JPH02187567A - Freezing device - Google Patents

Freezing device

Info

Publication number
JPH02187567A
JPH02187567A JP683389A JP683389A JPH02187567A JP H02187567 A JPH02187567 A JP H02187567A JP 683389 A JP683389 A JP 683389A JP 683389 A JP683389 A JP 683389A JP H02187567 A JPH02187567 A JP H02187567A
Authority
JP
Japan
Prior art keywords
solenoid valve
pressure
refrigerant
refrigerant liquid
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP683389A
Other languages
Japanese (ja)
Inventor
Isao Sakagami
阪上 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP683389A priority Critical patent/JPH02187567A/en
Publication of JPH02187567A publication Critical patent/JPH02187567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To reduce the occurrence of liquid hammer phenomenon by providing a bypass piping bypassing a solenoid valve for a refrigerant liquid pipe and an opening and closing means to open and close the passage according to a difference in a pressure between the inlet and the outlet of a solenoid valve for refrigerant pipe and perform opening and closing according to the refrigerant liquid temperature of the inlet of a solenoid valve for a refrigerant liquid pipe. CONSTITUTION:Since, when the temperature of the interior of a chamber is reduced to a given value, for example, -30 deg.C, a contact 10a of a thermostat 10 is opened, a solenoid valve 3 for a refrigerant liquid pipe is de-energized and closed. Further, since an electromagnetically opening and closing passage 15 is also de-energized to open a contact 15a, energization of a thermo 14 is blocked to stop a compressor 1. Meanwhile, when, during closing of a solenoid valve 3 for a refrigerant pipe, a difference in a pressure between the inlet and the outlet of the solenoid valve 3 for a refrigerant pipe exceeds a given pressure, for example, 9.5kg/cm<2>, a differential pressure switch 13 is actuated to close a contact 13a. Thereby, a solenoid valve 12 for bypass is brought into on energized state to open the passage of a bypass piping 11. The inlet and the outlet of the solenoid valve 3 for a refrigerant pipe are interconnected through the bypass piping 11, resulting in the possibility to reduce a difference in a pressure between the inlet and the outlet thereof.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えば冷凍庫内等を冷却するための冷凍装置の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a refrigeration device for cooling the inside of a freezer, for example.

〔従来の技術〕[Conventional technology]

第5図は従来の冷凍装置の冷媒系統図である。 FIG. 5 is a refrigerant system diagram of a conventional refrigeration system.

同図において、1は圧縮機、2は凝縮器、3は冷媒液管
用電磁弁、4は膨張弁、5は蒸発器で、順次に接続され
ており、さらに蒸発器5で冷却された空気を庫内に送風
するための送風56を備えている。これらは第6図のよ
うに据付けられており、7は冷凍庫、8は凝縮器2から
冷媒液管用電磁弁3へ接続された高圧液管、8aは冷媒
液管用電磁弁3から膨張弁4へ接続された高圧液管であ
る。
In the figure, 1 is a compressor, 2 is a condenser, 3 is a solenoid valve for refrigerant liquid pipe, 4 is an expansion valve, and 5 is an evaporator, which are connected in sequence. It is provided with an air blower 56 for blowing air into the refrigerator. These are installed as shown in Fig. 6, 7 is a freezer, 8 is a high pressure liquid pipe connected from the condenser 2 to the refrigerant liquid pipe solenoid valve 3, and 8a is from the refrigerant liquid pipe solenoid valve 3 to the expansion valve 4. It is a high pressure liquid pipe connected.

9は膨張弁4から蒸発器5へ接続された低圧ガス配管、
10は冷凍庫7内の温度調節用のサーモスタットである
9 is a low pressure gas pipe connected from the expansion valve 4 to the evaporator 5;
10 is a thermostat for controlling the temperature inside the freezer 7.

次に動作について説明する。冷凍庫7内の庫内温度が所
定温度以上の時にはサーモスタフ)10のスイッチ作用
により圧縮機1が作動していると共に冷媒液管用電磁弁
3が開路状態になっている。
Next, the operation will be explained. When the temperature inside the freezer 7 is higher than a predetermined temperature, the compressor 1 is operated by the switch action of the thermostuff 10, and the solenoid valve 3 for the refrigerant liquid pipe is in an open state.

圧縮機1から吐出された高温高圧のガス冷媒は凝縮器2
内で凝縮され、高圧液化冷媒となる。その液化冷媒が膨
張弁4を通過することにより低圧化され、さらに蒸発器
5内で蒸発して冷凍庫7内の空気と熱交換され、圧縮機
1へ低圧ガス冷媒となって吸入される。この冷凍サイク
ルを繰返すことにより、冷凍庫7内の空気を冷却してい
る。そして、冷凍庫7の庫内温度が所定値以下になった
場合には、サーモスタットlOのスイッチ作用により圧
縮機lを停止させ且つ冷媒液管用電磁弁3を閉路させる
The high temperature and high pressure gas refrigerant discharged from the compressor 1 is sent to the condenser 2.
The refrigerant is condensed inside and becomes a high-pressure liquefied refrigerant. The liquefied refrigerant is lowered in pressure by passing through the expansion valve 4, is further evaporated in the evaporator 5, exchanges heat with the air in the freezer 7, and is sucked into the compressor 1 as a low-pressure gas refrigerant. By repeating this refrigeration cycle, the air inside the freezer 7 is cooled. When the internal temperature of the freezer 7 falls below a predetermined value, the compressor 1 is stopped by the switch action of the thermostat 10, and the refrigerant liquid pipe electromagnetic valve 3 is closed.

第7図は冷媒液管用電磁弁3の入口側液化冷媒温度を一
30℃で一定にした場合の冷媒液管用電磁弁3の入・出
口間の圧力差ΔPにより開路した時に発生ずる衝撃圧力
P。をグラフ化したものである。第8図は圧力差ΔPを
パラメータとして入口側液化冷媒温度TLに対する衝撃
圧力P。をグラフ化したものである。
Figure 7 shows the impact pressure P that occurs when the circuit opens due to the pressure difference ΔP between the inlet and outlet of the refrigerant liquid pipe solenoid valve 3 when the liquefied refrigerant temperature on the inlet side of the refrigerant liquid pipe solenoid valve 3 is kept constant at -30°C. . This is a graph. FIG. 8 shows the impact pressure P versus the inlet liquefied refrigerant temperature TL using the pressure difference ΔP as a parameter. This is a graph.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の冷凍装置は以上のように構成されているので、夏
場の外気温が高い条件では、閉している冷媒液管用電磁
弁3の入・出口間の圧力差が大きくなり、この圧力状態
で冷媒液管用電磁弁3を開くと高圧液管8内の液化冷媒
が高圧液管8aを通って膨張弁4へ急激に流れ込む為に
膨張弁4で液ハンマー現像を起し、過大な衝撃圧力を発
生し、膨張弁4を破壊したり、場合によっては液化冷媒
が膨張弁4を街灯した後に圧縮機1側に逆流して圧縮機
lの弁割れや焼付を引起す等の課題があった。
Conventional refrigeration equipment is configured as described above, so when the outside temperature is high in the summer, the pressure difference between the inlet and outlet of the closed solenoid valve 3 for the refrigerant liquid pipe increases, and in this pressure state, When the refrigerant liquid pipe solenoid valve 3 is opened, the liquefied refrigerant in the high-pressure liquid pipe 8 rapidly flows into the expansion valve 4 through the high-pressure liquid pipe 8a, causing liquid hammer development in the expansion valve 4, causing excessive impact pressure. In some cases, the liquefied refrigerant passes through the expansion valve 4 and then flows back to the compressor 1 side, causing valve cracking or seizure of the compressor 1.

第7図及び第8図を見ても理解されるように、例えば外
気温40℃、庫内温度−30℃、入口側液化冷媒温度−
30℃では圧力差ΔPが15 kg/ cdとなり、8
’r !圧力PMとしては、約75に1r/cdの圧力
が発生し、膨張弁4の最大耐圧45kg/cjをはるか
に越えてしまうために冷凍サイクルの正常な制御が出来
なくなる。
As can be understood from FIGS. 7 and 8, for example, the outside temperature is 40°C, the inside temperature is -30°C, and the liquefied refrigerant temperature on the inlet side is -
At 30℃, the pressure difference ΔP is 15 kg/cd, which is 8
'r! As for the pressure PM, a pressure of about 75 to 1 r/cd is generated, which far exceeds the maximum withstand pressure of 45 kg/cj of the expansion valve 4, making it impossible to control the refrigeration cycle normally.

本発明は上記のような課題を解決するためになされたも
ので、冷媒液管用電磁弁をバイパスするバイパス路の開
閉を制御することにより液ハンマー現像を小さ(するこ
とのできる冷凍装置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to obtain a refrigeration system that can reduce liquid hammer development by controlling the opening and closing of a bypass path that bypasses a solenoid valve for a refrigerant liquid pipe. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る冷凍装置は、該装置において冷媒液管用型
(■弁をバイパスするバイパス配管と、この通路を冷媒
液管用電磁弁の入・出口間の圧力差に応じ゛ζ開閉する
開閉手段を設けたものである。
The refrigeration system according to the present invention includes a refrigerant liquid pipe type (■ bypass pipe that bypasses the valve, and an opening/closing means that opens and closes this passage according to the pressure difference between the inlet and outlet of the refrigerant liquid pipe solenoid valve. It was established.

本発明の他の発明に係る冷凍装置は上記構成に加え°C
開閉手段が冷媒液管用電磁弁入口の冷媒液温に応じても
開閉するようにしたものである。
In addition to the above configuration, the refrigeration device according to another aspect of the present invention
The opening/closing means is configured to open and close depending on the temperature of the refrigerant liquid at the inlet of the solenoid valve for the refrigerant liquid pipe.

〔作 用〕[For production]

本発明における冷凍装置は圧力差が所定圧力以上になる
と開閉手段によりバイパス配管の通路を開いてその圧力
差を減小させるようにする。
In the refrigeration system of the present invention, when the pressure difference exceeds a predetermined pressure, the opening/closing means opens the passage of the bypass piping to reduce the pressure difference.

本発明の他の発明における冷凍装置は、圧力差が所定圧
力以上又は入口側冷媒液温が所定温度以下の時に開閉手
段によりバイパス配管の通路を開いて圧力差を減小させ
る。
In the refrigeration system according to another aspect of the present invention, when the pressure difference is above a predetermined pressure or when the inlet side refrigerant liquid temperature is below a predetermined temperature, the opening/closing means opens the passage of the bypass piping to reduce the pressure difference.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による冷媒系統図である。第
1図において、従来例と同一部分には第5図と同符号1
〜6.8〜10を付し、その説明を省略する。1)は冷
媒液管用電磁弁3をバイパスするように設けられたバイ
パス配管、12はバイパス配管1)の途中に設けられた
バイパス用電磁弁、13は冷媒液管用電磁弁3の入・出
口間の圧力差を検知して接点を開閉する差圧スイッチで
ある。
FIG. 1 is a refrigerant system diagram according to an embodiment of the present invention. In Figure 1, parts that are the same as those in the conventional example have the same reference numerals as in Figure 5.
-6.8 to 10 will be assigned, and the explanation thereof will be omitted. 1) is a bypass pipe provided to bypass the refrigerant liquid pipe solenoid valve 3, 12 is a bypass solenoid valve provided in the middle of the bypass pipe 1), and 13 is between the inlet and outlet of the refrigerant liquid pipe solenoid valve 3. This is a differential pressure switch that opens and closes the contacts by detecting the pressure difference between the two.

第2図は第1図に示した冷凍装置の電気回路図である。FIG. 2 is an electrical circuit diagram of the refrigeration system shown in FIG. 1.

第2図において、14は圧縮mlを駆動するためのモー
タ、15はモータ14と三相電源(図示せず)間に設け
られた接点15aを有する電磁開閉器、16は運転用ス
イッチ、10aはサーモスタット10の接点、13aは
差圧スイッチ13の接点である。上記電源の2相間には
接点13aとバイパス用電磁弁12の直列接続体、運転
用スイッチ16と接点10aと冷媒液管用it 13弁
3の直列接続体が各々接続されている。冷媒液管用電磁
弁3には電磁開閉器15が並列接続され、その並列接続
体と接点10aとの直列接続体に送風機6が並列接続さ
れている。
In FIG. 2, 14 is a motor for driving the compressed ml, 15 is an electromagnetic switch having a contact 15a provided between the motor 14 and a three-phase power source (not shown), 16 is a driving switch, and 10a is a A contact point 13a of the thermostat 10 is a contact point of the differential pressure switch 13. Connected between the two phases of the power supply are a series connection of a contact 13a and a bypass electromagnetic valve 12, and a series connection of an operation switch 16, a contact 10a, and an IT 13 valve 3 for refrigerant liquid pipes. An electromagnetic switch 15 is connected in parallel to the refrigerant liquid pipe electromagnetic valve 3, and a blower 6 is connected in parallel to the series connection between the parallel connection and the contact 10a.

次に第1図及び第2図を参照して動作について説明する
。運転者が運転を開始するために運転用スイッチ16を
閉じると送風機6、冷媒液管用電磁弁3、電磁開閉器1
5が通電開始される。これにより送風機6が運転状態と
なり、冷媒液管用電磁弁3が開路し、電磁開閉器15の
接点15aが閉じられる。接点15aが閉じられるとモ
ータ14が通電され、圧縮機1を駆動して冷凍運転を行
なう。この冷凍運転により庫内温度が低下する。庫内温
度が所定温度(例えば−30℃)になればサーモスタッ
トIOの接点10aが開成するために冷媒液管用電磁弁
3は消勢されて閉路する。又、電磁開閉器15も消勢さ
れて接点15aが開くためにモータ14の通電が阻止さ
れて圧縮機lを停止させる。その後、庫内温度が上昇し
て所定温度(例えば−27℃)になればサーモスタット
1゜の接点10aが閉成して上記の冷凍運転状態になる
Next, the operation will be explained with reference to FIGS. 1 and 2. When the driver closes the operation switch 16 to start operation, the blower 6, the refrigerant liquid pipe solenoid valve 3, and the solenoid switch 1
5 starts to be energized. As a result, the blower 6 becomes operational, the refrigerant liquid pipe electromagnetic valve 3 opens, and the contact 15a of the electromagnetic switch 15 closes. When the contact 15a is closed, the motor 14 is energized and the compressor 1 is driven to perform refrigeration operation. This freezing operation lowers the temperature inside the refrigerator. When the temperature inside the refrigerator reaches a predetermined temperature (for example, -30° C.), the contact 10a of the thermostat IO opens, and the solenoid valve 3 for the refrigerant liquid pipe is deenergized and closed. Further, the electromagnetic switch 15 is also deenergized and the contact 15a is opened, thereby blocking the energization of the motor 14 and stopping the compressor l. Thereafter, when the temperature inside the refrigerator rises to a predetermined temperature (for example, -27° C.), the contact 10a of the thermostat 1° is closed, and the above-mentioned refrigeration operation state is entered.

一方、冷媒液管用電磁弁3が閉じている時に冷媒液管用
電磁弁3の入・出口間の圧力差が所定圧力(例えば9.
5kir/cd)以上であれば差圧スイッチ13が作動
してその接点13aを閉じる。このためにバイパス用電
磁弁12が通電状態となってバイパス配管1)の通路を
開路する。よって、冷媒液管用電磁弁3の入・出口間が
バイパス配管1)を介して通じるためにその人・出口間
の圧力差を小さくできる。そして、冷媒液管用電磁弁3
の入・出口間の圧力差が所定圧力(例えば4kr/aJ
)以下になれば差圧スイッチ13の接点13aが開成さ
れるためにバイパス用電磁弁12は消勢すれてバイパス
配管1)の通路を閉じる。以上のように冷媒液管用電磁
弁3を閉じている時にはその人・出口間の圧力差が最大
で9.5 kg / cJと小さいために冷媒液管用電
磁弁3を開いた時に発生するfJi撃圧力も第7図より
最大で45kir/cliとなるために膨張弁4の耐圧
強度範囲内となる。以上のようにして上記動作を繰返す
ことにより庫内を所定l温度に制御する。
On the other hand, when the refrigerant liquid pipe solenoid valve 3 is closed, the pressure difference between the inlet and outlet of the refrigerant liquid pipe solenoid valve 3 is a predetermined pressure (for example, 9.
5 kir/cd) or more, the differential pressure switch 13 operates and closes its contact 13a. For this purpose, the bypass solenoid valve 12 is energized to open the passage of the bypass pipe 1). Therefore, the inlet and outlet of the refrigerant liquid pipe electromagnetic valve 3 are communicated via the bypass pipe 1), so that the pressure difference between the person and the outlet can be reduced. Then, the solenoid valve 3 for the refrigerant liquid pipe
The pressure difference between the inlet and outlet of the
), the contact 13a of the differential pressure switch 13 is opened, so the bypass solenoid valve 12 is deenergized and the passage of the bypass pipe 1) is closed. As mentioned above, when the refrigerant liquid pipe solenoid valve 3 is closed, the pressure difference between the person and the outlet is as small as 9.5 kg/cJ at maximum, so the fJi shock that occurs when the refrigerant liquid pipe solenoid valve 3 is opened is As shown in FIG. 7, the maximum pressure is 45 kir/cli, which is within the pressure resistance range of the expansion valve 4. By repeating the above operations as described above, the temperature inside the refrigerator is controlled to a predetermined temperature.

第3図及び第4図は本発明の第2実施例を示し、第1実
施例と同じ部分には同符号1〜6.8〜16を付しであ
る。17は例えば第6図のように取付けられる冷媒液温
用サーモスタンドで、その接点17aが差圧スイッチ1
3の接点13aに並列接続されている。その他の構成は
第1図及び第2図の第1実施例と同しなのでその説明を
省略する。
3 and 4 show a second embodiment of the present invention, in which the same parts as in the first embodiment are given the same reference numerals 1 to 6.8 to 16. Reference numeral 17 denotes a thermostand for refrigerant liquid temperature that is installed as shown in FIG. 6, and its contact 17a is connected to the differential pressure switch 1
It is connected in parallel to the contact point 13a of No. 3. The rest of the configuration is the same as that of the first embodiment shown in FIGS. 1 and 2, so a description thereof will be omitted.

冷媒液管用電磁弁3の入・出口間の圧力差が所定圧力(
例えば16kg/cj)以上の時、又は冷媒液管用電磁
弁3の入口側冷媒液温が所定温度(例えば12℃)以下
の時には、差圧スイッチ13の接点13a又は冷媒液温
用サーモスタット17の接点17aが閉じる。この接点
の閉動作によりバイパス用電磁弁12が開き、バイパス
配管1)の通路を開く。これにより冷媒液管用電磁弁3
の入・出口間の圧力差を小さくすることができる。又、
圧力差が所定圧力(例えば4kr/aJ)以下で入口側
冷媒液温が所定温度(例えば20℃)以上の時には両接
点13a、17aが開き、バイパス用電磁弁12を消勢
する。これによりバイパス配管1)の通路が遮断される
。第8図に示すように、冷媒液管用電磁弁3の入口側液
化冷媒温度によっても開弁した時の衝撃圧力が変化する
ために冷媒?&、温用サーモスタンド17によりその入
口側液化冷媒温度に応してバイパス配管1)の通路を開
閉し一ζ開弁時の衝撃圧力を小さくするようにした0本
実施例の場合にも発生する街?圧力は最大で45kg 
/−におさえられるので膨張弁4の耐圧強度範囲内とな
る。
The pressure difference between the inlet and outlet of the solenoid valve 3 for refrigerant liquid pipe is a predetermined pressure (
16 kg/cj) or more, or when the refrigerant liquid temperature on the inlet side of the refrigerant liquid pipe solenoid valve 3 is below a predetermined temperature (for example, 12°C), the contact 13a of the differential pressure switch 13 or the contact of the refrigerant liquid temperature thermostat 17 17a closes. The closing action of this contact opens the bypass solenoid valve 12, opening the passage of the bypass piping 1). As a result, the refrigerant liquid pipe solenoid valve 3
It is possible to reduce the pressure difference between the inlet and outlet of the or,
When the pressure difference is below a predetermined pressure (for example, 4 kr/aJ) and the temperature of the inlet refrigerant is above a predetermined temperature (for example, 20° C.), both contacts 13a and 17a open to deenergize the bypass solenoid valve 12. This blocks the passage of the bypass pipe 1). As shown in FIG. 8, the impact pressure when the valve opens changes depending on the temperature of the liquefied refrigerant at the inlet of the solenoid valve 3 for refrigerant liquid pipes. &, This also occurs in the case of this embodiment, in which the passage of the bypass pipe 1) is opened and closed according to the temperature of the liquefied refrigerant on the inlet side using the warming thermostand 17 to reduce the impact pressure when the ζ valve is opened. A city to do? Maximum pressure is 45kg
/-, so it is within the pressure strength range of the expansion valve 4.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば冷媒液管用電磁弁の人・
出口間の圧力差が所定圧力以−Fになるとその電磁弁を
バイパスするバイパス通路を開くようにしたので、冷媒
液管用電磁弁の入・出口間の圧力を減小させ、その間弁
時に液ハンマー衝撃圧力を膨張弁の耐圧以下におさえる
ために膨張弁が破壊されることがなく、又、液バンク運
転による圧縮機の弁割れや焼付は等を起さず、寿命の長
いものが得られる効果がある。
As described above, according to the present invention, the solenoid valve for refrigerant liquid pipe
When the pressure difference between the outlets reaches a predetermined pressure or higher, a bypass passage that bypasses the solenoid valve is opened, so the pressure between the inlet and outlet of the solenoid valve for the refrigerant liquid pipe is reduced, and during the valve operation, the liquid hammer Since the impact pressure is kept below the withstand pressure of the expansion valve, the expansion valve will not be destroyed, and the compressor valve will not crack or seize due to liquid bank operation, resulting in a long service life. There is.

また、圧力差ばかりでなく入口側冷媒液温か所定温度以
下の時にもバイパス通路を開くようにしたので、圧力差
を減小でき、冷凍サイクルの破壊をより確実に防止でき
、長寿命のものが得られる効果がある。
In addition, the bypass passage is opened not only when there is a pressure difference but also when the temperature of the refrigerant on the inlet side is below a predetermined temperature, which reduces the pressure difference, more reliably prevents damage to the refrigeration cycle, and increases the lifespan of the refrigerant. There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る冷凍装置の冷媒系統図
、第2図は第1図の装置の回路図、第3図は本発明の他
の発明の一実施例に係る冷凍装置の冷媒系統図、第4図
は第3図の装置の回路図、第5図は従来の冷凍gA置の
冷媒系統図、第6図は従来装置を冷凍庫内に据付けた状
態を示す図、第7図は冷媒液管用電磁弁の入・出口間の
圧力差と衝撃圧力との関係を示す線図、第8図は圧力差
をパラメータとして人口側冷媒液温と衝撃圧力との関係
を示j−線図である。 図中、1・・・圧縮機、2・・・凝縮器、3・・・冷媒
液管用電磁弁、4・・・膨張弁、5・・・蒸発器、8,
8a・・・高圧液管、9・・・低圧ガス配管、10・・
・サーモスタット、1)・・・バイパス配管、12・・
・バイパス用電磁弁、13・・・差圧スイッチ、17・
・・冷媒液濫用サーモスタット・ なお、図中同一符号は同一、又は相当部を示す。 代理人    大  岩  増  雄 第 図 +1 第 図 5n
FIG. 1 is a refrigerant system diagram of a refrigeration system according to an embodiment of the present invention, FIG. 2 is a circuit diagram of the system of FIG. 1, and FIG. 3 is a refrigeration system according to another embodiment of the present invention. 4 is a circuit diagram of the device shown in FIG. 3, FIG. 5 is a refrigerant system diagram of a conventional refrigeration gA unit, FIG. 6 is a diagram showing the conventional device installed in a freezer, Figure 7 is a diagram showing the relationship between the pressure difference between the inlet and outlet of the solenoid valve for the refrigerant liquid pipe and the impact pressure, and Figure 8 shows the relationship between the artificial side refrigerant liquid temperature and the impact pressure using the pressure difference as a parameter. - It is a diagram. In the figure, 1... Compressor, 2... Condenser, 3... Solenoid valve for refrigerant liquid pipe, 4... Expansion valve, 5... Evaporator, 8,
8a...High pressure liquid pipe, 9...Low pressure gas pipe, 10...
・Thermostat, 1)...Bypass piping, 12...
・Bypass solenoid valve, 13... Differential pressure switch, 17.
・Refrigerant liquid abuse thermostat・ In addition, the same reference numerals in the drawings indicate the same or equivalent parts. Agent Masu Oiwa Diagram +1 Diagram 5n

Claims (2)

【特許請求の範囲】[Claims] (1) 圧縮機、凝縮器、冷媒液管用電磁弁、膨張弁及
び蒸発器が順次に接続されて冷凍サイクルを構成する冷
凍装置において、前記冷媒液管用電磁弁をバイパスする
バイパス配管と、前記冷媒液管用電磁弁の入・出口間の
圧力差に応じて前記バイパス配管の通路を開閉する開閉
手段を備えたことを特徴とする冷凍装置。
(1) In a refrigeration system in which a compressor, a condenser, a solenoid valve for a refrigerant liquid pipe, an expansion valve, and an evaporator are sequentially connected to constitute a refrigeration cycle, a bypass pipe that bypasses the solenoid valve for the refrigerant liquid pipe, and a refrigerant A refrigeration system comprising an opening/closing means for opening/closing a passage of the bypass piping according to a pressure difference between an inlet and an outlet of a liquid pipe electromagnetic valve.
(2) 前記開閉手段は前記冷媒液管用電磁弁の入口側
の冷媒液温に応じて前記バイパス配管の通路を開閉する
ようにしたことを特徴とする請求項1記載の冷凍装置。
(2) The refrigeration system according to claim 1, wherein the opening/closing means opens and closes the passage of the bypass piping depending on the refrigerant liquid temperature on the inlet side of the refrigerant liquid pipe electromagnetic valve.
JP683389A 1989-01-13 1989-01-13 Freezing device Pending JPH02187567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP683389A JPH02187567A (en) 1989-01-13 1989-01-13 Freezing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP683389A JPH02187567A (en) 1989-01-13 1989-01-13 Freezing device

Publications (1)

Publication Number Publication Date
JPH02187567A true JPH02187567A (en) 1990-07-23

Family

ID=11649233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP683389A Pending JPH02187567A (en) 1989-01-13 1989-01-13 Freezing device

Country Status (1)

Country Link
JP (1) JPH02187567A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053813A (en) * 2011-09-05 2013-03-21 Mitsubishi Electric Corp Cooling apparatus
WO2016174874A1 (en) * 2015-04-28 2016-11-03 ダイキン工業株式会社 Refrigeration apparatus
WO2018011841A1 (en) * 2016-07-11 2018-01-18 三菱電機株式会社 Refrigerating and air-conditioning apparatus
JP2018021723A (en) * 2016-08-04 2018-02-08 ダイキン工業株式会社 Refrigerating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053813A (en) * 2011-09-05 2013-03-21 Mitsubishi Electric Corp Cooling apparatus
WO2016174874A1 (en) * 2015-04-28 2016-11-03 ダイキン工業株式会社 Refrigeration apparatus
JP2016211839A (en) * 2015-04-28 2016-12-15 ダイキン工業株式会社 Refrigerating device
WO2018011841A1 (en) * 2016-07-11 2018-01-18 三菱電機株式会社 Refrigerating and air-conditioning apparatus
JP2018021723A (en) * 2016-08-04 2018-02-08 ダイキン工業株式会社 Refrigerating device
WO2018025614A1 (en) * 2016-08-04 2018-02-08 ダイキン工業株式会社 Refrigeration device

Similar Documents

Publication Publication Date Title
JP3109500B2 (en) Refrigeration equipment
EP1893928B1 (en) Method and control for preventing flooded starts in a heat pump
WO2007083794A1 (en) Air conditioner
JP3199054B2 (en) Refrigeration equipment
JP4320844B2 (en) Refrigeration equipment
JPH02187567A (en) Freezing device
JP4277354B2 (en) Air conditioner
JP3082560B2 (en) Dual cooling system
JP3348465B2 (en) Binary refrigeration equipment
JPH0519724Y2 (en)
JP2757689B2 (en) Refrigeration equipment
JPH03122460A (en) Operating controller for refrigerating machine
JP2882172B2 (en) Air conditioner
JPH0367964A (en) Air conditioner
US20220221208A1 (en) Heat source unit and refrigeration apparatus
JPS6346350B2 (en)
JPH05172408A (en) Refrigerator
JPH1038389A (en) Freezer
JP4159409B2 (en) Air conditioner
JPH0120709B2 (en)
JPH03273925A (en) Air conditioning device for vehicle
JPS5838948Y2 (en) Multi-room cooling system
JPH07305914A (en) Separate type heat pump and control method thereof
JPH01239351A (en) Air conditioner of air cooled heat pump type
JPH0567865B2 (en)