窒化ケイ素の予備成形粉末物体を模式的に示
し、且つ第2図では予備成形粉末物体の焼結物体を製造
するための処理サイクルを模式的に示す。The invention will now be explained in greater detail by way of embodiments with reference to the accompanying drawings, in which FIG. 1 schematically shows a preformed powder body of silicon nitride with two porous layers. and FIG. 2 schematically depicts a processing cycle for producing a sintered body of a preformed powder body.
7μ以下の粉末粒度を有し、且つ酸化マグネシウム約0
.1重量%を含有する窒化ケイ素粉末を、製造しようと
する予備成形粉末物体とほぼ同一の形状を有するプラス
チック、例えば軟質ポリ塩化ビニル又はゴムのカプセル
に入れ、その後カプセルを密封して圧搾装置、例えば特
願昭50−133928号明細書の第1及び2図に示し
た装置中に入れる。It has a powder particle size of 7μ or less, and contains about 0 magnesium oxide.
.. A silicon nitride powder containing 1% by weight is placed in a capsule of plastic, e.g. It is placed in the apparatus shown in FIGS. 1 and 2 of Japanese Patent Application No. 50-133928.
粉末に5分間の間600MPaで圧搾を施す。The powder is subjected to compression at 600 MPa for 5 minutes.
圧搾の完結後カプセルを取り出し、且つこのようにして
製造した予備成形粉末物体を機械加工して所望の形状に
する。After completion of the compression, the capsules are removed and the preformed powder bodies thus produced are machined into the desired shape.
予備成形粉末物体1はここで最初にSi0296.7重
量%、B2032.9重量%及びA I 2030.4
重量%から成るガラスの粉末の水懸濁液に浸漬し、次に
この層を乾燥した後に5i0280.3重量%、B20
312.2重量%、Al20328重量%、Na204
.0重量%、K2O0,4重量%及びCa00.3重量
%から成るガラスの粉末Q水懸濁液中に浸漬し、続いて
補充乾燥することによって第1図から明らかなように内
側多孔質層2及び外側多孔質層3を与える。The preformed powder body 1 is now initially composed of 296.7% by weight of Si0, 2032.9% by weight of B2030.4 and 2030.4% by weight of B20.
After immersion in an aqueous suspension of glass powder consisting of 0.3% by weight of 5i0280.3% by weight and then drying this layer
312.2% by weight, Al20328% by weight, Na204
.. The inner porous layer 2, as is evident from FIG. and an outer porous layer 3.
このように処理された予備成形粉末物体はその後、粉末
物体を脱気するためにガスを排出させることができ、且
つ均衡圧搾のために必要な圧力を発生させるためにガス
を供給することのできる導管を備えており、且つ加熱装
置を設備しである高圧炉中に入れる。The preformed powder body treated in this way can then be degassed to degas the powder body and can be supplied with gas to generate the pressure necessary for isostatic squeezing. It is placed in a high pressure furnace equipped with a conduit and equipped with a heating device.
このような高圧炉は例えば前記の特願昭50−1339
28号明細占に記載しである。Such a high pressure furnace is disclosed, for example, in the above-mentioned Japanese Patent Application No. 50-1339.
It is stated in the specification of No. 28.
第2図に示したように予備成形粉末物体は最初に高圧力
炉中において約2時間室温で脱気する。As shown in FIG. 2, the preformed powder body is first degassed in a high pressure oven at room temperature for approximately 2 hours.
減圧継続中に温度を上昇させて約900℃にする。While the vacuum continues, the temperature is increased to about 900°C.
温度は非常に徐々に上昇させるのでこの時間中はいつで
も圧力は0.1トルを超過しない。The temperature is raised very gradually so that the pressure does not exceed 0.1 Torr at any time during this time.
約900℃で約2時間部度を一定に保ち、こうして最終
脱気を行い、且つ外部多孔質層中のガラス粉末は互いに
焼結してガス不浸透性層になる。The temperature is kept constant for about 2 hours at about 900° C., thus providing final degassing and the glass powder in the outer porous layer sintering together into a gas-impermeable layer.
外側層中のガラスの粘度を減じ、従ってガラス融解物が
内側多孔質層中に浸透する危険を減じるために、温度を
減じて700℃にする。The temperature is reduced to 700° C. in order to reduce the viscosity of the glass in the outer layer and thus reduce the risk of glass melt penetrating into the inner porous layer.
その後アルゴン又はヘリウムを供給して最終焼結温度に
おいて圧力200ないし300MPa を与える圧力水
準にする。Argon or helium is then supplied to a pressure level giving a pressure of 200 to 300 MPa at the final sintering temperature.
次に温度を上げて1700ないし1800℃にする、す
なわち窒化ケイ素に対して適切な焼結温度にする。The temperature is then increased to 1700-1800° C., the appropriate sintering temperature for silicon nitride.
そこで圧力は同時に上がる。この温度上昇は十分徐々に
達成されて、外側層中の融解ガラスにとっては内側層中
のガラス粉末と反応する時間があり、同時にますます高
融点のガラスを形成し、又内側層中のガラス粉末の最深
部層にとっては外側層中のガラスが流去することができ
ないうちに焼結して不浸透性層になるための時間がある
。The pressure increases at the same time. This temperature increase is achieved slowly enough that the molten glass in the outer layer has time to react with the glass powder in the inner layer, simultaneously forming an increasingly high-melting glass, and the glass powder in the inner layer. The deepest layers have time to sinter into an impermeable layer before the glass in the outer layers can be washed away.
1700ないし1800°C及び200ないし300M
Pa における焼結に適切な時間は、焼結促進添加剤を
使用しない場合には少なくとも2時間であり、又このよ
うな添加剤を使用する場合には少なくとも0.5時間で
ある。1700 to 1800°C and 200 to 300M
Suitable times for sintering at Pa are at least 2 hours without sintering-promoting additives and at least 0.5 hours with such additives.
サイクルが完結した後に炉を放冷させて適切な取り出し
温度にし、且つ焼結物体を吹いてガラスをきれいにする
。After the cycle is completed, the furnace is allowed to cool to the appropriate unloading temperature and the sintered body is blown to clean the glass.
先に例示したメチル セルロース、硝酸セルロース、ア
クリル系結合剤、ろう又は異なる融点を有するろうの混
合物のような結合剤を予備成形物体の製造に使用した場
合には多孔質層適用の前又は後に400ないし700°
Cに加熱して除去するのが適切であり、その後脱気し、
更に、結合剤を使用しない予備成形粉末物について記載
したように処理をすることができる。400 before or after application of the porous layer if binders such as methylcellulose, cellulose nitrate, acrylic binders, waxes or mixtures of waxes with different melting points are used in the production of the preformed object as exemplified above. or 700°
It is appropriate to remove it by heating to
Furthermore, processing can be carried out as described for the preformed powder without binder.
本発明は連続製造で使用するのに特に適している。The invention is particularly suitable for use in continuous manufacturing.
この場合(a)結合剤の除去、(b)真空中における脱
気及び外側層のち密な焼結、(C)層の内側の圧力より
大きい圧力のガス中における追加加熱、及び(d)最終
加熱及び高温均衡圧搾のような種々の処理段階は高温条
件中において異なった種類の炉装置中でそれらの間で移
動しながら行うことができる。In this case (a) removal of the binder, (b) degassing in vacuum and dense sintering of the outer layer, (C) additional heating in gas at a pressure greater than the pressure inside the layer, and (d) final The various processing steps, such as heating and hot isostatic pressing, can be carried out in high temperature conditions in different types of furnace equipment, moving between them.
本発明を使用するのに非常によく適している物体の例と
して、なかんずく、ガス タービン用の翼及び単一ター
ビン ローターを挙げることができる。As examples of objects which are very well suited for the use of the invention, mention may be made, inter alia, of blades for gas turbines and single turbine rotors.
第1図は2個の多孔質層を有する窒化ケイ素の予備成形
粉末物体を示す模式図であり、1は予備成形粉末物体、
2は内側多孔質層、3は外側多孔質層である。
第2図は本発明による処理中の圧力及び温度の時間的変
化を示し、縦軸は温度及び圧力、横軸は時間である。FIG. 1 is a schematic diagram showing a preformed powder object of silicon nitride with two porous layers, 1 being a preformed powder object;
2 is an inner porous layer, and 3 is an outer porous layer. FIG. 2 shows temporal changes in pressure and temperature during the treatment according to the present invention, where the vertical axis is temperature and pressure, and the horizontal axis is time.
Claims (1)
いで該予備成形体を窒化ケイ素の焼結温度で、圧力媒質
を用いて均衡加圧することによる窒化ケイ素物体の製造
方法において、前記予備成形体上に、窒化ケイ素の焼結
温度以下の温度で、圧力媒質に対する不浸透層に転化し
うる高融解ガラス、高融解ガラス形成物質または高融解
金属物質からなる第一物質の内側多孔質層、および前記
内側多孔質層における温度よりも低い温度で圧力媒質に
対する不浸透層に転化しうる低融解ガラスまたは低融解
ガラス形成物質からなる第二物質の外側多孔質層を施こ
した後、先づ該予備成形体に脱気処理を施こし、次に前
記外側多孔質層の圧力媒質に対する不浸透層の形成に必
要な温度ではあるが、内側多孔質層が多孔質を維持する
温度までの加熱処理に供し、次いで内側多孔質層の圧力
媒質に対する不浸透層の形成に必要な温度まで、これら
の層の外側のガス圧を層の内側ガス圧よりも大きく維持
しながら加熱した後、前記予備成形体に均衡加圧を施こ
すことを特徴とする窒化ケイ素物体の製造方法。 2 前記内側多孔質層および外側多孔質層の形成に使用
する第一および第二物質の各粒子サイズが0.1〜10
0ミクロンである特許請求の範囲第1項記載の方法。 3 前記内側多孔質層および外側多孔質層の各厚さが0
605〜1mrILである前記特許請求の範囲第1項記
載の方法。 4 前記外側多孔質層の加熱温度が600〜1100℃
である特許請求の範囲第1項記載の方法。 5 前記内側多孔質層の加熱温度が1300〜1600
℃である特許請求の範囲第1項記載の方法。 6 圧力媒質に対して不透性である内側多孔質層の層を
形成するために予備形成物体を同時均衡圧搾下において
温度1000〜1300℃に加熱する、特許請求の範囲
第1項〜第5項のいずれか1項に記載の方法。[Claims] 1. Preparation of a silicon nitride object by subjecting a preform of silicon nitride powder to a degassing treatment and then subjecting the preform to isostatic pressure using a pressure medium at the sintering temperature of silicon nitride. In the manufacturing method, a first layer comprising a high-melting glass, a high-melting glass-forming substance or a high-melting metallic substance capable of being converted into a layer impermeable to the pressure medium at a temperature below the sintering temperature of silicon nitride is provided on the preform. an inner porous layer of material, and an outer porous layer of a second material consisting of a low melting glass or a low melting glass-forming material capable of being converted into a layer impermeable to a pressure medium at a temperature lower than the temperature in said inner porous layer. After the application, the preform is first subjected to a degassing treatment, and then the inner porous layer is porous at a temperature necessary for forming an impermeable layer to the pressure medium of the outer porous layer. and then maintaining the gas pressure outside these layers greater than the gas pressure inside the layers to the temperature required for the formation of an impermeable layer to the pressure medium of the inner porous layer. A method for producing a silicon nitride object, which comprises heating the preform while applying pressure to the preform. 2 Each particle size of the first and second substances used to form the inner porous layer and the outer porous layer is 0.1 to 10.
The method according to claim 1, wherein the particle size is 0 microns. 3 Each thickness of the inner porous layer and the outer porous layer is 0.
605-1 mrIL. 4. The heating temperature of the outer porous layer is 600 to 1100°C.
The method according to claim 1. 5. The heating temperature of the inner porous layer is 1300 to 1600.
The method according to claim 1, wherein the temperature is .degree. 6. Heating the preformed body to a temperature of 1000 to 1300° C. under simultaneous isostatic squeezing in order to form a layer of the inner porous layer that is impermeable to the pressure medium. The method described in any one of paragraphs.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0007600919-0 | 1976-01-29 | ||
SE7600919A SE396371B (en) | 1976-01-29 | 1976-01-29 | TECHNICAL PRESSING OF A BODY DISTRIBUTED BY SILICON NITRID POWER METHOD OF PRODUCING A FOREMAL OF SILICONE NITRID THROUGH ISOSTA |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5293699A JPS5293699A (en) | 1977-08-06 |
JPS5935870B2 true JPS5935870B2 (en) | 1984-08-31 |
Family
ID=20326840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52008198A Expired JPS5935870B2 (en) | 1976-01-29 | 1977-01-27 | Silicon nitride object manufacturing method |
Country Status (10)
Country | Link |
---|---|
JP (1) | JPS5935870B2 (en) |
AU (1) | AU507155B2 (en) |
CA (1) | CA1091907A (en) |
DE (1) | DE2702073C2 (en) |
FR (1) | FR2339582A1 (en) |
GB (1) | GB1564851A (en) |
IT (1) | IT1192228B (en) |
SE (1) | SE396371B (en) |
SU (1) | SU651687A3 (en) |
ZA (1) | ZA77476B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2737266C2 (en) * | 1977-08-18 | 1987-08-20 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Process for encapsulating a molded body made of silicon ceramic for hot isostatic pressing |
DE2737208C2 (en) * | 1977-08-18 | 1986-06-19 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Process for encapsulating a molded body made of ceramic |
SE414920C (en) * | 1978-05-02 | 1982-03-15 | Asea Ab | SET TO MAKE A FORM OF A MATERIAL IN THE FORM OF A POWDER THROUGH ISOSTATIC PRESSING OF A POWDER-FORMATED BODY |
SE414922B (en) * | 1978-05-02 | 1980-08-25 | Asea Ab | SET TO MAKE A FORMULA OF SILICON NITRIDE THROUGH ISOSTATIC PRESSING OF A SILICON NITRID POWDER FORMATED BODY WITH A GAS PRESSURE MEDIUM |
SE413400B (en) * | 1978-08-29 | 1980-05-27 | Asea Ab | SET TO MAKE A FORMULA OF SILICON NITRID THROUGH ISOSTATIC PRESSURE OF A SILICON NITRID POWDER FORMATED BODY WITH A GAS SHAPE PRESSURE MEDIUM IN A PRESSURE CIRCUIT FOR A SINCERATION OF SILICON NITRID ... |
SE425360B (en) * | 1979-05-07 | 1982-09-27 | Asea Ab | SET TO ISSTATIC PRESSURE OF POWDER FOR THE PREPARATION OF FORMAL OF CERAMIC OR METALLIC MATERIAL |
DE3009240A1 (en) * | 1980-03-11 | 1981-10-15 | Elektroschmelzwerk Kempten GmbH, 8000 München | METHOD FOR PRODUCING PRACTICALLY PORE-FREE POLYCRYSTALLINE MOLDED BODIES BY ISOSTATIC HOT PRESSING |
SE430481B (en) * | 1982-03-29 | 1983-11-21 | Asea Ab | SET TO JOIN PARTS OF SOLID MATERIAL THROUGH HOT ISOSTATIC PRESSURE |
JPS59198690A (en) * | 1983-04-25 | 1984-11-10 | いすゞ自動車株式会社 | Ceramic heater and method of producing same |
SE456651B (en) * | 1987-03-02 | 1988-10-24 | Asea Cerama Ab | PREPARED TO MAKE A PREFERRED SIZE OF IN A CAPSEL CONTAINED POWDER-SHEET MATERIAL THROUGH ISOSTATIC PRESSURE |
JPH02279575A (en) * | 1989-04-18 | 1990-11-15 | Nkk Corp | Production of sintered ceramic body having dense ceramic film |
SE464620B (en) * | 1989-09-26 | 1991-05-27 | Asea Cerama Ab | SET TO MAKE A PRINCIPLE OF CERAMICS THROUGH ISOSTATIC PRESSURE IN A GLASS ENVIRONMENT |
CN112341207B (en) * | 2020-11-20 | 2022-08-12 | 哈尔滨工业大学 | Silicon nitride-silicon oxynitride column-hole composite ceramic material and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1533020A1 (en) * | 1966-02-25 | 1970-03-05 | Philips Patentverwaltung | Method and furnace for isostatic hot pressing of pellets |
SE348961C (en) * | 1971-03-15 | 1982-08-30 | Asea Ab | PROCEDURE FOR PREPARING A SINTERED POWDER BODY |
DE2349277A1 (en) * | 1973-10-01 | 1975-04-24 | Feldmuehle Anlagen Prod | Silicon nitride components with high density - esp. turbine blades, made by injection moulding followed by isostatic pressing |
GB1522705A (en) * | 1974-11-11 | 1978-08-23 | Asea Ab | Method of manufacturing bodies of silicon nitride |
-
1976
- 1976-01-24 AU AU21574/77A patent/AU507155B2/en not_active Expired
- 1976-01-29 SE SE7600919A patent/SE396371B/en not_active IP Right Cessation
-
1977
- 1977-01-19 DE DE2702073A patent/DE2702073C2/en not_active Expired
- 1977-01-26 FR FR7702106A patent/FR2339582A1/en active Granted
- 1977-01-26 SU SU772444414A patent/SU651687A3/en active
- 1977-01-27 JP JP52008198A patent/JPS5935870B2/en not_active Expired
- 1977-01-27 ZA ZA770476A patent/ZA77476B/en unknown
- 1977-01-27 CA CA270,575A patent/CA1091907A/en not_active Expired
- 1977-01-28 IT IT67184/77A patent/IT1192228B/en active
- 1977-01-28 GB GB3490/77A patent/GB1564851A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
CA1091907A (en) | 1980-12-23 |
SE396371B (en) | 1977-09-19 |
FR2339582B1 (en) | 1980-04-25 |
JPS5293699A (en) | 1977-08-06 |
SU651687A3 (en) | 1979-03-05 |
GB1564851A (en) | 1980-04-16 |
DE2702073C2 (en) | 1983-12-08 |
FR2339582A1 (en) | 1977-08-26 |
AU2157477A (en) | 1978-08-03 |
IT1192228B (en) | 1988-03-31 |
DE2702073A1 (en) | 1977-08-04 |
SE7600919L (en) | 1977-07-30 |
ZA77476B (en) | 1977-12-28 |
AU507155B2 (en) | 1980-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4112143A (en) | Method of manufacturing an object of silicon nitride | |
US3562371A (en) | High temperature gas isostatic pressing of crystalline bodies having impermeable surfaces | |
JPS5935870B2 (en) | Silicon nitride object manufacturing method | |
US4339271A (en) | Method of manufacturing a sintered powder body | |
US4256688A (en) | Method for manufacturing an object of silicon nitride | |
KR970001557B1 (en) | Method of manufacturing an object of powdered material by isostatic pressing | |
JPS597323B2 (en) | Method of manufacturing articles from powder | |
JPH042542B2 (en) | ||
JPS5820907B2 (en) | Method for producing non-porous polycrystalline compacts by uniform heating press | |
JPS6042187B2 (en) | Method of manufacturing silicon nitride objects | |
US4812272A (en) | Process by compacting a porous structural member for hot isostatic pressing | |
CA1133683A (en) | Method for manufacturing an object of silicon nitride | |
JPS6232241B2 (en) | ||
US3656983A (en) | Shell mold composition | |
US3305358A (en) | Method for shaping beryllium and other metals and ceramics | |
US4952353A (en) | Hot isostatic pressing | |
JPH0436117B2 (en) | ||
JP3176920B2 (en) | True or pseudo equilibrium pressurization | |
JP2005320581A (en) | Method for manufacturing porous metal body | |
GB2024866A (en) | Isostatically hot pressed silicon nitride | |
JPS5822307A (en) | Method of hot hydrostatic pressure press treatment using hydraulic pressure | |
JPS616180A (en) | Thermal hydrostatic pressure treatment for ceramic | |
JPS63210201A (en) | Powder sintering method | |
JPH0354170A (en) | Hot hydrostatic pressing method | |
JPS5821001B2 (en) | Manufacturing method for sintered bodies with complex shapes |