JPH024935A - Manufacture of metal matrix composite - Google Patents

Manufacture of metal matrix composite

Info

Publication number
JPH024935A
JPH024935A JP15573688A JP15573688A JPH024935A JP H024935 A JPH024935 A JP H024935A JP 15573688 A JP15573688 A JP 15573688A JP 15573688 A JP15573688 A JP 15573688A JP H024935 A JPH024935 A JP H024935A
Authority
JP
Japan
Prior art keywords
molded body
metal
metals
matrix
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15573688A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kajikawa
義明 梶川
Tetsuya Suganuma
菅沼 徹哉
Takashi Morikawa
隆 森川
Masahiro Kubo
雅洋 久保
Atsuo Tanaka
淳夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15573688A priority Critical patent/JPH024935A/en
Publication of JPH024935A publication Critical patent/JPH024935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To effectively manufacture a composite in which different metals are regulated to its matrix at low cost by impregnating matrix metals having different compsn. into the different parts of a molded body constituted of fine pieces of inorganic reinforcing material, metals and metallic fluoride. CONSTITUTION:An inorganic fibrous reinforcing material 10 constituted of a fiber made of ceramics such as SiC and Al2O3 contg. or plated with fine pieces of metals such as Ni, Fe, Co and Cr or a metallic fiber of Fe, W, etc., or a carbon fiber or the like is passed into slurry 12 contg. the fluoride of transition metals or Al to impregnate the fluoride into the inorganic fibrous reinforcing material 10; after that, the material is passed through a drying furnace 13 and is dried. The material is charged into a stainless pipe 14 contg. many pores 14a to prepare a molded body 11. The molded body is fixed into a board 16 made of ceramics in the form of dividing into two and is fixed into a mold 18; the molten metals 20 and 22 of Al, Mg and their alloys having different compsn. are simultaneously poured into both the parts divided by the board 16 and are impregnated into the molded body 11. The molded body is drawn up from the mold 18, by which a composite body 24 contg. matrix 24a and 24b of the alloys having different compsn. on both the sides of a boundary C can be manufactured.

Description

【発明の詳細な説明】 本発明は、金属基複合材料に係り、更に詳細にはマトリ
ックスが第一のマトリックス金属である第一の部分とマ
トリックスが第二のマトリックス金属である第二の部分
とを有する金属基複合材料の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal matrix composite material, more particularly comprising a first part in which the matrix is a first matrix metal and a second part in which the matrix is a second matrix metal. The present invention relates to a method for manufacturing a metal matrix composite material having the following.

従来の技術 異種金属をマトリックスとする複合材料、即ちマトリッ
クスが第一のマトリックス金属である第一の部分とマト
リックスが第二のマトリックス金属である第二の部分と
を有する金属基複合材料の製造方法の一つとして、例え
ば特公昭57−50595号に記載されている如く、「
鋳造金型内に繊維成形体を介し、マトリックス金属とな
る異種の溶融金属を分離注湯し、高圧凝固鋳造法により
各溶融金属を前記繊維成形体に充填複合させることを特
徴とする繊維強化複合部材の製造方法」が知られている
BACKGROUND OF THE INVENTION Method for producing a composite material having dissimilar metals as a matrix, that is, a metal matrix composite material having a first part whose matrix is a first matrix metal and a second part whose matrix is a second matrix metal. For example, as described in Japanese Patent Publication No. 57-50595,
A fiber-reinforced composite characterized by separately pouring different types of molten metals to become matrix metals into a casting mold through a fiber molded body, and filling and compounding each molten metal into the fiber molded body by high-pressure solidification casting method. "Method for manufacturing parts" is known.

また他の一つの製造方法として、本願出願人と同一の出
願人の出願にかかる特開昭62−184654号公報に
記載されている如く、「第一のマトリックス金属よりも
融点が高く溶媒中に溶解することにより消失する材料を
用意し強化繊維にて所定の形状の繊維成形体を形成し、
繊維成形体の一部の個々の強化繊維の間を前記材料の融
液にて充填し、これを冷却することにより前記融液を凝
固させ、前記繊維成形体の残りの部分の個々の強化繊維
間を前記第一の7トリソクス金属の融液にて充填し、前
記第一のマトリックス金属の融液を凝固させ、前記材料
の凝固体を溶媒中に溶解させることにより除去し、前記
繊維成形体の前記一部の個々の強化繊維間を前記第二の
マトリックス金属の融液にて充填し、前記第二のマトリ
ックス金属の融液を凝固させる複合材料の製造方法」が
知られている。
In addition, as another manufacturing method, as described in JP-A-62-184654 filed by the same applicant as the applicant of the present application, ``a metal with a melting point higher than that of the first matrix metal can be dissolved in a solvent. Prepare a material that disappears by melting and form a fiber molded body of a predetermined shape with reinforcing fibers.
A melt of the material is filled between the individual reinforcing fibers in a part of the fiber molded body, and the melt is solidified by cooling it, and the individual reinforcing fibers in the remaining part of the fiber molded body are filled. Filling the gap with a melt of the first 7 trisox metal, solidifying the melt of the first matrix metal, removing the solidified material by dissolving it in a solvent, and forming the fiber molded body. A method for producing a composite material is known, in which the spaces between the individual reinforcing fibers of the part are filled with a melt of the second matrix metal, and the melt of the second matrix metal is solidified.

発明が解決しようとする課題 上述の前者の方法に於ては、高圧凝固鋳造法か使用され
るので、大川りなプレス設備や高圧に耐える金型が必要
であり、そのため複合材料の製造コストが非常に高いと
いう問題があり、また二種類のマトリックス金属の界面
を所定の位置に設定することが困難であるという問題が
ある。
Problems to be Solved by the Invention In the former method mentioned above, a high-pressure solidification casting method is used, which requires expensive press equipment and molds that can withstand high pressure, which makes the manufacturing cost of the composite material extremely high. There is a problem that the amount of metal is high, and that it is difficult to set the interface between the two types of matrix metals at a predetermined position.

また上述の後者の方法に於ては、製造工程が煩雑であり
、また第一のマトリックス金属よりも融点が高く溶媒中
に溶解することにより消失する材料が必須であるため、
複合材料の製造コストが高くなり易く、また前記消失性
の材料が完全に除去されなければ良好な複合材料を製造
することができないという問題がある。
In addition, in the latter method mentioned above, the manufacturing process is complicated, and a material that has a higher melting point than the first matrix metal and disappears by dissolving in the solvent is essential.
There is a problem that the manufacturing cost of the composite material tends to be high and that a good composite material cannot be manufactured unless the evanescent material is completely removed.

本発明は、従来の異種金属をマトリックスとする複合材
料の製造方法に於ける上述の如き問題に鑑み、第−及び
第二のマトリックス金属が個々の強化材の間に良好に充
填した複合材料を能率よく且低廉に製造することのでき
る方法を提供することを目的としている。
In view of the above-mentioned problems in the conventional method for manufacturing composite materials using different metals as matrices, the present invention provides a composite material in which the first and second matrix metals are well filled between individual reinforcing materials. The purpose is to provide a method that can be manufactured efficiently and inexpensively.

課題を解決するだめの手段 上述の如き目的は、本発明によれば、無機質の強化材と
、金属と、金属フッ化物の微細片とを含む多孔質の成形
体を形成し前記成形体の一部をAl5A1合金、Mg、
及びMg合金よりなる群より選択された第一のマトリッ
クス金属の溶湯に接触させ前記成形体の他の一部をAI
、A1合金、Mg、及びMg合金よりなる群より選択さ
れた第二のマトリックス金属に接触させる金属基複合材
料の製造方法によって達成される。
Means for Solving the Problems According to the present invention, a porous molded body containing an inorganic reinforcing material, a metal, and fine pieces of metal fluoride is formed, and one part of the molded body is Part is Al5A1 alloy, Mg,
The other part of the molded body is brought into contact with a molten metal of a first matrix metal selected from the group consisting of Mg alloy and Mg alloy.
, A1 alloy, Mg, and a Mg alloy.

発明の作用及び効果 本発明の方法によれば、無機質の強化材と金属と金属フ
ッ化物の微細片とを含む多孔質の成形体が形成され、該
成形体の一部が第一のマトリックス金属の溶湯に接触せ
しめられ成形体の他の一部が第二のマトリックス金属の
溶湯に接触せしめられる。
Effects and Effects of the Invention According to the method of the present invention, a porous molded body containing an inorganic reinforcing material, a metal, and fine pieces of metal fluoride is formed, and a part of the molded body is formed by a first matrix metal. The other part of the molded body is brought into contact with the molten metal of the second matrix metal.

一般に金属はA1合金等の溶湯に対する濡れ性に優れて
いるので、溶湯は金属を伝って成形体中へ浸透する。ま
た金属フッ化物は溶湯及び金属の表面の酸化膜を除去し
て強化材に対する溶湯の濡れを改善する。また溶湯及び
金属は互いに反応することによって発熱し、その熱によ
って溶湯及び強化材が加熱され、これにより溶湯の成形
体中への浸透性及び強化材の濡れ性が向上され、これに
より溶湯が成形体中へ良好に浸透していき、マトリック
スが第一のマトリックス金属の部分とマトリックスが第
二のマトリックス金属の部分とよりなり、これらが一体
に互いに接合した複合材料が形成される。
In general, metals, such as A1 alloy, have excellent wettability to molten metal, so the molten metal penetrates into the molded body through the metal. The metal fluoride also removes the oxide film on the surface of the molten metal and metal, thereby improving the wettability of the molten metal to the reinforcing material. In addition, the molten metal and the metal generate heat as they react with each other, and the heat heats the molten metal and the reinforcing material, which improves the permeability of the molten metal into the molded object and the wettability of the reinforcing material. It penetrates well into the body, and the matrix is made up of the first matrix metal part and the matrix is the second matrix metal part, and a composite material is formed in which these parts are integrally bonded to each other.

従って本発明の方法によれば、金属の溶湯を加圧したり
強化材を高温に予熱する必要がなく、従って金属の溶湯
を加圧したり強化材を高温に予熱するための大川りな設
備を要しないので、異種金属をマトリックス金属とする
複合材料を高圧鋳造法の如き従来の方法に比して能率よ
く低廉に製造することができる。
Therefore, according to the method of the present invention, it is not necessary to pressurize the molten metal or preheat the reinforcing material to a high temperature, and therefore, there is no need for extensive equipment for pressurizing the molten metal or preheating the reinforcing material to a high temperature. Therefore, a composite material having dissimilar metals as matrix metals can be produced more efficiently and at a lower cost than conventional methods such as high-pressure casting.

また本発明の方法によれば、マトリックス金属の溶湯の
浸透を阻止する消失性の材料は不要であり、またそれを
成形体の一部に適用したり成形体の個々の強化材の間よ
り除去することは不要であるので、異種金属をマトリッ
クスとする複合材料を上述の先の提案にかかる従来の方
法に比して能率よく低廉に製造することができる。
Also, according to the method of the present invention, there is no need for fugitive materials to prevent penetration of the molten matrix metal, and they can be applied to portions of the compact or removed from between the individual reinforcements of the compact. Since it is not necessary to do this, composite materials having dissimilar metals as a matrix can be manufactured more efficiently and at lower cost than in the conventional method according to the above-mentioned earlier proposal.

また本発明の方法によれば、上述の如く金属の溶湯が良
好に成形体中へ浸透して行くので、強化材と金属と金属
フッ化物の微細片とを含む成形体を所定の形状及び寸法
にて形成し、その一部を第−及び第二のマトリックス金
属の溶湯に接触させれば、成形体全体に第−及び第二の
マトリックス金属の溶湯が過不足なく迅速に浸透し、こ
れにより実質的に所定の形状及び寸法の複合材料が形成
される。従って非常に高い歩留りにて実質的に所定の形
状及び寸法の複合材料を能率よく低度に製造することか
できる。
Furthermore, according to the method of the present invention, as described above, the molten metal penetrates into the molded body well, so that the molded body containing the reinforcing material, the metal, and fine pieces of metal fluoride can be formed into a predetermined shape and size. If a part of the formed body is brought into contact with the molten metals of the first and second matrix metals, the molten metals of the first and second matrix metals will quickly penetrate into the entire molded body in just the right amount. A composite material of substantially predetermined shape and dimensions is formed. Composite materials of substantially predetermined shapes and dimensions can therefore be manufactured efficiently and at low cost with very high yields.

本発明の一つの詳細な特徴によれば、金属は短繊維、ウ
ィスカ、粉末の如き微細片として使用され、従って強化
材と金属の微細片と金属フッ化物微細片とを混合するこ
とにより、或いは強化材の表面に金属の微細片及び金属
フッ化物の微細片を付着することにより、これらよりな
る成形体か形成される。
According to one particular feature of the invention, the metal is used in fine pieces, such as short fibers, whiskers, powder, and thus by mixing the reinforcement with metal fines and metal fluoride fines, or By attaching fine pieces of metal and fine pieces of metal fluoride to the surface of the reinforcing material, a molded body made of these is formed.

本発明の他の一つの詳細な特徴によれば、金属は強化材
の表面に被覆される。従ってこの場合には金属にて被覆
された強化材と金属フッ化物とを混合することにより、
或いは金属にて被覆された強化材の表面に金属フッ化物
を付着させることにより、これらよりなる成形体が形成
される。
According to another detailed feature of the invention, the metal is coated on the surface of the reinforcement. Therefore, in this case, by mixing the reinforcing material coated with metal and the metal fluoride,
Alternatively, by attaching a metal fluoride to the surface of a reinforcing material coated with metal, a molded body made of the reinforcing material is formed.

本発明の他の一つの詳細な特徴によれば、強化材の表面
に金属が被覆され、その被覆層中に金属フッ化物の微細
片が分散され、かかる複合被覆層を有する強化材を用い
て成形体が形成される。
According to another detailed feature of the invention, the surface of the reinforcing material is coated with metal, fine particles of metal fluoride are dispersed in the coating layer, and the reinforcing material with such a composite coating layer is used. A molded body is formed.

また本発明の方法に於ては、金属フッ化物は任意の金属
元素のフッ化物であってよいか、例えばに2 ZrF6
 、K4y TiF6 、KAlF4 、K3AlF6
、K2AlF5 ・H2O、Cs A I F 4、C
s A I F 5  ・H2Oの如く、アルカリ金属
、アルカリ土類金属、希土類金属の如き電気的に正の元
素と結合したTi、Zr、Hf、V、Nb、Taの如き
遷移金属又はAIを含むフッ化物であることか好ましい
。従って本発明の他の一つの詳細な特徴によれば、金属
フッ化物は電気的に正の金属元素と結合した遷移金属又
はAIを含むフッ化物である。
Further, in the method of the present invention, the metal fluoride may be a fluoride of any metal element, for example, 2 ZrF6
, K4y TiF6 , KAlF4 , K3AlF6
, K2AlF5 ・H2O, Cs A I F 4, C
Contains transition metals such as Ti, Zr, Hf, V, Nb, Ta or AI combined with electrically positive elements such as alkali metals, alkaline earth metals, and rare earth metals, such as s A I F 5 ・H2O Preferably, it is a fluoride. According to another detailed feature of the invention, therefore, the metal fluoride is a fluoride containing a transition metal or AI in combination with an electrically positive metal element.

また本発明の方法に於ては、成形体に含まれる金属はA
l若しくはMgと反応して金属間化合物を形成する限り
任意の金属であってよいか、特にN iSF eSCo
、Cr、Mn、CuXAg、Si、Mg、Zr、Zn、
5SnSPb、Ti、Nb。
Further, in the method of the present invention, the metal contained in the molded body is A
Any metal may be used as long as it reacts with L or Mg to form an intermetallic compound, especially NiSF eSCo.
, Cr, Mn, CuXAg, Si, Mg, Zr, Zn,
5SnSPb, Ti, Nb.

又はこれらの何れかを主成分とする合金であることが好
ましい。従って本発明の他の一つの詳細な特徴によれば
、金属はNi、Fe5Co、Cr。
Or an alloy containing any of these as a main component is preferable. According to another detailed feature of the invention, therefore, the metal is Ni, Fe5Co, Cr.

Mn、CuXAg、S i、Mg、Z r、Zn、Sn
 −、P t) s T l % N b %及びこれ
らの何れかを主成分とする合金よりなる群より選択され
た金属細片である。
Mn, CuXAg, Si, Mg, Zr, Zn, Sn
-, Pt) s Tl % N b % and an alloy containing any of these as a main component.

また本発明の更に他の一つの詳細な特徴によれば、成形
体は所定の形状及び寸法を有し、その一部のみが金属の
溶湯に浸漬される。かかる方法によれば、金属の溶湯を
加圧したり所定の製品形状を郭定するための鋳型等を使
用することなく、所定の形状及び寸法の複合材料を非常
に高い歩留りにて能率よく且低廉に製造することができ
る。
According to yet another detailed feature of the invention, the molded body has a predetermined shape and dimensions, and only a portion thereof is immersed in the molten metal. According to this method, a composite material of a predetermined shape and size can be produced efficiently and inexpensively at a very high yield without pressurizing molten metal or using a mold to define a predetermined product shape. can be manufactured.

尚本発明の方法に於ては、成形体の予熱は不要であるが
、金属の溶湯に対する強化材及び金属の濡れ性を向上さ
せるべく成形体を予熱する場合には、その温度は従来よ
り採用されている温度よりも低いことが好ましい。また
本発明に於ける金属フッ化物の微細片の形態は短繊維、
ウィスカ、粉末の如き任意の形態のものであってよい。
In the method of the present invention, it is not necessary to preheat the molded body, but when preheating the molded body to improve the wettability of the reinforcing material and the metal to the molten metal, the temperature may be set at the same temperature as in the conventional method. It is preferable that the temperature is lower than that shown in the figure. In addition, the form of the fine pieces of metal fluoride in the present invention is short fibers,
It may be in any form such as whiskers or powder.

また本発明の方法に於ては、強化材の形態及び材質は任
意のものであってよく、例えば炭化ケイ素繊維、アルミ
ナ繊維の如きセラミック繊維、鉄繊維、タングステン繊
維の如き金属繊維、炭素繊維の如きセラミック及び金属
以外の無機質繊維、炭化ケイ素ウィスカの如きウィスカ
、炭化ケイ素粒子、炭化チタン粒子の如き粒子であって
よい。
In addition, in the method of the present invention, the reinforcing material may have any form and material, for example, silicon carbide fibers, ceramic fibers such as alumina fibers, iron fibers, metal fibers such as tungsten fibers, carbon fibers, etc. The particles may be inorganic fibers other than ceramics and metals such as ceramics and metals, whiskers such as silicon carbide whiskers, silicon carbide particles, and titanium carbide particles.

以下に添付の図を参照して本発明を実施例について詳細
に説明する。
The invention will now be described in detail by way of example embodiments with reference to the accompanying drawings.

実施例1 第1図に示されている如く、厚さ1μMにてNlがめっ
きされた平均繊維径7μmの炭素繊維のヤーン10(東
し株式会社製「トレカT300J、フィラメント数30
00本)を用意し、またKAlF4粉末が水に分散され
たスラリー12を用意した。次いでスラリーに超音波振
動を加えつつ、該スラリー中にヤーン10を連続的に通
し、しかる後ヤーンを乾燥炉13に連続的に通して約1
50℃に加熱することにより乾燥し、これにより個々の
炭素繊維の表面にKA I F4を微細に付着させた。
Example 1 As shown in FIG. 1, carbon fiber yarn 10 with an average fiber diameter of 7 μm plated with Nl at a thickness of 1 μM (“Torayca T300J, manufactured by Toshi Co., Ltd., number of filaments: 30
00 bottles) were prepared, and slurry 12 in which KAlF4 powder was dispersed in water was prepared. The yarn 10 is then continuously passed through the slurry while applying ultrasonic vibrations to the slurry, and then the yarn is continuously passed through a drying oven 13 for approximately 1
It was dried by heating to 50° C., thereby finely adhering KA I F4 to the surface of each carbon fiber.

次いで第2図に示されている如く、内径8n+m、外径
10mm、長さ150n+mの寸法を有し、直径2mm
の多数の孔]、 4 aを有するステンレス鋼製のパイ
プ14を用意し、上述の如く処理されたヤーンを150
+nmの長さに切断し、それらを一方向に配向して体積
率が約50%になるようパイプ14内に充填し、これに
よりパイプ内に炭素繊維よりなる円柱状の成形体11を
形成した。
Next, as shown in Fig. 2, it has dimensions of an inner diameter of 8n+m, an outer diameter of 10mm, a length of 150n+m, and a diameter of 2mm.
A stainless steel pipe 14 having a large number of holes], 4 a is prepared, and 150
The carbon fibers were cut into lengths of +nm, oriented in one direction, and filled into the pipe 14 so that the volume ratio was about 50%, thereby forming a cylindrical molded body 11 made of carbon fiber inside the pipe. .

次いで成形体をパイプ毎電気炉により約300℃に約1
5分間加熱し、しかる後第3図に示されている如く、セ
ラミック短繊維よりなる成形ボード16をパイプの中央
に嵌合によって固定し、これらを金型18内に配置し、
ボード16により金型の内部を二つの部分に仕切った。
Next, the molded body is heated to about 300°C for about 1 hour in an electric furnace for each pipe.
After heating for 5 minutes, as shown in FIG. 3, a molded board 16 made of short ceramic fibers is fixed in the center of the pipe by fitting, and these are placed in a mold 18.
A board 16 partitioned the inside of the mold into two parts.

次いで金型内の二つの部分にそれぞれ700℃のアルミ
ニウム合金Ors規格AC8A)の溶湯20及び700
℃のアルミニウム合金(JIS規格AC4C)の溶湯2
2を同時に注湯し、約10秒経過後(溶湯が凝固する前
)にパイプ及びボードを溶湯中より取り出した。
Next, 20 and 700 molten metals of aluminum alloy Ors standard AC8A) at 700°C were placed in two parts in the mold, respectively.
Molten aluminum alloy (JIS standard AC4C) at ℃ 2
2 were poured at the same time, and after about 10 seconds (before the molten metal solidified), the pipe and board were taken out from the molten metal.

パイプ及びその内部が十分に冷却した後、第4図に示さ
れている如く、パイプ及びその内部に形成された複合材
料24を実質的にその軸線に沿って長手方向に切断し、
複合材料の断面を調査したところ、複合材料はアルミニ
ウム合金(JIS規格AC8A)をマトリックス金属と
する部分24aとアルミニウム合金(JIS規格AC4
C)をマトリックス金属とする部分24bとよりなり、
これらの部分は互いに良好に接合し、それらの界面24
cは実質的に複合材料の長手方向中央に位置しているこ
とが認められた。また何れのアルミニウム合金も個々の
炭素繊維10aの間に良好に充填されており、炭素繊維
と良好に密着していることが認められた。
After the pipe and its interior have sufficiently cooled, the pipe and the composite material 24 formed therein are cut longitudinally substantially along its axis, as shown in FIG.
When the cross section of the composite material was investigated, it was found that the composite material has a part 24a whose matrix metal is aluminum alloy (JIS standard AC8A) and an aluminum alloy (JIS standard AC4).
A part 24b having C) as a matrix metal,
These parts bond well with each other and their interface 24
c was found to be located substantially in the longitudinal center of the composite material. It was also found that all the aluminum alloys were well filled between the individual carbon fibers 10a and were in good contact with the carbon fibers.

尚比較の目的で、Niにてめっきされていない炭素繊維
が使用された点を除き、上述の実施例と同一の要領及び
条件にて複合材料の製造を試みたところ、第5図に示さ
れている如く、アルミニウム合金(JIS規格AC8A
)をマトリックス金属とする部分24a及びアルミニウ
ム合金(JIS規格AC4C)をマトリックス金属上す
る部分24bの何れもパイプの端部より約15mmの範
囲にしか形成されなかった。
For comparison purposes, we attempted to manufacture a composite material using the same procedure and conditions as in the above example, except that carbon fibers that were not plated with Ni were used, and the result was shown in Figure 5. As shown, aluminum alloy (JIS standard AC8A
) as the matrix metal and the portion 24b as the matrix metal made of aluminum alloy (JIS standard AC4C) were both formed within a range of about 15 mm from the end of the pipe.

実施例2 平均繊維径20+czms平均繊維長1.5111mの
6゜7gのNi短繊維と、平均粒径40μmの4gのA
1合金粉末(AI−12%Si)と、0.005gのに
2 Z r F a粉末とを実質的に均一に混合し、そ
の混合物を金型にて圧縮成形することにより、第6図に
示されている如< 50X10X10mmの寸法を有し
、Ni短繊維26とA1合金粉末28とに2ZrF6粉
末30とよりなる成形体32を形成した。
Example 2 6°7 g of Ni short fibers with an average fiber diameter of 20+czms and an average fiber length of 1.5111 m and 4 g of A with an average particle size of 40 μm
By substantially uniformly mixing 1 alloy powder (AI-12%Si) and 0.005 g of 2 ZrFa powder and compression molding the mixture in a mold, the material shown in Fig. 6 was obtained. As shown, a molded body 32 having dimensions of <50 x 10 x 10 mm and consisting of 2ZrF6 powder 30 on Ni short fibers 26 and A1 alloy powder 28 was formed.

次いで成形体32を約200℃に予熱し、しかる後節7
図に示されている如く、成形体の一端よす10111m
の範囲の部分を約720℃のアルミニウム合金(JIS
規格AC8A)の溶湯34内に浸漬し、溶湯が成形体の
一端より25mmの位置まで浸透した時点に於て成形体
を溶湯より引上げ、しかる後直ちに成形体の他端より1
0mmの範囲の部分を約750℃のアルミニウム合金(
A S TM規格A390)の溶湯36に浸漬し、溶湯
が成形体に完全に浸透するまで維持し、しかる後溶湯よ
り成形体を引上げ、そのまま溶湯を凝固させた。この場
合溶湯はそれが凝固するまで表面張力により成形体に付
着した状態を維持し、実質的に成形体より滴り落ちるこ
とはなかった。
Next, the molded body 32 is preheated to about 200°C, and the subsequent section 7
As shown in the figure, one end of the molded body has a length of 10111 m.
aluminum alloy (JIS
The molded body is immersed in a molten metal 34 of standard AC8A), and when the molten metal penetrates to a position 25 mm from one end of the molded body, the molded body is pulled up from the molten metal, and then immediately immersed from the other end of the molded body.
The part in the 0 mm range is heated to approximately 750°C using an aluminum alloy (
The molded body was immersed in a molten metal 36 of ASTM standard A390) and maintained until the molten metal completely penetrated into the molded body, and then the molded body was pulled up from the molten metal and the molten metal was solidified as it was. In this case, the molten metal remained attached to the molded body due to surface tension until it solidified, and substantially did not drip from the molded body.

溶湯が完全に凝固した後、かくして得られた複合材料の
寸法を測定したところ、この複合材料は元の成形体と実
質的に同一の形状及び寸法を有していることが認められ
た。またこの複合材料を実質的に長手方向の軸線に沿っ
て切断し、その断面を研磨して光学顕微鏡にて観察した
ところ、この複合材料はアルミニウム合金(JIS規格
AC8A)をマトリックス金属とする部分とアルミニウ
ム合金(A S TM規格A390)をマトリックス金
属とする部分とよりなり、これらの部分は互いに良好に
接合し、それらの界面は実質的に複合材料の長手方向中
央に位置していることが認められた。また何れのアルミ
ニウム合金も個々のNi短繊維の間に良好に充填されて
おり、Ni短繊維と良好に密着していることが認められ
た。
After the molten metal had completely solidified, the dimensions of the composite material thus obtained were measured and it was found that the composite material had substantially the same shape and dimensions as the original compact. Furthermore, when this composite material was cut substantially along the longitudinal axis, and the cross section was polished and observed under an optical microscope, it was found that this composite material had a part with an aluminum alloy (JIS standard AC8A) as the matrix metal. It is recognized that these parts are well bonded to each other, and that their interface is located substantially in the longitudinal center of the composite material. It was done. Furthermore, it was found that all the aluminum alloys were well filled between the individual short Ni fibers and adhered well to the short Ni fibers.

実施例3 実施例2に於けるN1短繊維の代わりに平均繊維径20
μM、平均繊維長1mmの7.7gのステンレス鋼短繊
維(JIS規格5US430)を使用し、K2ZrF6
粉末を0.0005g使用し、約720℃のアルミニウ
ム合金(JIS規格AC8A)の溶湯の代わりに約80
0℃の純マグネシウムの溶湯を使用し、約750℃のア
ルミニウム合金(ASTM規格A390)の溶湯の代わ
りに約800°Cのマグネシウム合金(JIS規格MC
2)の溶湯を使用した点を除き、実施例3の場合と同一
の要領及び条件にて複合材料を製造し、その断面を調査
した。
Example 3 An average fiber diameter of 20 was used instead of the N1 short fiber in Example 2.
μM, using 7.7 g of stainless steel short fibers (JIS standard 5US430) with an average fiber length of 1 mm, K2ZrF6
Using 0.0005g of powder, about 80℃ was used instead of molten aluminum alloy (JIS standard AC8A) at about 720℃.
Using pure magnesium molten metal at 0°C, magnesium alloy at about 800°C (JIS standard MC
A composite material was manufactured in the same manner and under the same conditions as in Example 3, except that the molten metal of 2) was used, and its cross section was examined.

その結果この実施例の複合材料も純マグネシウムをマト
リックス金属とする部分とマグネシウム合金(JIS規
格MC2)をマトリックス金属とする部分とよりなり、
これらの部分は互いに良好に接合し、それらの界面は実
質的に複合材料の長手方向中央に位置していることが認
められた。また何れのマトリックス金属も個々のステン
レス鋼短繊維の間に良好に充填されており、ステンレス
鋼短繊維と良好に密着していることか認められた。
As a result, the composite material of this example also consists of a part using pure magnesium as the matrix metal and a part using magnesium alloy (JIS standard MC2) as the matrix metal.
It was observed that these parts bonded well to each other and their interface was located substantially in the longitudinal center of the composite. It was also observed that each matrix metal was well filled between the individual short stainless steel fibers, and was well adhered to the short stainless steel fibers.

実施例4 0.3μmにてN1がめっきされた平均繊維径0.5t
tms平均繊維長150.cz川の14gのSiCウィ
スカ(東海カーボン株式会社製「トーカマックス」)と
0.6gのに2ZrF6粉末とを実質的に均一に混合し
、その混合物を金型にて圧縮成形することにより、第9
図に示されている如く、外径40mm、内径25mm、
高さ7mmの寸法を有し、SiCウィスカ38とに2Z
rF6粉末40とよりなる環状の成形体42を形成した
。 次いで成形体42を約150°Cに予熱し、しかる
後第10図に示されている如く、成形体の一方の側面4
2aを約700℃のアルミニウム合金(ASTM規格A
390)の溶湯44に浸漬し、側面42aより約4mm
の位置まで溶湯が浸透した時点に於て成形体を溶湯より
引上げた。この場合溶湯はそれが凝固するまで表面張力
により成形体に付着した状態を維持し、実質的に成形体
より滴り落ちることはなかった。第11図はかくして処
理された成形体42を示しており、成形体の一端42a
より4mmの範囲の部分はアルミニウム合金(ASTM
規格A390)をマトリックス金属とする複合材料46
となっていた。
Example 4 Average fiber diameter 0.5t plated with N1 at 0.3μm
TMS average fiber length 150. By substantially uniformly mixing 14 g of SiC whiskers from CZ River (Tokai Carbon Co., Ltd., "Tokamax") and 0.6 g of 2ZrF6 powder, and compression molding the mixture in a mold, the 9
As shown in the figure, outer diameter 40mm, inner diameter 25mm,
It has a height of 7 mm and has 2Z with SiC whisker 38.
An annular molded body 42 made of rF6 powder 40 was formed. The molded body 42 is then preheated to about 150°C, and then one side 4 of the molded body is heated as shown in FIG.
2a to an aluminum alloy (ASTM standard A) at approximately 700°C.
390) and about 4 mm from the side surface 42a.
When the molten metal penetrated to the position , the molded body was pulled out from the molten metal. In this case, the molten metal remained attached to the molded body due to surface tension until it solidified, and substantially did not drip from the molded body. FIG. 11 shows a molded body 42 treated in this way, with one end 42a of the molded body
The part in the 4mm range is made of aluminum alloy (ASTM
Composite material 46 whose matrix metal is standard A390)
It became.

次いで図には示されていないが、かくして一部複合材料
とされた成形体42をシリンダヘッドを鋳造するための
鋳型内のバルブシートの位置に配置し、該鋳型内に74
0℃のアルミニウム合金(JIS規格AC2A)を注湯
し、低圧鋳造によりシリンダヘッドを鋳造した。溶湯が
完全に凝固した後、得られたシリンダヘッドのバルブシ
ートの部分をその軸線に沿う平面に沿って切断し、その
断面を観察したところ、第12図に示されている如く、
成形体42のアルミニウム合金が浸透していなかった部
分にアルミニウム合金(JIS規格AC2A)が浸透し
ており、こりにより該アルミニウム合金をマトリックス
金属とする複合材料48が形成されており、何れの複合
材料もシリンダヘッド50に良好に鋳ぐるまれだ状態に
あることが認められた。尚第12図に於て、仮想線は鋳
造後に機械加工によって形成されるべきバルブシート面
52を示している。
Next, although not shown in the figure, the molded body 42 partially made of composite material is placed at the position of the valve seat in a mold for casting a cylinder head, and a molded body 74 is placed in the mold.
Aluminum alloy (JIS standard AC2A) at 0° C. was poured and a cylinder head was cast by low pressure casting. After the molten metal had completely solidified, the valve seat portion of the obtained cylinder head was cut along a plane along its axis, and the cross section was observed, as shown in Fig. 12.
Aluminum alloy (JIS standard AC2A) has penetrated into the part of the molded body 42 where the aluminum alloy has not penetrated, and a composite material 48 having the aluminum alloy as a matrix metal is formed by the solidity. It was also found that the cylinder head 50 was in good condition. In FIG. 12, the imaginary line indicates the valve seat surface 52 to be formed by machining after casting.

以上に於ては本発明を幾つかの実施例について詳細に説
明したが、本発明はこれらの実施例に限定されるもので
はなく、本発明の範囲内にて他の種々の実施例が可能で
あることは当業者にとって明らかであろう。
Although the present invention has been described above in detail with reference to several embodiments, the present invention is not limited to these embodiments, and various other embodiments are possible within the scope of the present invention. It will be clear to those skilled in the art that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の方法の一つの実施例の工程
図、第4図は第1図乃至第3図に示された実施例により
製造された複合材料の軸線に沿う断面を示す断面図、第
5図は比較例の複合材料の断面を示す第4図と同様の断
面図、第6図乃至第8図は本発明の方法の他の一つの実
施例を示す工程図、第9図乃至第11図は本発明の方法
の更に他の一つの実施例を示す工程図、第12図は第9
図乃至第11図に示された実施例により形成されたシリ
ンダヘッドのハルブンート部を示す部分断面図である。
1 to 3 are process diagrams of one embodiment of the method of the present invention, and FIG. 4 is a cross section along the axis of a composite material manufactured by the embodiment shown in FIGS. 1 to 3. 5 is a sectional view similar to FIG. 4 showing the cross section of a composite material of a comparative example, and FIGS. 6 to 8 are process diagrams showing another embodiment of the method of the present invention, 9 to 11 are process diagrams showing still another embodiment of the method of the present invention, and FIG.
FIG. 12 is a partial cross-sectional view showing the hull root portion of the cylinder head formed according to the embodiment shown in FIGS. 11 to 11. FIG.

Claims (1)

【特許請求の範囲】[Claims] 無機質の強化材と、金属と、金属フッ化物の微細片とを
含む多孔質の成形体を形成し、前記成形体の一部をAl
、Al合金、Mg、及びMg合金よりなる群より選択さ
れた第一のマトリックス金属の溶湯に接触させ前記成形
体の他の一部をAl、Al合金、Mg、及びMg合金よ
りなる群より選択された第二のマトリックス金属に接触
させる金属基複合材料の製造方法。
A porous molded body containing an inorganic reinforcing material, a metal, and fine pieces of metal fluoride is formed, and a part of the molded body is made of Al.
, the other part of the molded body is brought into contact with a molten metal of a first matrix metal selected from the group consisting of Al alloy, Mg, and Mg alloy, and the other part of the molded body is selected from the group consisting of Al, Al alloy, Mg, and Mg alloy. A method for producing a metal matrix composite material, which comprises contacting a second matrix metal.
JP15573688A 1988-06-23 1988-06-23 Manufacture of metal matrix composite Pending JPH024935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15573688A JPH024935A (en) 1988-06-23 1988-06-23 Manufacture of metal matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15573688A JPH024935A (en) 1988-06-23 1988-06-23 Manufacture of metal matrix composite

Publications (1)

Publication Number Publication Date
JPH024935A true JPH024935A (en) 1990-01-09

Family

ID=15612324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15573688A Pending JPH024935A (en) 1988-06-23 1988-06-23 Manufacture of metal matrix composite

Country Status (1)

Country Link
JP (1) JPH024935A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073049A (en) * 1999-07-19 2001-03-21 Her Majesty In Right Of Canada As Represented By The Minister Of Natural Resources Production of perform for magnesium metal base composite material, production of metal base composite material and composite material
CN101892406A (en) * 2010-07-15 2010-11-24 江苏大学 Method for preparing aluminum-based composite material with uniform and fine isometric crystal grains
US9850669B2 (en) 2000-06-13 2017-12-26 Flooring Industries Limited, Sarl Floor covering panel
CN112662907A (en) * 2020-12-25 2021-04-16 河北四通新型金属材料股份有限公司 Nickel element additive for aluminum alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073049A (en) * 1999-07-19 2001-03-21 Her Majesty In Right Of Canada As Represented By The Minister Of Natural Resources Production of perform for magnesium metal base composite material, production of metal base composite material and composite material
DE10034631B4 (en) * 1999-07-19 2009-07-02 Her Majesty In Right Of Canada As Represented By The Minister Of Natural Resources, Ottawa Preform for composites with a metal matrix of magnesium
JP4568410B2 (en) * 1999-07-19 2010-10-27 ハー マジェスティ イン ライト オブ カナダ アズ レプリゼンティッド バイ ザ ミニスター オブ ナチュラル リソーシーズ Method for manufacturing preform for magnesium metal matrix composite, method for manufacturing metal matrix composite, and composite
US9850669B2 (en) 2000-06-13 2017-12-26 Flooring Industries Limited, Sarl Floor covering panel
CN101892406A (en) * 2010-07-15 2010-11-24 江苏大学 Method for preparing aluminum-based composite material with uniform and fine isometric crystal grains
CN112662907A (en) * 2020-12-25 2021-04-16 河北四通新型金属材料股份有限公司 Nickel element additive for aluminum alloy

Similar Documents

Publication Publication Date Title
JP2994482B2 (en) Single cylinder or multiple cylinder block
CA1325706C (en) Process for obtaining a metallurgical bond between a metal material, or a composite material having a metal matrix, and a metal casting or a metal-alloy casting
KR950014939B1 (en) Reinforced pistons
EP0539011B1 (en) Nickel coated carbon preforms
US5263530A (en) Method of making a composite casting
US5199481A (en) Method of producing reinforced composite materials
JPH024935A (en) Manufacture of metal matrix composite
EP0101948B1 (en) Method of manufacturing a surface composite reinforced member
JP2909546B2 (en) Manufacturing method of metal matrix composite material
JPH01111830A (en) Reinforcing fiber for production of fiber-reinforced composite metallic material
JP2504199B2 (en) Method for producing fiber-reinforced metal composite material
JPS61172666A (en) Production of fiber reinforced cylindrical member
JPH01279720A (en) Manufacture of metal-based composite material
JP2579837B2 (en) Preforms for metal matrix composites
JPH02254128A (en) Manufacture of metal-matrix composite material
JPS6221456A (en) Production of hollow casting
JP2000271728A (en) Production of composite stock with non-pressurize impregnating permeation method
JPS6238412B2 (en)
JP2792192B2 (en) Method for producing titania whisker reinforced Al-based composite material
JPS61249660A (en) Preform material
JPS63278661A (en) Production of aluminum product having reinforced composite part
JPH10288079A (en) Cylinder block and its casting method
JPS62127159A (en) Production of fiber reinforced metallic member
JPH10281002A (en) Metallic base composite reinforcing piston for internal combustion engine and manufacture therefor
JPH01279719A (en) Manufacture of metal-based composite material