JPH03266435A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH03266435A
JPH03266435A JP6566890A JP6566890A JPH03266435A JP H03266435 A JPH03266435 A JP H03266435A JP 6566890 A JP6566890 A JP 6566890A JP 6566890 A JP6566890 A JP 6566890A JP H03266435 A JPH03266435 A JP H03266435A
Authority
JP
Japan
Prior art keywords
film
oxidation
element isolation
resistant
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6566890A
Other languages
Japanese (ja)
Inventor
Katsuya Sakai
勝也 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6566890A priority Critical patent/JPH03266435A/en
Publication of JPH03266435A publication Critical patent/JPH03266435A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to protect reliably the upper part of an element isolation film from a reduction in the film thickness of the isolation film due to a treatment or the like using a hydrofluoric acid etching liquid in the following process by a method wherein the element isolation film is provided with an insulative oxidation-resistant film deposited thereon by self-alignment. CONSTITUTION:A silicon nitride film 13 which is an oxidation-resistant film is formed on the surface of an element isolation film 12 formed on the surface of a P-type semiconductor substrate 11 by a well-known method, such as a LOCOS method or the like, by a self-alignment system. N<+> diffused regions 14 and 15 which are used as source and drain regions oppose to each other while holding a channel region under a gate electrode between them on the left side of the film 12. An N<+> diffused region 17 is formed on the right side of the film 12. Thereby, a reduction in the film thickness of the film 12 is decreased in the following process and the generation of a change in the characteristics of a device due to the reduction in the film thickness is prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は半導体装置およびその製造方法に係り、特に高
集積度を実現できる素子分離膜を備えた半導体装置およ
びその製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor device and a method for manufacturing the same, and in particular, a semiconductor device equipped with an element isolation film that can achieve a high degree of integration and a method for manufacturing the same. Regarding.

(従来の技術) 従来、半導体集積回路装置において、素子間を分離する
素子分離膜としては基板表面に耐酸化性の膜としての窒
化膜を形成し、素子分離膜形成領域のみを除去してそこ
に厚い酸化膜を形成する選択酸化法により形成されたも
のが広く用いられている。代表的なものはLOCO3法
であり、シリコン基板上に耐酸化性のシリコン窒化膜を
形成し、素子分離膜形成領域のみを除去して基板表面を
露出させた後に酸化雰囲気中で酸化を行うと、窒化膜の
ない部分のみに厚い酸化膜が形成されるものである。
(Prior art) Conventionally, in semiconductor integrated circuit devices, a nitride film as an oxidation-resistant film is formed on the surface of a substrate as an element isolation film for separating elements, and only the region where the element isolation film is formed is removed. Those formed by a selective oxidation method that forms a thick oxide film are widely used. A typical method is the LOCO3 method, in which an oxidation-resistant silicon nitride film is formed on a silicon substrate, only the element isolation film formation region is removed to expose the substrate surface, and then oxidation is performed in an oxidizing atmosphere. , a thick oxide film is formed only in areas where there is no nitride film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような従来の素子分離膜は2酸化シリコンのみによ
り形成されているため、その後の工程で膜厚が減少して
しまい、そのために素子間の耐圧か減少し電流かリーク
するという問題がある。
Since such a conventional element isolation film is formed only of silicon dioxide, the thickness of the film decreases in subsequent steps, resulting in a problem that the withstand voltage between elements decreases and current leaks.

第3図は従来の素子分離膜における膜厚減少の様子を示
す説明図である。
FIG. 3 is an explanatory diagram showing how the thickness of a conventional element isolation film decreases.

半導体基板の表面に、耐酸化性のシリコン窒化膜を用い
て選択酸化を行うLOCO5法などによって形成された
素子分離膜は、形成当初には参照番号2で示されたよう
な破線で表わされる形状となっている。ところが、この
素子分離膜の2酸化シリコンは後続の工程において特に
弗酸系の液相処理などにより侵され易く、実線で示され
た素子分離膜2′のように膜厚が減少してしまう。
An element isolation film formed on the surface of a semiconductor substrate by the LOCO5 method, which performs selective oxidation using an oxidation-resistant silicon nitride film, initially has a shape indicated by a broken line as shown by reference number 2. It becomes. However, the silicon dioxide of this element isolation film is easily attacked by hydrofluoric acid-based liquid phase treatment in subsequent steps, and the film thickness is reduced as shown by the solid line in the element isolation film 2'.

この例では素子分離膜2′をマスクとしてイオン注入お
よび拡散が行われてN+領域3が素子分離膜2の両側に
形成されているが、第4図(a)に示すように素子分離
膜2の上に配線4などが形成されることにより素子分離
膜の両側に形成されたN+領域3とにより寄生トランジ
スタが形成されることがあるが、上述したような膜厚減
少が発生して第4図(b)に示すような薄くなった素子
分離膜2′の状態となると、低電圧でこの寄生トランジ
スタがオンしてリーク電流が流れやすくなる。すなわち
、素子間の耐圧か低下して半導体装置としての特性を損
ねる結果となる。
In this example, ion implantation and diffusion are performed using the element isolation film 2' as a mask, and N+ regions 3 are formed on both sides of the element isolation film 2. As shown in FIG. A parasitic transistor may be formed with the N+ regions 3 formed on both sides of the element isolation film due to the formation of the wiring 4 on top of the element isolation film. When the element isolation film 2' becomes thin as shown in FIG. 2B, this parasitic transistor turns on at a low voltage and leakage current tends to flow. In other words, the withstand voltage between the elements decreases, resulting in a loss of characteristics as a semiconductor device.

第4図(a)に示した寄生トランジスタでリークか発生
するゲート電圧vthは一般にVth=A−(Qo/C
o)で表わされる(たたしA、QOは定数)。Coは寄
生容量であって、素子分離膜の厚さが厚いほど小さくな
る。逆に、素子分離膜の厚さが減少するとvthは低下
することになる。
The gate voltage vth that leaks or occurs in the parasitic transistor shown in FIG. 4(a) is generally Vth=A-(Qo/C
o) (Tachi A and QO are constants). Co is a parasitic capacitance, and the thicker the element isolation film is, the smaller it becomes. Conversely, when the thickness of the element isolation film decreases, vth decreases.

従来は8000Aの厚さで形成した酸化膜であっても、
第3図に示されたように5000八にまで減少すること
がある。したがって、第4図(a)のように素子分離膜
の膜圧減少がない場合のvthと第4図(b)のように
素子分離膜の膜圧減少があった場合のvthとを比較す
ると第4図(b)の方がvthが低くなってしまう。
Even if the oxide film was conventionally formed with a thickness of 8000A,
As shown in FIG. 3, it may be reduced to 50008. Therefore, if we compare vth when there is no decrease in the membrane pressure of the element isolation membrane as shown in Figure 4(a) and vth when there is a decrease in the membrane pressure of the element isolation membrane as shown in Figure 4(b), In FIG. 4(b), vth is lower.

このような問題を解決するために、素子分離膜の上に耐
酸化性の膜、例えばシリコン窒化膜を形成して膜厚の減
少を防止することが提案されている。
In order to solve this problem, it has been proposed to form an oxidation-resistant film, such as a silicon nitride film, on the element isolation film to prevent the film thickness from decreasing.

第5図(a)はこのような例を示すもので、選択酸化に
よって厚く形成された素子分離膜2の上に再度シリコン
窒化膜5か形成されている。このシリコン窒化膜5は素
子分離膜2の上以外では不要であるから、除去する必要
かあり、このためレジスト6を用いて不要部分の除去か
行われる。しかし、このレジストの位置合わせは精度が
問題であり、第5図(a)に示すようにレジストの合わ
せずれが生じた場合には第5図(b)に示すように一方
側ではシリコン窒化膜5の端部が素子分離膜の端部から
長さaたけ内側に位置し、反対側では外側に長さbたけ
はみ出す。このような場合においてはみ出しが起きた部
分かトランジスタのソース・ドレイン領域となる場合に
は、トランジスタの能動領域の幅が狭まるなどの現象が
起きて特性の変化を招いてしまうという問題がある。こ
のため、位置合わせ余裕が必要となるが、十分な位置合
わせ余裕を確保することは寸法の増大を招き、高集積化
の障害となる。
FIG. 5(a) shows such an example, in which a silicon nitride film 5 is again formed on the element isolation film 2 which has been thickly formed by selective oxidation. Since this silicon nitride film 5 is unnecessary except on the element isolation film 2, it is necessary to remove it. Therefore, a resist 6 is used to remove unnecessary parts. However, accuracy is a problem with this resist alignment, and if misalignment of the resist occurs as shown in FIG. 5(a), the silicon nitride layer on one side is The end of 5 is located inside by a length a from the end of the element isolation film, and protrudes outside by a length b on the opposite side. In such a case, if the protruding portion becomes the source/drain region of a transistor, there is a problem in that a phenomenon such as narrowing of the width of the active region of the transistor occurs, leading to a change in characteristics. For this reason, a positioning margin is required, but securing a sufficient positioning margin will lead to an increase in size, which will be an obstacle to high integration.

本発明はこのような問題を解決するためになされたもの
で、寸法の増大を招くことなく、しかも後続の工程で膜
厚の減少しない素子分離膜を備えた半導体装置およびそ
の製造方法を提供することを目的とする。
The present invention has been made to solve these problems, and provides a semiconductor device equipped with an element isolation film that does not increase in size and whose thickness does not decrease in subsequent steps, and a method for manufacturing the same. The purpose is to

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 発明にかかる半導体装置によれば、素子分離膜により分
離された複数の素子を形成してなる半導体装置において
、前記素子分離膜がその上に自己整合で堆積された絶縁
性の耐酸化性膜を備えたことを特徴としている。
(Means for Solving the Problems) According to a semiconductor device according to the invention, in a semiconductor device formed of a plurality of elements separated by an element isolation film, the element isolation film is deposited thereon in a self-aligned manner. It is characterized by having an insulating, oxidation-resistant film.

絶縁性の耐酸化性膜がシリコン窒化膜であるとよい。It is preferable that the insulating oxidation-resistant film is a silicon nitride film.

また、本発明にかかる半導体装置の製造方法によれば、
半導体基板上にバッファ膜を予定の素子分離膜が前記半
導体基板よりも突出する高さよりも厚く堆積させる工程
と、前記バッファ膜の上に第1の耐酸化性膜を堆積させ
る工程と、前記素子分離膜形成領域の前記バッファ膜お
よび第1の耐酸化性膜を除去して基板表面の露出する開
口を形成する工程と、酸化を行って素子分離膜となる厚
い酸化膜を前記開口部に形成させる工程と、全体に第2
の耐酸化性膜を堆積させ、さらに前記開口を埋める平坦
化材料を堆積させる工程と、前記酸化膜上のみに少なく
とも第2の耐酸化性膜を残存させるようにエッチバック
を行う工程と、残存した前記バッファ膜および前記平坦
化材料を除去する工程とを備えたことを特徴としている
Further, according to the method for manufacturing a semiconductor device according to the present invention,
a step of depositing a buffer film on a semiconductor substrate to a thickness greater than a height at which a planned device isolation film protrudes beyond the semiconductor substrate; a step of depositing a first oxidation-resistant film on the buffer film; and a step of depositing a first oxidation-resistant film on the buffer film; a step of removing the buffer film and the first oxidation-resistant film in the isolation film formation region to form an opening exposing the surface of the substrate, and performing oxidation to form a thick oxide film that will become an element isolation film in the opening. The second step is to
a step of depositing a planarizing material to fill the opening; a step of etching back so that at least a second oxidation-resistant film remains only on the oxide film; and removing the buffer film and the planarization material.

ここで、第1および第2の耐酸化性膜がシリコン窒化膜
であり、前記バッファ膜がポリシリコン膜であり、前記
平坦化材料がレジストであるとよい。
Here, it is preferable that the first and second oxidation-resistant films are silicon nitride films, the buffer film is a polysilicon film, and the planarization material is a resist.

(作 用) 素子分離膜上に自己整合で形成された耐酸化性膜は合わ
せずれがないため、合わせ余裕を必要とすることなく、
後工程における弗酸系のエツチング液を用いた処理等に
よる膜厚の減少から素子分離膜上を確実に保護する。
(Function) The oxidation-resistant film formed on the element isolation film in a self-aligned manner has no misalignment, so there is no need for alignment margin.
This reliably protects the element isolation membrane from reduction in film thickness due to treatment using a hydrofluoric acid etching solution in a post-process.

予定の素子分離膜が基板表面から突出する高さ以上の厚
さのバッファ膜をあらかしめ形成しておき、この上に耐
酸化性膜を堆積させた後、選択的に素子分離膜を形成し
、この素子分離膜上にさらに第2の耐酸化性膜を堆積さ
せた後平坦化処理を行いエッチバックによって第2の耐
酸化性膜を残すようにすることにより、この第2の耐酸
化性膜は素子分離膜に対して自己整合されるので、確実
に素子分離膜の保護膜を形成することができる。
A buffer film with a thickness greater than the height at which the intended device isolation film protrudes from the substrate surface is formed in advance, an oxidation-resistant film is deposited on top of this, and then the device isolation film is selectively formed. By depositing a second oxidation-resistant film on this element isolation film, performing a planarization process, and leaving the second oxidation-resistant film by etching back, this second oxidation-resistant film can be improved. Since the film is self-aligned to the element isolation film, it is possible to reliably form a protective film for the element isolation film.

(実施例) 以下、図面を参照しながら本発明の実施例につき詳細に
説明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明にかかる半導体装置における素子分離膜
部分を示す素子断面図である。P型半導体基板11の表
面にLOGO3法などの公知の方法で形成された素子分
離膜12の表面には耐酸化性の膜であるシリコン窒化膜
13が後述するように自己整合方式で形成されている。
FIG. 1 is an element cross-sectional view showing an element isolation film portion in a semiconductor device according to the present invention. On the surface of the element isolation film 12 formed on the surface of the P-type semiconductor substrate 11 by a known method such as the LOGO3 method, a silicon nitride film 13, which is an oxidation-resistant film, is formed in a self-aligned manner as described later. There is.

この図に示された実施例においては素子分離膜12の左
側にはソース・ドレイン領域をなすN+拡散領域14.
15がゲート電極下のチャネル領域を挟んで対向してい
る。また、素子分離膜12の右側にはN十拡散領域17
が形成されている。
In the embodiment shown in this figure, on the left side of the element isolation film 12 is an N+ diffusion region 14, which forms a source/drain region.
15 are opposed to each other across the channel region under the gate electrode. Further, on the right side of the element isolation film 12, an N+ diffusion region 17 is provided.
is formed.

第2図は第1図に示された素子分離膜を形成する工程を
示す工程別素子断面図である。まず、P型半導体基板2
1の表面に500人の2シリコン酸化を行ない、酸化膜
28を形成し、その上にポリシリコン膜22をCVD法
などによりTa−5000人の厚さで堆積させ、さらに
その上にシリコン窒化膜23を3000人の厚さで堆積
させる。写真食刻法を用いて素子分離膜形成領域のポリ
シリコン膜22および酸化マスクとなるシリコン窒化膜
23を除去して開口部24を形成し、基板表面を露出さ
せる。そして酸化雰囲気で酸化を行なうと開口部の基板
表面は酸化され、8000人の厚い酸化膜25が形成さ
れる。したかって素子分離膜25が基板表面から突出す
る高さTb−4000Aである(第5図(a))oなお
、ポリシリコン膜22は後述するエッチバックを行うた
めに必要な高さを確保するためおよび工程中に発生する
圧力を発散させるためのものである。
FIG. 2 is a step-by-step device cross-sectional view showing the step of forming the device isolation film shown in FIG. First, P-type semiconductor substrate 2
2 silicon oxidation is performed on the surface of the silicon oxide film 28 to form an oxide film 28, a polysilicon film 22 is deposited on the surface of the silicon oxide film 22 to a thickness of Ta-5000 by CVD method, and a silicon nitride film is further deposited on top of it. 23 to a thickness of 3000. Using photolithography, the polysilicon film 22 in the element isolation film formation region and the silicon nitride film 23 serving as an oxidation mask are removed to form an opening 24 and expose the substrate surface. When oxidation is performed in an oxidizing atmosphere, the surface of the substrate at the opening is oxidized, and an 8,000 thick oxide film 25 is formed. Therefore, the height at which the element isolation film 25 protrudes from the substrate surface is Tb-4000A (FIG. 5(a)). Note that the polysilicon film 22 must have a height necessary for performing the etchback described later. This is for the purpose of dissipating the pressure generated during the process.

次に全体にシリコン窒化膜26をTc−500人の厚さ
で堆積させる。したがって、Ta≧Tb十Tcの関係が
ある。さらに全体にレジスト27を塗布する。このレジ
スト27は段差を埋める平坦化作用を有するのでレジス
トの表面はほぼ平坦面となる(第5図(b))。
Next, a silicon nitride film 26 is deposited over the entire surface to a thickness of Tc-500. Therefore, there is a relationship of Ta≧Tb+Tc. Furthermore, a resist 27 is applied to the entire surface. This resist 27 has a flattening effect that fills in the difference in level, so that the surface of the resist becomes a substantially flat surface (FIG. 5(b)).

次にエッチバックを行い、素子分離膜の周囲のシリコン
窒化膜が除去されるまで表面から厚さをほぼ均等に減少
させていくと、Ta≧Tb十TCの関係があるために素
子分離膜25上にはシリコン窒化膜の一部26′と膜厚
の減少したレジスト27′が積層され、その周囲には膜
厚の減少したポリシリコン22′が残存した状態が得ら
れる(第2図(C))。
Next, etchback is performed to reduce the thickness almost uniformly from the surface until the silicon nitride film around the element isolation film is removed. A part of the silicon nitride film 26' and a resist 27' with a reduced film thickness are laminated thereon, and a state is obtained in which a polysilicon 22' with a reduced film thickness remains around it (see Fig. 2 (C). )).

このあとドライエツチングにより、ポリシリコン22′
を除去し、レジスト27′を除去し、さらに弗酸処理を
行い、酸化膜28を除去すると、シリコン窒化膜は弗酸
には溶けないため素子分離膜上中央にシリコン窒化膜2
6′がマスクを使用することなく確実に形成される。
After this, polysilicon 22' is etched by dry etching.
When the resist 27' is removed, the oxide film 28 is removed by hydrofluoric acid treatment, and the silicon nitride film is not dissolved in hydrofluoric acid, a silicon nitride film 2 is formed in the center on the element isolation film.
6' is reliably formed without using a mask.

したがって、後続の工程における弗酸処理などでも素子
分離膜の膜圧はほとんど減少せず、寄生トランジスタに
おけるVthの低下などを引き起こすことはない。
Therefore, even with hydrofluoric acid treatment in the subsequent process, the film thickness of the element isolation film hardly decreases, and a decrease in Vth in the parasitic transistor does not occur.

以上の実施例においては、耐酸化性膜としてシリコン窒
化膜を用いたが、絶縁性かつ耐酸化性、耐薬品処理性特
に耐弗酸性を有する膜であれば、他の材料でも使用する
ことかできる。また、バッファ膜としては上述の実施例
ではポリシリコンを用いたが、シリコン窒化膜などの耐
酸化性膜に対して十分な選択比を有する材料であれば、
他の材料でも使用することができる。さらに、実施例で
はエッチバックを行うのにレジストを使用しているが、
平坦化作用のある材料、例えば流動性や熱による溶融性
のある材料であれば使用することができる。
In the above examples, a silicon nitride film was used as the oxidation-resistant film, but other materials may be used as long as they are insulating, oxidation-resistant, chemical treatment resistant, especially hydrofluoric acid resistant. can. Further, although polysilicon was used as the buffer film in the above embodiment, any material having a sufficient selectivity to an oxidation-resistant film such as a silicon nitride film may be used.
Other materials can also be used. Furthermore, although a resist is used for etchback in the example,
Any material that has a flattening effect, such as a material that is fluid or meltable by heat, can be used.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明にかかる半導体装置によれば、素子
分離膜上に自己整合により形成された耐酸化性膜を有し
ているので、後続の工程において膜圧減少が少なくなく
なり、膜圧減少による特性の変化などを発生しない。
As described above, according to the semiconductor device of the present invention, since the oxidation-resistant film is formed on the element isolation film by self-alignment, the film thickness decreases less in subsequent steps, and the film thickness decreases. No change in characteristics occurs due to

また、本発明にかかる半導体装置の製造方法によれば、
マスクを使用することなく自己整合方式で素子分離膜上
の耐酸化性膜を確実に形成することかできる。
Further, according to the method for manufacturing a semiconductor device according to the present invention,
It is possible to reliably form an oxidation-resistant film on an element isolation film by a self-alignment method without using a mask.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる半導体装置の素子分離膜の形状
を示す素子断面図、第2図は本発明にかかる半導体装置
の製造方法を示す工程別素子断面図、第3図は従来の素
子分離膜の膜厚減少の様子を示す素子断面図、第4図は
素子分離膜部分に形成される寄生トランジスタにおける
問題点を示す説明図、第5図は従来とられた膜厚減少対
策の説明図である。 1.11.21・・・半導体基板、2.2’、1225
・・・素子分離膜、13.23.2B’ 、26゜26
′・耐酸化性膜(シリコン窒化膜)、22゜22′・・
・バッファ膜(ポリシリコン膜)、24・・・開口部。 馬1 図 為3図 (○) (bl P)4図
FIG. 1 is a cross-sectional view of a semiconductor device showing the shape of an isolation film of a semiconductor device according to the present invention, FIG. A cross-sectional view of the device showing how the isolation film thickness decreases, FIG. 4 is an explanatory diagram showing problems with parasitic transistors formed in the isolation film portion, and FIG. 5 is an explanation of conventional measures taken to reduce the film thickness. It is a diagram. 1.11.21...Semiconductor substrate, 2.2', 1225
...Element isolation film, 13.23.2B', 26°26
'・Oxidation-resistant film (silicon nitride film), 22°22'...
- Buffer film (polysilicon film), 24... opening. Horse 1 Figure 3 (○) (bl P) 4 Figure

Claims (1)

【特許請求の範囲】 1、素子分離膜により分離された複数の素子を形成して
なる半導体装置において、前記素子分離膜がその上に自
己整合で堆積された絶縁性の耐酸化性膜を備えたことを
特徴とする半導体装置。 2、絶縁性の耐酸化性膜がシリコン窒化膜であることを
特徴とする請求項1記載の半導体装置。 3、半導体装置の製造方法において、 半導体基板上にバッファ膜を予定の素子分離膜が前記半
導体基板よりも突出する高さよりも厚く堆積させる工程
と、 前記バッファ膜の上に第1の耐酸化性膜を堆積させる工
程と、 前記素子分離膜形成領域の前記バッファ膜および第1の
耐酸化性膜を除去して基板表面の露出する開口を形成す
る工程と、 酸化を行って素子分離膜となる厚い酸化膜を前記開口部
に形成させる工程と、 全体に第2の耐酸化性膜を堆積させ、さらに前記開口を
埋める平坦化材料を堆積させる工程と、前記酸化膜上の
みに少なくとも第2の耐酸化性膜を残存させるようにエ
ッチバックを行う工程と、残存した前記バッファ膜およ
び前記平坦化材料を除去する工程とを備えたことを特徴
とする半導体装置の製造方法。 4、前記第1および第2の耐酸化性膜がシリコン窒化膜
であり、前記バッファ膜がポリシリコン膜であり、前記
平坦化材料がレジストであることを特徴とする請求項3
記載の半導体装置の製造方法。
[Scope of Claims] 1. A semiconductor device comprising a plurality of elements separated by an element isolation film, wherein the element isolation film includes an insulating oxidation-resistant film deposited thereon in a self-aligned manner. A semiconductor device characterized by: 2. The semiconductor device according to claim 1, wherein the insulating oxidation-resistant film is a silicon nitride film. 3. A method for manufacturing a semiconductor device, comprising: depositing a buffer film on a semiconductor substrate to a thickness greater than a height at which a planned element isolation film protrudes from the semiconductor substrate; and depositing a first oxidation-resistant film on the buffer film. a step of depositing a film; a step of removing the buffer film and the first oxidation-resistant film in the element isolation film formation region to form an opening exposing the substrate surface; and performing oxidation to become an element isolation film. forming a thick oxide film in the opening; depositing a second oxidation-resistant film over the entire surface and depositing a planarizing material to fill the opening; and depositing at least a second oxidation film only on the oxide film. 1. A method for manufacturing a semiconductor device, comprising the steps of etching back so as to leave an oxidation-resistant film remaining, and removing the remaining buffer film and planarization material. 4. Claim 3, wherein the first and second oxidation-resistant films are silicon nitride films, the buffer film is a polysilicon film, and the planarization material is a resist.
A method of manufacturing the semiconductor device described above.
JP6566890A 1990-03-16 1990-03-16 Semiconductor device and manufacture thereof Pending JPH03266435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6566890A JPH03266435A (en) 1990-03-16 1990-03-16 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6566890A JPH03266435A (en) 1990-03-16 1990-03-16 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03266435A true JPH03266435A (en) 1991-11-27

Family

ID=13293609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6566890A Pending JPH03266435A (en) 1990-03-16 1990-03-16 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03266435A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203886A (en) * 1995-01-11 1996-08-09 Lg Semicon Co Ltd Method of isolating semiconductor element
US5567645A (en) * 1993-04-24 1996-10-22 Samsung Electronics Co., Ltd. Device isolation method in integrated circuits
US5756390A (en) * 1996-02-27 1998-05-26 Micron Technology, Inc. Modified LOCOS process for sub-half-micron technology
US6387777B1 (en) 1998-09-02 2002-05-14 Kelly T. Hurley Variable temperature LOCOS process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567645A (en) * 1993-04-24 1996-10-22 Samsung Electronics Co., Ltd. Device isolation method in integrated circuits
JPH08203886A (en) * 1995-01-11 1996-08-09 Lg Semicon Co Ltd Method of isolating semiconductor element
US5573974A (en) * 1995-01-11 1996-11-12 Lg Semicon Co., Ltd. Method for isolating semiconductor elements
US5756390A (en) * 1996-02-27 1998-05-26 Micron Technology, Inc. Modified LOCOS process for sub-half-micron technology
US6387777B1 (en) 1998-09-02 2002-05-14 Kelly T. Hurley Variable temperature LOCOS process

Similar Documents

Publication Publication Date Title
US7291534B2 (en) Method of manufacturing semiconductor device
JPH0586673B2 (en)
US7432163B2 (en) Method of manufacturing semiconductor device that includes forming adjacent field regions with a separating region therebetween
JPH10107267A (en) Field-effect transistor and its manufacture
JPS63293850A (en) Manufacture of semiconductor device
JP3746907B2 (en) Manufacturing method of semiconductor device
KR100496888B1 (en) Semiconductor device having triple gate insulating layers and method of fabricating the same
JPH03266435A (en) Semiconductor device and manufacture thereof
JPH07273330A (en) Semiconductor device and its manufacture
JPS63207169A (en) Semiconductor storage device and manufacture thereof
KR100281272B1 (en) Method for forming element isolation insulating film of semiconductor element
JPH08181223A (en) Manufacture of semiconductor device
JP3001588B2 (en) Semiconductor device and manufacturing method thereof
JPH0621369A (en) Manufacture of mos integrated circuit
JP3186714B2 (en) Semiconductor device and method of manufacturing the same
US6544852B1 (en) Method of fabricating semiconductor device
JP3395740B2 (en) Semiconductor device and manufacturing method thereof
KR20010093668A (en) Method of forming shallow trench isolation
KR100226259B1 (en) Semiconductor device and method for manufacturing the same
KR100190195B1 (en) Fabrication method of semiconductor device
JPH0923007A (en) Semiconductor device and its manufacture
KR100478495B1 (en) Semiconductor device and fabricating method thereof
JP3259439B2 (en) Method for manufacturing semiconductor device
JPS62126651A (en) Semiconductor device and manufacture thereof
JPH02211633A (en) Semiconductor device and manufacture thereof