JPH03273925A - Air conditioning device for vehicle - Google Patents

Air conditioning device for vehicle

Info

Publication number
JPH03273925A
JPH03273925A JP2072950A JP7295090A JPH03273925A JP H03273925 A JPH03273925 A JP H03273925A JP 2072950 A JP2072950 A JP 2072950A JP 7295090 A JP7295090 A JP 7295090A JP H03273925 A JPH03273925 A JP H03273925A
Authority
JP
Japan
Prior art keywords
refrigerant
solenoid valve
heat exchanger
refrigerant compressor
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2072950A
Other languages
Japanese (ja)
Other versions
JP2792185B2 (en
Inventor
Kazuhiro Fukuda
福田 和啓
Haruhiko Kato
加藤 治彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP2072950A priority Critical patent/JP2792185B2/en
Publication of JPH03273925A publication Critical patent/JPH03273925A/en
Application granted granted Critical
Publication of JP2792185B2 publication Critical patent/JP2792185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent abrupt rise of pressure on low pressure side after a refriger ant compressor stops by controlling supply of power of solenoid valve in such a way that refrigerant passage is shut off when supply of power to an electronic clutch is stopped. CONSTITUTION:The refrigerant cycle 1 of an air conditioning device is provided with a refrigerant compressor 3 which is driven by an engine which drives a vehicle via an electronic clutch 2. On the downstream from the refrigerant compressor 3, a refrigerant condenser 5 is installed for condensing and liquefying high temperature and high pressure refrigerant which is discharged from the refrigerant compressor 3 under blow of air of a fan 4 for condensation during room cooling operation. On the downstream for the refrigerant condenser 5, a pressure reducing device 7 for room cooling and a solenoid valve 9 which opens or closes a by-pass passage 8 which by-passes it are mounted. In this case, a control circuit 21 which controls supply of power to the electronic clutch 2 and solenoid valve 9 is mounted. It controls supply of power to the solenoid valve 9 in such a way that refrigerant passage is shut off when supply of power to the electronic clutch 2 is stopped.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、暖房用の熱源として油圧機器の作動油を利用
した車両用空気調和装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a vehicle air conditioner that uses hydraulic oil from hydraulic equipment as a heat source for heating.

[従来の技術] 油圧機器の作動油を熱源とする車両用空気調和装置の冷
凍サイクルの一例を第1図に示す。
[Prior Art] FIG. 1 shows an example of a refrigeration cycle for a vehicle air conditioner that uses hydraulic oil of hydraulic equipment as a heat source.

この冷凍サイクル1は、冷房運転時に冷媒が循環する冷
房用循環経路と、暖房運転時に冷媒が循環する暖房用循
環経路とが形成され、その暖房用循環経路には、冷媒と
油圧機器の作動油とを熱交換させる室外熱交換器16が
配設されている。
This refrigeration cycle 1 has a cooling circulation path through which refrigerant circulates during cooling operation, and a heating circulation path through which refrigerant circulates during heating operation. An outdoor heat exchanger 16 is provided to exchange heat between the two.

冷房モードが選択されると、暖房用循環経路に配設され
た電磁弁9および電磁弁14が閉状態とされ、冷房用循
環経路に配設された電磁弁13が開状態とされる。
When the cooling mode is selected, the solenoid valves 9 and 14 disposed in the heating circulation path are closed, and the solenoid valve 13 disposed in the cooling circulation path is opened.

従って、冷房用循環経路を流れる冷媒は、冷媒圧縮機3
→冷媒凝縮器5→冷房用減圧装置7→室内熱交換器6−
電磁弁13−受液器18→冷媒圧縮機3を循環する。
Therefore, the refrigerant flowing through the cooling circulation path is transferred to the refrigerant compressor 3.
→ Refrigerant condenser 5 → Cooling pressure reducing device 7 → Indoor heat exchanger 6-
The solenoid valve 13 - receiver 18 → refrigerant compressor 3 is circulated.

暖房モードが選択されると、電磁弁9および電磁弁14
が開状態とされ、電磁弁13が閉状態とされる。
When heating mode is selected, solenoid valve 9 and solenoid valve 14
is in an open state, and the solenoid valve 13 is in a closed state.

従って、暖房用循環経路を流れる冷媒は、冷媒圧縮機3
→冷媒凝縮器5→電磁弁9→室内熱交換器6→電磁弁1
4−#暖房用減圧装置15→室外熱交換器16−→受液
器18−→冷媒圧縮機3を循環する。
Therefore, the refrigerant flowing through the heating circulation path is transferred to the refrigerant compressor 3.
→ Refrigerant condenser 5 → Solenoid valve 9 → Indoor heat exchanger 6 → Solenoid valve 1
4-#Heating pressure reducing device 15→outdoor heat exchanger 16-→liquid receiver 18-→refrigerant compressor 3 is circulated.

この暖房運転時には、室内熱交換器6の吸込空気温度が
設定温度以上に上昇した際に、暖房用サーミスタ23が
検知し、制御回路21を介して電磁クラッチ2の通電が
停止されて、冷媒圧縮機3の駆動が停止する。室内熱交
換器6の吸込空気温度が設定温度以下になった時には、
再び電磁クラ・ンチ2への通電が行なわれて、冷媒圧縮
機3が駆動される。
During this heating operation, when the temperature of the intake air of the indoor heat exchanger 6 rises above the set temperature, the heating thermistor 23 detects this, and the control circuit 21 stops energizing the electromagnetic clutch 2 to compress the refrigerant. The drive of machine 3 stops. When the intake air temperature of the indoor heat exchanger 6 falls below the set temperature,
The electromagnetic clutch 2 is energized again, and the refrigerant compressor 3 is driven.

[発明が解決しようとする課題] 上記冷凍サイクル1において、暖房運転時に運転モード
をオフすることで冷媒圧縮機3を停止させた際、あるい
は室内熱交換器6の吸込空気温度に基づいて冷媒圧縮機
3を停止させた際に、冷媒圧縮機3の停止後しばらくは
、暖房用減圧装置15の前後に大きな差圧が生じるため
、室内熱交換器6で凝縮された冷媒が室外熱交換器16
へ流れ込む。
[Problems to be Solved by the Invention] In the refrigeration cycle 1, when the refrigerant compressor 3 is stopped by turning off the operation mode during heating operation, or when the refrigerant compressor 3 is stopped based on the suction air temperature of the indoor heat exchanger 6, When the refrigerant compressor 3 is stopped, a large pressure difference occurs before and after the heating pressure reducing device 15 for a while after the refrigerant compressor 3 is stopped, so the refrigerant condensed in the indoor heat exchanger 6 is transferred to the outdoor heat exchanger 16
flows into.

この場合、特に大能力を必要とする空気調和装置におい
ては、油側吸熱量が大きくなると、暖房用減圧装置15
を通過する冷媒量が増加するため、室外熱交換器16の
内部で冷媒が急激に彫版し、低圧側圧力の急激な上昇を
招く。
In this case, especially in an air conditioner that requires a large capacity, if the amount of heat absorbed on the oil side becomes large, the heating pressure reducing device 15
As the amount of refrigerant passing through increases, the refrigerant rapidly engraves inside the outdoor heat exchanger 16, causing a rapid increase in the pressure on the low pressure side.

その結果、冷媒圧縮機3の吸入弁の耐久性が低下する課
題を有していた。室内熱交換器6の吸込空気温度に基づ
く冷媒圧縮機3の断続運転周期が短い場合には、低圧側
圧力が十分下がらないうちに冷媒圧縮機3が再運転され
るなめ特に問題となる。
As a result, there was a problem in that the durability of the suction valve of the refrigerant compressor 3 deteriorated. If the intermittent operation cycle of the refrigerant compressor 3 based on the suction air temperature of the indoor heat exchanger 6 is short, this becomes a particular problem because the refrigerant compressor 3 is restarted before the low-pressure side pressure is sufficiently lowered.

また、冷媒圧縮機3の停止直後に冷媒の補充作業を行う
と、冷媒補充用の缶に悪影響を及ぼすことになる。
Moreover, if the refrigerant replenishment work is performed immediately after the refrigerant compressor 3 is stopped, the refrigerant replenishment can will be adversely affected.

本発明は上記事情に基づいてなされたもので、その目的
は、冷媒圧縮機の停止後に、低圧側圧力の急激な上昇を
防止することのできる車両用空気調和装置を提供するこ
とにある。
The present invention has been made based on the above-mentioned circumstances, and an object thereof is to provide an air conditioner for a vehicle that can prevent a sudden increase in low pressure side pressure after a refrigerant compressor is stopped.

[課題を解決するための手段] 本発明は上記目的を達成するために、吸入した冷媒を圧
縮して吐出する冷媒圧縮機と、この冷媒圧縮機に備えら
れて、通電時にエンジンの回転を前記冷媒圧縮機に伝達
する電磁クラッチと、前記冷媒圧縮機の下流に接続され
て、供給された冷媒と周囲の空気とを熱交換させる室内
熱交換器と、前記冷媒圧縮機の上流に接続されて、供給
された冷媒と油圧機器の作動油とを熱交換させる室外熱
交換器と、前記室内熱交換器と前記室外熱交換器とを接
続する冷媒通路で、前記室外熱交換器の上流に設けられ
た減圧装置と、この減圧装置の上流に設けられて、前記
冷媒通路を開閉する電磁弁と、前記電磁クラッチおよび
前記電磁弁の通電制御を行う制御回路とを備え、この制
御回路は、前記電磁クラッチへの通電停止に伴なって、
前記冷媒通路を遮断するように前記電磁弁の通電制御を
行うことを技術的手段とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a refrigerant compressor that compresses and discharges sucked refrigerant, and a refrigerant compressor that is provided with a refrigerant compressor that controls engine rotation when energized. an electromagnetic clutch that transmits the transmission to the refrigerant compressor; an indoor heat exchanger that is connected downstream of the refrigerant compressor and exchanges heat between the supplied refrigerant and surrounding air; and an indoor heat exchanger that is connected upstream of the refrigerant compressor. , an outdoor heat exchanger that exchanges heat between the supplied refrigerant and the hydraulic oil of the hydraulic equipment, and a refrigerant passage that connects the indoor heat exchanger and the outdoor heat exchanger, and is provided upstream of the outdoor heat exchanger. a pressure reducing device provided upstream of the pressure reducing device, an electromagnetic valve that opens and closes the refrigerant passage, and a control circuit that controls energization of the electromagnetic clutch and the electromagnetic valve; With the stop of power supply to the electromagnetic clutch,
The technical means is to control the energization of the solenoid valve so as to shut off the refrigerant passage.

[作用および発明の効果] 上記構成よりなる本発明の車両用空気調和装置は、電磁
クラッチおよび電磁弁の通電制御を行う制御回路を備え
、その制御回路により、電磁クラッチへの通電を停止し
た際に、冷媒通路を遮断するように電磁弁の通電制御が
行なわれる。
[Operation and Effects of the Invention] The vehicle air conditioner of the present invention having the above configuration includes a control circuit that controls the energization of the electromagnetic clutch and the electromagnetic valve, and the control circuit allows the control circuit to control the energization of the electromagnetic clutch when the energization of the electromagnetic clutch is stopped. Then, energization of the solenoid valve is controlled so as to shut off the refrigerant passage.

これにより、電磁クラッチの通電停止に伴って冷媒圧縮
機が停止しても、減圧装置の上流に設けられた電磁弁が
冷媒通路を遮断するため、減圧装置の下流に位置する室
外熱交換器に冷媒が流れ込むことはない、この結果、冷
媒圧縮機の停止後における低圧側圧力の急激な上昇を防
止することができ、冷媒圧縮機の吸入弁の耐久性低下を
抑えることができる。
As a result, even if the refrigerant compressor stops due to de-energization of the electromagnetic clutch, the solenoid valve installed upstream of the pressure reducing device blocks the refrigerant passage, so the outdoor heat exchanger located downstream of the pressure reducing device The refrigerant does not flow in. As a result, it is possible to prevent a sudden increase in the pressure on the low pressure side after the refrigerant compressor is stopped, and it is possible to suppress a decrease in the durability of the suction valve of the refrigerant compressor.

[実施例コ 次に、本発明の車両用空気調和装置を図面に示す一実施
例に基づき説明する。
[Example 2] Next, a vehicle air conditioner according to the present invention will be described based on an example shown in the drawings.

第1図は車両用空気調和装置の冷凍サイクルである。FIG. 1 shows a refrigeration cycle of a vehicle air conditioner.

本実施例の空気調和装置は、例えば、クレーン等の土木
建説機械を搭載した車両に適用される。
The air conditioner of this embodiment is applied, for example, to a vehicle equipped with a civil engineering machine such as a crane.

空気調和装置の冷凍サイクル1は、電磁クラッチ2を介
して車両の走行用エンジン(図示しない)により駆動さ
れる冷媒圧縮機3を備える。
A refrigeration cycle 1 of an air conditioner includes a refrigerant compressor 3 driven by a vehicle engine (not shown) via an electromagnetic clutch 2 .

冷媒圧縮機3の下流には、冷房運転時に凝縮器用ファン
4の送風を受けて、冷媒圧縮機3より吐出された高温、
高圧の冷媒を凝縮液化させる冷媒凝縮器5が配設されて
いる。
On the downstream side of the refrigerant compressor 3, there is a high temperature gas discharged from the refrigerant compressor 3 after being blown by the condenser fan 4 during cooling operation.
A refrigerant condenser 5 is provided to condense and liquefy high-pressure refrigerant.

凝縮器用ファン4は、冷房運転時と、暖房運転時に後述
する室内熱交換器6の圧力が所定値以上に上昇した際に
駆動される。
The condenser fan 4 is driven when the pressure of an indoor heat exchanger 6 (described later) rises to a predetermined value or more during a cooling operation and a heating operation.

冷媒凝縮器5の下流には、冷房用減圧装置7と、この冷
房用減圧装置7をバイパスするバイパス路8を開開する
ための電磁弁9とが配設されている。
A cooling pressure reducing device 7 and a solenoid valve 9 for opening and opening a bypass passage 8 that bypasses the cooling pressure reducing device 7 are disposed downstream of the refrigerant condenser 5.

冷房用減圧装置7および電磁弁9の十流には、冷房運転
時に、冷房用減圧装置7で減圧彫版された冷媒と周囲の
空気とを熱交換させるとともに、暖房運転時に、電磁弁
9を通過して供給された高温、高圧のカス状冷媒と周囲
の空気とを熱交換させる室内熱交換器6が配設されてい
る。冷房運転時および暖房運転時に室内熱交換器6で冷
媒と熱交換された空気は、室内用ファン10の作動によ
り、冷風および温風として車室内へ送風される。
The cooling pressure reducing device 7 and the electromagnetic valve 9 are used to exchange heat between the refrigerant depressurized by the cooling pressure reducing device 7 and the surrounding air during cooling operation, and to allow the electromagnetic valve 9 to exchange heat with the surrounding air during heating operation. An indoor heat exchanger 6 is provided for exchanging heat between the high-temperature, high-pressure gaseous refrigerant passed therethrough and the surrounding air. During the cooling operation and the heating operation, the air that has undergone heat exchange with the refrigerant in the indoor heat exchanger 6 is blown into the vehicle interior as cold air and warm air by the operation of the indoor fan 10.

室内熱交換器6の下流には、冷房運転時に冷媒が通過す
る冷房用通路11と、暖房運転時に冷媒が通過する暖房
用通路(本発明の冷媒通路)12とが並列に設けられて
いる。冷房用通路11および暖房用通路12には、それ
ぞれ冷房用通路11および暖房用通路12を開閉するた
めの電磁弁13.14が配設されている。
A cooling passage 11 through which a refrigerant passes during a cooling operation and a heating passage (refrigerant passage according to the present invention) through which a refrigerant passes during a heating operation are provided downstream of the indoor heat exchanger 6 in parallel. Electromagnetic valves 13 and 14 are provided in the cooling passage 11 and the heating passage 12, respectively, for opening and closing the cooling passage 11 and the heating passage 12.

また、暖房用通路12には、電磁弁14の下流に暖房用
減圧装置15が配設され、さらに暖房用減圧装置15の
下流には、暖房用減圧装置15で減圧彫版された冷媒と
、車両に搭載された油圧機器(図示しない)の作動油と
を熱交換させる室外熱交換器16が配設されている。
Further, in the heating passage 12, a heating pressure reducing device 15 is disposed downstream of the solenoid valve 14, and further downstream of the heating pressure reducing device 15, a refrigerant that has been depressurized by the heating pressure reducing device 15, An outdoor heat exchanger 16 is provided to exchange heat with hydraulic oil of hydraulic equipment (not shown) mounted on the vehicle.

なお、室外熱交換器16は、油流路17を介して、油圧
機器の作動油を蓄える油タンク(図示しない)に接続さ
れ、油流路17に設けられた油温昇温装置(図示しない
)によって昇温された作動油が供給されている。
The outdoor heat exchanger 16 is connected via an oil passage 17 to an oil tank (not shown) that stores hydraulic oil for hydraulic equipment, and is connected to an oil temperature raising device (not shown) provided in the oil passage 17. ) is supplied with heated hydraulic oil.

冷房用通路11と暖房用通路12どの合流点と冷媒圧縮
機3との間には、液冷媒を蓄えて、冷媒圧縮機3にガス
冷媒を吸引させるための受液器18が配設されている。
A liquid receiver 18 for storing liquid refrigerant and causing the refrigerant compressor 3 to suck gas refrigerant is disposed between the confluence of the cooling passage 11 and the heating passage 12 and the refrigerant compressor 3. There is.

この冷凍サイクル1には、冷媒凝縮器5の下流、および
バイパス路8に配設された電磁弁9の1・流に、それぞ
れ圧力スイッチ19.20が設けられている。
This refrigeration cycle 1 is provided with pressure switches 19 and 20 downstream of the refrigerant condenser 5 and downstream of the solenoid valve 9 disposed in the bypass path 8, respectively.

圧力スイッチ19は、冷房運転時に、サイクル内の高圧
圧力すなわち冷媒の凝縮圧力が設定値以上に上昇した際
にオフすることで電磁クラッチ2への通電を遮断する。
During cooling operation, the pressure switch 19 is turned off to cut off power to the electromagnetic clutch 2 when the high pressure in the cycle, that is, the condensation pressure of the refrigerant rises above a set value.

圧力スイッチ20は、暖房運転時に室内熱交換器6の圧
力が所定値以上に」、昇した際にオンすることで、制御
回路21を介して凝縮器用ファン41\の通電を行う。
The pressure switch 20 is turned on when the pressure of the indoor heat exchanger 6 rises to a predetermined value or more during heating operation, thereby energizing the condenser fan 41 via the control circuit 21.

また、室内熱交換器6の送風経路には、室内熱交換器6
の吹出空気温度を検知する冷房用サーミスタ22、およ
び室内熱交換器6の吸込空気温度を検知する暖房用サー
ミスタ23が配設されている。
In addition, the indoor heat exchanger 6 is connected to the ventilation path of the indoor heat exchanger 6.
A cooling thermistor 22 that detects the temperature of the air blown out of the room, and a heating thermistor 23 that detects the temperature of the air sucked into the indoor heat exchanger 6 are provided.

上記した電磁クラッチ2、凝縮器用ファン4、室内用フ
ァン10、電磁弁9、電磁弁13、および電磁弁14は
、それぞれ制御回路21を介して通電制御される。なお
、電磁弁9、電磁弁13、および電磁弁14は、通電さ
れることで開弁し、非通電となることで閉弁する。
The electromagnetic clutch 2, condenser fan 4, indoor fan 10, electromagnetic valve 9, electromagnetic valve 13, and electromagnetic valve 14 described above are each controlled to be energized via a control circuit 21. The solenoid valves 9, 13, and 14 open when energized, and close when they are de-energized.

第2図に本発明に係る電気回路図を示す。FIG. 2 shows an electrical circuit diagram according to the present invention.

電磁クラッチ2は、圧力スイッチ19がオン状態の時に
、制御回路21に入力される運転モードスイッチ24、
冷房用サーミスタ22、および暖房用サーミスタ23の
各信号に基づき、リレー25を介して通電制御される。
The electromagnetic clutch 2 has an operation mode switch 24 that is input to the control circuit 21 when the pressure switch 19 is in the on state.
Based on the signals from the cooling thermistor 22 and the heating thermistor 23, energization is controlled via the relay 25.

また、電磁クラッチ2は、暖房運転時に、暖房用サーミ
スタ23の検知する吸込空気温度が設定温度以下の時に
通電され、設定温度を越えると通電が停止される。
Further, during heating operation, the electromagnetic clutch 2 is energized when the intake air temperature detected by the heating thermistor 23 is below the set temperature, and is de-energized when the temperature exceeds the set temperature.

暖房用通路12を開閉する電磁弁14は、運転モードス
イッチ24を暖房モードに設定した場合に、リレー25
の接点がオン状態の場合のみ、リレー26を介して通電
される。従って、暖房モードが選択されている場合でも
、暖房用サーミスタ23の検知する吸込空気温度が設定
温度を越えるか、あるいは圧力スイッチ19がオフする
ことにより、電磁クラッチ2への通電が停止した場合に
は、電磁弁14への通電も停止される。
The solenoid valve 14 that opens and closes the heating passage 12 is activated by the relay 25 when the operation mode switch 24 is set to the heating mode.
Electricity is applied via the relay 26 only when the contact is in the on state. Therefore, even if the heating mode is selected, if the intake air temperature detected by the heating thermistor 23 exceeds the set temperature or the pressure switch 19 is turned off, and the energization to the electromagnetic clutch 2 is stopped. In this case, the energization of the solenoid valve 14 is also stopped.

なお、電磁弁9は、暖房モードが選択された場合のみ通
電されて開弁し、電磁弁13は、冷房モードが選択され
た場合のみ通電されて開弁する。
The solenoid valve 9 is energized and opened only when the heating mode is selected, and the solenoid valve 13 is energized and opened only when the cooling mode is selected.

ここで、電磁クラッチ2および電磁弁14の通電制御を
行う制御回路21の作動を第3図に示すフローチャート
に基づき説明する。
Here, the operation of the control circuit 21 that controls the energization of the electromagnetic clutch 2 and the electromagnetic valve 14 will be explained based on the flowchart shown in FIG.

まず、ステップS1で、運転モードスイッチ24が暖房
モードか否かを判断する。
First, in step S1, it is determined whether the operation mode switch 24 is in the heating mode.

ステップS1の判断結果がNOの場合は、冷房モードあ
るいはOFFモードである。冷房モードの場合は、冷房
運転時のプログラムを実行する。OFFモードの場合は
、電磁クラッチ2および電磁弁14への通電は行われな
い。
If the determination result in step S1 is NO, the mode is cooling mode or OFF mode. In the case of cooling mode, the program for cooling operation is executed. In the OFF mode, the electromagnetic clutch 2 and the electromagnetic valve 14 are not energized.

ステップS1の判断結果がY[Sの場合は、ステップS
2において、リレー25およびリレー26を介して、電
磁クラッチ2および電磁弁14への通電を行い、ステッ
プS3へ進む。
If the determination result in step S1 is Y[S, step S
In step S2, the electromagnetic clutch 2 and the electromagnetic valve 14 are energized via the relay 25 and the relay 26, and the process proceeds to step S3.

ステップS3では、暖房用サーミスタ23の検知温度が
設定温度以下か否かを判断する。
In step S3, it is determined whether the temperature detected by the heating thermistor 23 is lower than or equal to the set temperature.

ステップS3の判断結果がNOの場合は、ステップS4
で、電磁クラッチ2および電磁弁14への通電を停止し
、以後、ステップS3に戻る。
If the determination result in step S3 is NO, step S4
Then, the energization of the electromagnetic clutch 2 and the electromagnetic valve 14 is stopped, and thereafter, the process returns to step S3.

ステップS3の判断結果がYESの場合は、ステップS
1に戻って上記のプログラムを繰り返す。
If the judgment result in step S3 is YES, step S
Return to step 1 and repeat the above program.

次に本実施例の作動を説明する。Next, the operation of this embodiment will be explained.

ア〉冷房運転モードを選択した場合。A> When cooling operation mode is selected.

制御回路21を介して電磁弁13が通電されるとともに
、電磁弁9と電磁弁14が非通電となる。その結果、冷
房用通路11が開かれるとともに、バイパス路8と暖房
用通路12とが、電磁弁9と電磁弁14とによって遮断
される。
While the solenoid valve 13 is energized via the control circuit 21, the solenoid valve 9 and the solenoid valve 14 are de-energized. As a result, the cooling passage 11 is opened, and the bypass passage 8 and the heating passage 12 are blocked by the solenoid valves 9 and 14.

冷媒圧縮機3より吐出された高温、高圧のガス冷媒は、
冷媒凝縮器5で凝縮器用ファン4の送風を受けて凝縮液
化し、冷房用減圧装置7で減圧彫版されて室内熱交換器
6に供給される。
The high temperature and high pressure gas refrigerant discharged from the refrigerant compressor 3 is
The refrigerant is condensed and liquefied in the refrigerant condenser 5 by the air blown by the condenser fan 4, subjected to reduced-pressure engraving in the air-conditioning decompression device 7, and then supplied to the indoor heat exchanger 6.

室内熱交換器6で室内用ファン10の送風を受けて蒸発
した冷媒は、冷房用通路11を通って受液器18に流入
し、ガス冷媒が冷媒圧縮機3に吸引される。
The refrigerant evaporated by the indoor fan 10 in the indoor heat exchanger 6 flows into the liquid receiver 18 through the cooling passage 11, and the gas refrigerant is sucked into the refrigerant compressor 3.

イ)暖房運転モードを選択した場合。b) When heating operation mode is selected.

制御回路21を介して電磁弁9と電磁弁14とが通電さ
れるとともに、電磁弁13が非通電となる。その結果、
バイパス路8と暖房用通路12とが開かれ4とともに、
冷房用通路11が電磁弁13によって遮断される。
The solenoid valve 9 and the solenoid valve 14 are energized via the control circuit 21, and the solenoid valve 13 is de-energized. the result,
The bypass passage 8 and the heating passage 12 are opened together with 4,
The cooling passage 11 is shut off by the solenoid valve 13.

暖房運転時には、圧力スイッチ20がオフ状態にあるこ
とで、凝縮器用ファン4が非通電となる。
During heating operation, the pressure switch 20 is in the OFF state, so that the condenser fan 4 is de-energized.

従って、冷媒圧縮機3より吐出された高温、高圧のガス
冷媒は、冷媒凝縮器5を通過した後、バイパス路8を通
って室内熱交換器6に供給される。
Therefore, the high temperature, high pressure gas refrigerant discharged from the refrigerant compressor 3 passes through the refrigerant condenser 5 and then is supplied to the indoor heat exchanger 6 through the bypass path 8 .

室内熱交換器6で室内用ファン10の送風を受けて凝縮
液化した冷媒は、暖房用減圧装置15で減圧彫版されて
室外熱交換器16に供給される。そして、室外熱交換器
16で、昇温された作動油と熱交換されて蒸発し、受液
器18を経て冷媒圧縮機3に吸引される。
The refrigerant condensed and liquefied in the indoor heat exchanger 6 by the air blown by the indoor fan 10 is subjected to reduced pressure engraving in the heating pressure reducing device 15 and then supplied to the outdoor heat exchanger 16 . Then, in the outdoor heat exchanger 16 , it exchanges heat with the heated hydraulic oil, evaporates, and is sucked into the refrigerant compressor 3 via the liquid receiver 18 .

この暖房運転時において、運転モードスイッチ24をO
FFモードに設定した場合、暖房用サーミスタ23の検
知温度が設定温度以上の場合、あるいは圧力スイッチ1
9がオンした場合には、電磁クラッチ2への通電が停止
するとともに、電磁弁14への通電も停止する。
During this heating operation, the operation mode switch 24 is turned to
When set to FF mode, if the temperature detected by the heating thermistor 23 is higher than the set temperature, or if the pressure switch 1
When 9 is turned on, the energization to the electromagnetic clutch 2 is stopped, and the energization to the electromagnetic valve 14 is also stopped.

その結果、冷媒圧縮機3の作動が停止しても、電磁弁1
4が閉弁するため、室外熱交換器16への冷媒の流入を
防止して、室外熱交換器16での冷媒の急激な彫版を防
ぐことができる。従って、第4図(冷媒圧縮813停止
後の作動油温度と低圧圧力最天領との関係)に示すよう
に、従来と比較して低圧側圧力の上昇が緩和されるため
、冷媒圧縮機3の吸入弁の耐久性低下を抑えることがで
きる。また、冷媒圧縮機3の停止直後に冷媒の補充作業
を行う際にも、冷媒補充用の缶に悪影響を及ぼすことは
ない。
As a result, even if the refrigerant compressor 3 stops operating, the solenoid valve 1
4 is closed, it is possible to prevent the refrigerant from flowing into the outdoor heat exchanger 16 and prevent the refrigerant from suddenly engraving in the outdoor heat exchanger 16. Therefore, as shown in FIG. 4 (relationship between hydraulic oil temperature and low pressure maximum after refrigerant compression 813 is stopped), the increase in low pressure side pressure is alleviated compared to the conventional case, so that the refrigerant compressor 3 Deterioration in the durability of the suction valve can be suppressed. Furthermore, even when the refrigerant replenishment work is performed immediately after the refrigerant compressor 3 is stopped, there is no adverse effect on the refrigerant replenishment can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は車両用空気調和装置の冷凍サイクル、第2図は
本実施例の電気回路図、第3図は制御回路の作動を示す
フローチャート、第4図は油温度に対する低圧側圧力の
最大値を示すグラフである。 図中 2・・・電磁クラッチ 3・・・冷媒圧縮機6・・・室
内熱交換器 14・・・電磁弁16・・・室外熱交換器
 15・・・暖房用減圧装置21・・・制御回路
Figure 1 shows the refrigeration cycle of the vehicle air conditioner, Figure 2 is the electrical circuit diagram of this embodiment, Figure 3 is a flowchart showing the operation of the control circuit, and Figure 4 is the maximum value of low pressure side pressure with respect to oil temperature. This is a graph showing. In the figure 2... Electromagnetic clutch 3... Refrigerant compressor 6... Indoor heat exchanger 14... Solenoid valve 16... Outdoor heat exchanger 15... Heating pressure reducing device 21... Control circuit

Claims (1)

【特許請求の範囲】 1)(a)吸入した冷媒を圧縮して吐出する冷媒圧縮機
と、 (b)この冷媒圧縮機に備えられて、通電時にエンジン
の回転を前記冷媒圧縮機に伝達する電磁クラッチと、 (c)前記冷媒圧縮機の下流に接続されて、供給された
冷媒と周囲の空気とを熱交換させる室内熱交換器と、 (d)前記冷媒圧縮機の上流に接続されて、供給された
冷媒と油圧機器の作動油とを熱交換させる室外熱交換器
と、 (e)前記室内熱交換器と前記室外熱交換器とを接続す
る冷媒通路で、前記室外熱交換器の上流に設けられた減
圧装置と、 (f)この減圧装置の上流に設けられて、前記冷媒通路
を開閉する電磁弁と、 (g)前記電磁クラッチおよび前記電磁弁の通電制御を
行う制御回路と を備え、この制御回路は、前記電磁クラッチへの通電停
止に伴なって、前記冷媒通路を遮断するように前記電磁
弁の通電制御を行うことを特徴とする車両用空気調和装
置。
[Scope of Claims] 1) (a) A refrigerant compressor that compresses and discharges sucked refrigerant; (b) This refrigerant compressor is equipped with a refrigerant compressor that transmits engine rotation to the refrigerant compressor when energized. (c) an indoor heat exchanger connected downstream of the refrigerant compressor to exchange heat between the supplied refrigerant and surrounding air; (d) connected upstream of the refrigerant compressor; , an outdoor heat exchanger that exchanges heat between the supplied refrigerant and the hydraulic oil of the hydraulic equipment; (e) a refrigerant passage connecting the indoor heat exchanger and the outdoor heat exchanger, a pressure reducing device provided upstream; (f) a solenoid valve provided upstream of the pressure reducing device for opening and closing the refrigerant passage; and (g) a control circuit controlling energization of the electromagnetic clutch and the electromagnetic valve. An air conditioner for a vehicle, wherein the control circuit controls the energization of the solenoid valve so as to shut off the refrigerant passage when the energization of the electromagnetic clutch is stopped.
JP2072950A 1990-03-22 1990-03-22 Vehicle air conditioner Expired - Fee Related JP2792185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2072950A JP2792185B2 (en) 1990-03-22 1990-03-22 Vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2072950A JP2792185B2 (en) 1990-03-22 1990-03-22 Vehicle air conditioner

Publications (2)

Publication Number Publication Date
JPH03273925A true JPH03273925A (en) 1991-12-05
JP2792185B2 JP2792185B2 (en) 1998-08-27

Family

ID=13504171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2072950A Expired - Fee Related JP2792185B2 (en) 1990-03-22 1990-03-22 Vehicle air conditioner

Country Status (1)

Country Link
JP (1) JP2792185B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121716U (en) * 1979-02-22 1980-08-29
JPS5682408U (en) * 1979-11-30 1981-07-03
JPS60180623U (en) * 1984-05-11 1985-11-30 井関農機株式会社 Driver seat heating device
JPS6293663U (en) * 1985-12-02 1987-06-15
JPH0194116U (en) * 1987-12-16 1989-06-21

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121716U (en) * 1979-02-22 1980-08-29
JPS5682408U (en) * 1979-11-30 1981-07-03
JPS60180623U (en) * 1984-05-11 1985-11-30 井関農機株式会社 Driver seat heating device
JPS6293663U (en) * 1985-12-02 1987-06-15
JPH0194116U (en) * 1987-12-16 1989-06-21

Also Published As

Publication number Publication date
JP2792185B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
JP3237187B2 (en) Air conditioner
JP5481937B2 (en) Air conditioner
JPS6325471A (en) Air conditioner
JP3303443B2 (en) Air conditioner
JP4277354B2 (en) Air conditioner
JP2597634Y2 (en) Pressure equalizer in multi-room air-conditioning heat pump system
JPH0478613A (en) Heat pump type air conditioner
JPH03273925A (en) Air conditioning device for vehicle
JPH0359358A (en) Air conditioner
JP2003042585A (en) Air conditioner
JPH01155153A (en) Air conditioner
JP3242217B2 (en) Air conditioner
JPH02187567A (en) Freezing device
JPS6346350B2 (en)
JP2682729B2 (en) Refrigerant heating type air conditioner and starting method thereof
JP2000121104A (en) Air-conditioning device
JP2000220894A (en) Air conditioner and method for operating the same
JPS6017639Y2 (en) Heat pump air conditioner
JPH0311664Y2 (en)
JP2539680Y2 (en) Air conditioner
JPS6330929Y2 (en)
JP2024043670A (en) air conditioner
JP2000154950A (en) Engine-driven heat pump cycle
JP2001174089A (en) Multiple-chamber-type air-conditioner
JPH0699729A (en) Heat pump type air conditioner for vehicle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees