JPH03265559A - Zinc oxide as starting material for voltage nonlinear resistor - Google Patents

Zinc oxide as starting material for voltage nonlinear resistor

Info

Publication number
JPH03265559A
JPH03265559A JP2064432A JP6443290A JPH03265559A JP H03265559 A JPH03265559 A JP H03265559A JP 2064432 A JP2064432 A JP 2064432A JP 6443290 A JP6443290 A JP 6443290A JP H03265559 A JPH03265559 A JP H03265559A
Authority
JP
Japan
Prior art keywords
particle size
zinc oxide
zno
average particle
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2064432A
Other languages
Japanese (ja)
Other versions
JPH0686322B2 (en
Inventor
Osamu Imai
修 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2064432A priority Critical patent/JPH0686322B2/en
Priority to CA002020788A priority patent/CA2020788C/en
Priority to DE69013252T priority patent/DE69013252T2/en
Priority to EP90307522A priority patent/EP0408308B1/en
Priority to US07/551,151 priority patent/US5248452A/en
Priority to KR1019900010500A priority patent/KR970007283B1/en
Priority to US07/796,367 priority patent/US5250281A/en
Publication of JPH03265559A publication Critical patent/JPH03265559A/en
Priority to US07/921,327 priority patent/US5269971A/en
Publication of JPH0686322B2 publication Critical patent/JPH0686322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To reduce internal defects and to improve the uniformity and electric discharge resistance of an element by specifying average particle size, particle size distribution, acicular crystal content and SiC content. CONSTITUTION:Metallic zinc 1 is melted in a melting furnace 2 made of SiC and fitted with a weir 8. Sludge 9 is removed and molten zinc is fed into a retort furnace 3 and boiled by heating to 1,1001,400 deg.C. Generated zinc vapor is introduced into the oxidation chamber 3a of the furnace 3 through an evaporation hole and hot ZnO is obtd. by burning the vapor. This ZnO is slowly cooled to about 400 deg.C in a cooling duct 4, most of it is captured in capturing tanks 5 and part of it is captured with bag filters 7. ZnO as starting material for a voltage nonlinear resistor is obtd. This ZnO contains <=0.001wt.% SiO as an impurity and has <=20wt.% acicular crystal content, 0.1-2.0mum average particle size and particle size distribution in which >=70wt.% of the particles are present within the range of 1/2-2 times the average particle size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化亜鉛を主成分とする電圧非直線抵抗体に好
適に使用できる酸化亜鉛原料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a zinc oxide raw material that can be suitably used for voltage nonlinear resistors containing zinc oxide as a main component.

(従来の技術) 従来から酸化亜鉛(ZnO)を主成分としB12031
SbzO3+ 5iOi、 CozOz+ MnO2等
の少量の添加物を副成分として含有した抵抗体は、優れ
た電圧非直線性を示すことが広く知られており、その性
質を利用して避雷器等に使用されている。
(Prior art) B12031 has traditionally been made with zinc oxide (ZnO) as its main component.
Resistors containing small amounts of additives such as SbzO3+ 5iOi and CozOz+ MnO2 as subcomponents are widely known to exhibit excellent voltage nonlinearity, and are used in lightning arresters etc. by taking advantage of this property. .

この酸化亜鉛を主成分とする電圧非直線抵抗体において
、放電耐量の向上のためには焼成体中の内部欠陥を低減
するとよいことが知られており、従来から成形・焼成条
件の検討や、特開昭56−115503号公報に記載さ
れているように、造粒前にスラリーを篩に通して異物を
除去することが行なわれている。
It is known that in order to improve the discharge withstand capacity of this voltage nonlinear resistor whose main component is zinc oxide, it is good to reduce internal defects in the fired body. As described in JP-A-56-115503, the slurry is passed through a sieve to remove foreign substances before granulation.

(発明が解決しようとする課題) しかしながら、上述した従来の内部欠陥の低減方法では
、内部欠陥を充分に低減できないためいまだに充分な効
果を得ることができず、雷サージ耐量や開閉サージ耐量
等の放電耐量を充分に向上させることができない問題が
あった。特に、素子巾約90wt%を占める酸化亜鉛原
料の性状によっては、内部欠陥の発生が増加することが
あった。
(Problems to be Solved by the Invention) However, with the conventional methods for reducing internal defects described above, the internal defects cannot be sufficiently reduced, and therefore sufficient effects cannot be obtained. There was a problem that the discharge withstand capacity could not be sufficiently improved. In particular, depending on the properties of the zinc oxide raw material that occupies about 90 wt% of the device width, the occurrence of internal defects may increase.

本発明の目的は上述した課題を解消して、内部欠陥を低
減するとともに素子の均一性を向上させ良好な放電耐量
を有する電圧非直線抵抗体を得ることができる酸化亜鉛
原料を提供しようとするものである。
An object of the present invention is to solve the above-mentioned problems and provide a zinc oxide raw material that can reduce internal defects, improve device uniformity, and obtain a voltage nonlinear resistor with good discharge withstand capacity. It is something.

(課題を解決するための手段) 本発明の電圧非直線抵抗体用酸化亜鉛原料は、平均粒径
0.1〜2.0μmの粒度および平均粒径の1/2〜2
倍の間に70−t%以上の粒度分布を有し、針状結晶が
20−t%以下であるとともに、不純物としてのSiC
含有量が0.0O1ivt%以下であることを特徴とす
るものである。
(Means for Solving the Problems) The zinc oxide raw material for voltage nonlinear resistors of the present invention has a particle size of 0.1 to 2.0 μm and 1/2 to 2 of the average particle size.
It has a particle size distribution of 70-t% or more between times, needle-like crystals are 20-t% or less, and SiC as an impurity
It is characterized in that the content is 0.0O1ivt% or less.

(作 用) 上述した構成において、所定の粒度及び粒度分布、所定
の結晶形態、所定の不純物特にSiClを低減した酸化
亜鉛粒子を使用して電圧非直線抵抗体を製造すれば、内
部欠陥を充分に低減できるともに素子の均一性も向上し
、良好な放電耐量を有する電圧非直線抵抗体を得ること
ができることを見出した。
(Function) In the above-mentioned configuration, if a voltage nonlinear resistor is manufactured using zinc oxide particles with a predetermined particle size and particle size distribution, a predetermined crystal form, and a predetermined impurity, particularly SiCl, reduced, internal defects can be sufficiently eliminated. It has been found that it is possible to obtain a voltage non-linear resistor having a good discharge withstand capacity, which can reduce the amount of discharge and improve the uniformity of the element.

酸化亜鉛は一般に亜鉛を酸化することによって製造され
るが、結晶系は六方晶系が主体であり、その形態は塊状
または板状である。しかし製造条件によっては針状結晶
も生成し酸化亜鉛原料中に混入する。
Zinc oxide is generally produced by oxidizing zinc, and its crystal system is mainly hexagonal, and its form is block-like or plate-like. However, depending on the manufacturing conditions, needle-shaped crystals may also be formed and mixed into the zinc oxide raw material.

本発明では酸化亜鉛の平均粒径を0.1〜2.0μ蒙よ
り好ましくは0.3〜0.8μ鞘と限定し、粒度分布を
平均粒径の172〜2倍が70−t%以上より好ましく
は80−t%以上と限定したが、これは酸化亜鉛素子の
焼成過程における酸化亜鉛の粒子成長が均一に行われ、
ボイド等の内在欠陥が減少するからである。また、針状
結晶を20iIlt%以下より好ましくは10−t%以
下と限定したのは、電圧非直線抵抗体の特性低下の原因
となる焼成過程での酸化亜鉛の異常粒子成長を防止する
のに有利であるからである。この酸化亜鉛が異常粒子成
長すると素子の均一性は大きく低下し、放電耐量も低下
する。
In the present invention, the average particle size of zinc oxide is limited to 0.1 to 2.0 μm, preferably 0.3 to 0.8μ sheath, and the particle size distribution is determined such that 172 to 2 times the average particle size is 70-t% or more. More preferably, it is limited to 80-t% or more, but this is because zinc oxide particles grow uniformly during the firing process of the zinc oxide element.
This is because inherent defects such as voids are reduced. In addition, the reason why the acicular crystals are limited to 20iIlt% or less, preferably 10-t% or less, is to prevent abnormal particle growth of zinc oxide during the firing process, which causes deterioration of the characteristics of the voltage nonlinear resistor. This is because it is advantageous. When this zinc oxide particles grow abnormally, the uniformity of the device is greatly reduced and the discharge withstand capacity is also reduced.

一方酸化亜鉛中の不純物としてのSiC含有量を0.0
01wt%以下より好ましくはO,OOOO1imt%
以下と限定したのは、素子内のボイド等の内部欠陥を充
分に低減でき、良好な放電耐量を得ることができるから
である。この理由は酸化亜鉛中にSiCが混入している
と焼成過程の約1000°C以上でSiC分解ガスは閉
気孔を形成し、内部欠陥の原因となるためと推考される
。また、酸化亜鉛素子の添加物として酸化ビスマスを0
.5 wt%t%以下wt%以上では顕著)、酸化アン
チモンを0.3−t%以上(1,5wt%以上では顕著
)、酸化プラセオジウムを0.01wt%以上(0,0
5wt%t%以下顕著)含有すると、SiCの分解反応
が促進されるとともにその分解ガスが閉気孔を形成し易
く、酸化亜鉛素子特性に悪影響を及ぼす。また、前記添
加物としての酸化ビスマスを2wt%以上、酸化アンチ
モンを1.5 wt%t%以下化プラセオジウムを0.
05 wt%t%以下た場合は、前述のSiCの分解反
応がさらに一層促進されるため酸化亜鉛素子特性は著し
く悪影響を受ける。このため、酸化亜鉛原料中のSiC
含有量を所定量以下にすることが、特性が優れかつ均一
な酸化亜鉛素子を製造する上で極めて重要である。
On the other hand, the SiC content as an impurity in zinc oxide is 0.0
01wt% or less, preferably O,OOOO1imt%
The reason why it is limited to the following is that internal defects such as voids in the element can be sufficiently reduced and good discharge withstand capacity can be obtained. The reason for this is thought to be that if SiC is mixed in zinc oxide, the SiC decomposed gas forms closed pores at temperatures above about 1000° C. during the firing process, causing internal defects. In addition, bismuth oxide is added as an additive to zinc oxide elements.
.. 5 wt% or less (noticeable at wt% or more), antimony oxide at least 0.3-t% (noticeable at 1,5 wt% or more), praseodymium oxide at least 0.01 wt% (0,0
5wt% or less), the decomposition reaction of SiC is promoted and the decomposed gas tends to form closed pores, which has a negative effect on the characteristics of the zinc oxide element. Further, the additives include bismuth oxide of 2 wt% or more, antimony oxide of 1.5 wt% or less, and praseodymium of 0.5 wt% or less.
If the amount is less than 0.05 wt%, the above-mentioned decomposition reaction of SiC is further promoted, and the characteristics of the zinc oxide element are significantly adversely affected. For this reason, SiC in the zinc oxide raw material
It is extremely important to keep the content below a predetermined amount in order to produce a zinc oxide element with excellent and uniform properties.

(実施例) 第1図は従来から公知の酸化亜鉛原料を製造する装置の
一例を示す図である。第1図において、1は原料となる
金属亜鉛、2は金属亜鉛1を溶融するためのSiC製の
溶解槽を持った溶融炉、3は酸化反応を実施するレトル
ト炉、4は冷却ダクト、5は捕集タンク、6は排風器、
7はバッグフィルタである。上述した構成の装置におい
て、溶融炉2で溶融した金属亜鉛1をレトルト炉3に入
れ、外部より約1100〜1400°Cに加熱すると、
レトルト炉3内の亜鉛は沸点(約900°C)に達し、
蒸発口より噴出し、レトルト炉3内の酸化室3aで燃焼
酸化する。燃焼酸化して酸化室3a中に得られた高温の
酸化亜鉛は、排風器6の吸引力により吸引されて、冷却
ダクト4を通過して冷却された後、大部分が捕集タンク
5内にまた一部はバッグフィルタ7内に酸化亜鉛として
得ることができる。
(Example) FIG. 1 is a diagram showing an example of a conventionally known apparatus for manufacturing a zinc oxide raw material. In FIG. 1, 1 is metallic zinc as a raw material, 2 is a melting furnace having a SiC melting tank for melting the metallic zinc 1, 3 is a retort furnace for carrying out an oxidation reaction, 4 is a cooling duct, and 5 is a collection tank, 6 is a ventilator,
7 is a bag filter. In the apparatus configured as described above, when the metal zinc 1 melted in the melting furnace 2 is put into the retort furnace 3 and heated from the outside to about 1100 to 1400°C,
Zinc in the retort furnace 3 reaches its boiling point (approximately 900°C),
It is ejected from the evaporation port and combusted and oxidized in the oxidation chamber 3a inside the retort furnace 3. The high-temperature zinc oxide obtained in the oxidation chamber 3a through combustion oxidation is sucked in by the suction force of the exhaust fan 6, passes through the cooling duct 4, and is cooled, and then most of it is stored in the collection tank 5. Also, a portion can be obtained as zinc oxide in the bag filter 7.

第1図に示す装置において、得られる酸化亜鉛原料を所
定の粒度及び粒度分布、所定の結晶形態にするためには
、金属亜鉛の蒸発量、排風器による風量、酸化室の温度
及び高温の酸化亜鉛の冷却速度の管理が必要である。特
に、針状結晶を減少するには高温の酸化亜鉛の冷却を4
00°Cまで徐冷することが必要である。また酸化亜鉛
原料中のSiC含有量を少なくするためには、(1)溶
融炉2の材質を現在のSiC製からAha、製等の他の
材質にすること、(2)溶融炉2中の溶湯面に堰8を設
はスラッジ9がレトルト炉3内へ入らないようにするこ
と、(3)通常数段のタンクを直列に配置して構成する
捕集タンク5のうち最下流側のタンクで得られたZnO
原料を使用すること等が重要である。
In the apparatus shown in Fig. 1, in order to make the resulting zinc oxide raw material have a predetermined particle size, particle size distribution, and crystal form, the amount of evaporation of metallic zinc, the air volume by the exhaust fan, the temperature of the oxidation chamber, and the high temperature are required. It is necessary to control the cooling rate of zinc oxide. In particular, cooling of high temperature zinc oxide is necessary to reduce needle crystals.
It is necessary to cool slowly to 00°C. In addition, in order to reduce the SiC content in the zinc oxide raw material, (1) the material of the melting furnace 2 should be changed from the current SiC material to another material such as Aha, A weir 8 is installed on the molten metal surface to prevent sludge 9 from entering the retort furnace 3. (3) The most downstream tank of the collection tank 5, which is usually composed of several stages of tanks arranged in series. ZnO obtained in
It is important to use raw materials, etc.

上述した方法により得た、所定の平均粒径及び粒度分布
、結晶形態、SiC量を有する酸化亜鉛原料を主成分と
する電圧非直線抵抗体を得るには、まず0.1〜2.0
μmの所定の粒度に調整した酸化亜鉛原料と1μm以下
の所定の粒度に調整した微粉の酸化ビスマス、酸化コバ
ルト、酸化マンガン、酸化アンチモン、酸化クロム、好
ましくは非晶質の酸化ケイ素、酸化ニッケル、酸化ホウ
素、酸化銀等よりなる添加物の所定量を混合する。なお
、この場合酸化銀、酸化ホウ素の代わりに硝酸銀、ホウ
酸を用いてもよい。好ましくは銀を含むホウケイ酸ビス
マスガラスを用いるとよい。ここで添加物原料は低温で
焼結するようにできるだけ2μm以下、好ましくは0.
5μ■以下の微粉を用いるのがよい。この際、これらの
原料粉末に対して所定量のポリビニルアルコール水溶液
及び酸化アルミニウム源として硝酸アルミニウム溶液の
所定量等を加えて混合物を得る。
In order to obtain a voltage nonlinear resistor whose main component is a zinc oxide raw material having a predetermined average particle size, particle size distribution, crystal morphology, and SiC content obtained by the method described above, first,
Zinc oxide raw material adjusted to a predetermined particle size of 1 μm, finely divided bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, chromium oxide, preferably amorphous silicon oxide, nickel oxide, adjusted to a predetermined particle size of 1 μm or less, A predetermined amount of additives such as boron oxide, silver oxide, etc. are mixed. In this case, silver nitrate or boric acid may be used instead of silver oxide or boron oxide. Preferably, bismuth borosilicate glass containing silver is used. Here, the additive raw material is preferably 2 μm or less, preferably 0.0 μm or less so that it can be sintered at a low temperature.
It is preferable to use a fine powder of 5μ or less. At this time, a predetermined amount of polyvinyl alcohol aqueous solution and a predetermined amount of aluminum nitrate solution as an aluminum oxide source are added to these raw material powders to obtain a mixture.

次に好ましくは200 mmHg以下の真空度で減圧脱
気を行い混合泥漿を得る。ここに混合泥漿の水分量は3
0〜35−t%程度に、またその混合泥漿の粘度は10
0±50cpとするのが好ましい。次に得られた混合泥
漿を噴霧乾燥装置に供給して平均粒径50〜150μm
、好ましくは80〜120μmで、水分量が0.5〜2
.OwL%、より好ましくは0.9〜1.5 wt%の
造粒粉を造粒する。次に得られた造粒粉を、成形工程に
おいて、成形圧力800〜7000kg/+m”の下で
所定の形状に成形する。成形は通常の圧縮成形のほか、
静水圧成形等で行ってもよい。
Next, deaeration is performed under reduced pressure, preferably at a vacuum level of 200 mmHg or less, to obtain a mixed slurry. Here, the water content of the mixed slurry is 3
0 to 35-t%, and the viscosity of the mixed slurry is 10
It is preferable to set it to 0±50 cp. Next, the obtained mixed slurry was fed to a spray dryer to have an average particle size of 50 to 150 μm.
, preferably 80 to 120 μm and moisture content of 0.5 to 2
.. Granulated powder with OwL%, more preferably 0.9 to 1.5 wt%, is granulated. Next, the obtained granulated powder is molded into a predetermined shape under a molding pressure of 800 to 7000 kg/+m'' in a molding process.Molding can be done by ordinary compression molding,
It may be performed by isostatic pressing or the like.

そして、その成形体を昇降温速度100°C/hr以下
で800〜1000°C2保持時間1〜5時間という条
件で仮焼成する。なお、仮焼成の前に成形体を昇降温速
度100 ”C/hr以下で400〜600°C1保持
時間1〜10時間で結合剤等を飛散除去することが好ま
しい。
Then, the molded body is pre-fired under conditions of a temperature increase/decrease rate of 100°C/hr or less and a holding time of 800 to 1000°C2 for 1 to 5 hours. Note that, before calcining, it is preferable to remove the binder and the like by scattering the molded body at a heating/cooling rate of 100'' C/hr or less and holding time at 400 to 600° C. for 1 to 10 hours.

次に仮焼成した仮焼体の側面に絶縁被覆層を形成する。Next, an insulating coating layer is formed on the side surface of the calcined body.

本願発明では、Bi2O3,5bz03. ZnO,5
i02等の所定量に有機結合剤としてエチルセルロース
、ブチルカルピトール、酢酸nブチル等を加えた絶縁被
覆用混合物ペーストを、60〜300 μmの厚さに仮
焼体の側面に塗布する。次に、これを昇降温速度20〜
60°C/hr 、1000〜1300°C好ましくは
1050〜1250°C13〜7時間という条件で本焼
成する。
In the present invention, Bi2O3,5bz03. ZnO, 5
An insulating coating mixture paste prepared by adding organic binders such as ethyl cellulose, butyl calpitol, n-butyl acetate, etc. to a predetermined amount of i02, etc. is applied to the side surface of the calcined body to a thickness of 60 to 300 μm. Next, this temperature increase/decrease rate is 20~
Main firing is performed at 60°C/hr, 1000 to 1300°C, preferably 1050 to 1250°C, for 13 to 7 hours.

なお、ガラス粉末に有機結合剤としてエチルセルロース
、ブチルカルピトール、酢酸nブチル等を加えたガラス
ペーストを前記の絶縁被覆層上に100〜300μmの
厚さに塗布し、空気中で昇降温速度50〜200″C/
hr、400〜800°C1保持時間0.5〜2時間と
いう条件で熱処理することによりガラス層を形成すると
好ましい。
A glass paste prepared by adding ethyl cellulose, butyl calpitol, n-butyl acetate, etc. as an organic binder to glass powder is applied to a thickness of 100 to 300 μm on the above-mentioned insulating coating layer, and the temperature is raised and cooled in air at a rate of 50 to 300 μm. 200″C/
It is preferable to form the glass layer by heat treatment under the following conditions: hr, 400 to 800°C, holding time 0.5 to 2 hours.

その後、得られた電圧非直線抵抗体の両端面をSiC,
へ1203.ダイヤモンド等の#400〜2000相当
の研磨剤により水好ましくは油を研磨液として使用して
研磨する。次に、研磨面を洗浄後、研磨した両端面に例
えばアルミニウム等によって電極を例えば溶射により設
けて電圧非直線抵抗体を得ている。
After that, both end faces of the obtained voltage nonlinear resistor were bonded to SiC,
to 1203. Polishing is performed using water, preferably oil, as the polishing liquid with a polishing agent of #400 to #2000 such as diamond. Next, after cleaning the polished surfaces, electrodes made of aluminum or the like are provided on both polished end surfaces by, for example, thermal spraying to obtain a voltage nonlinear resistor.

以下、実際に本発明の範囲内および範囲外の電圧直線抵
抗体において、各種特性を測定した結果について説明す
る。
Hereinafter, the results of actually measuring various characteristics of voltage linear resistors within and outside the scope of the present invention will be described.

夫隻土 上述した方法に従って、CO3041MnO2,Crz
O3Nip、 SiO□を各々0.1〜2.0モル%、
A l (NO3) 3・91(200,005モル%
、銀を含むホウケイ酸ビスマスガラスを0.1wt%、
Bi2O3を4.5wt%、5bzOzを3.0wt%
、および第1表に示す平均粒径、粒度分布、針状結晶の
割合及びSiC含有量を有するZnOからなる原料から
、直径47mm、厚さ20価の形状でバリスタ電圧(V
l、A )が200 V/mmの第1表に示す本発明試
験No、 1〜9と比較例試験No、 1〜5の電圧非
直線抵抗体を準備した。
According to the method described above, CO3041MnO2,Crz
0.1 to 2.0 mol% each of O3Nip and SiO□,
A l (NO3) 3.91 (200,005 mol%
, 0.1 wt% bismuth borosilicate glass containing silver,
4.5wt% Bi2O3, 3.0wt% 5bzOz
, and the average particle size, particle size distribution, percentage of needle-like crystals, and SiC content shown in Table 1. A varistor voltage (V
Voltage nonlinear resistors of present invention test Nos. 1 to 9 and comparative example test Nos. 1 to 5 shown in Table 1 with l, A) of 200 V/mm were prepared.

準備した本発明例および比較例の抵抗体に対して、焼成
体欠陥発生率(%)、開閉サージ放電耐量破壊率(%)
、雷サージ放電耐量破壊率(%)およびバリスタ電圧の
バラツキを測定した。結果を第1表に示す。ここで、焼
成体欠陥発生率は、超音波探傷試験により直径0.5m
以上の欠陥が存在する抵抗体の割合として求めた。開閉
サージ放電耐量破壊率は、1200A、 1300Aの
電流を2msの電流波形で20回繰り返し印加した後破
壊したものの割合として求めた。雷サージ放電耐量破壊
率は、120KA、 140KAの電流を4/10 t
t sの電流波形で2回繰り返し印加した後破壊したも
のの割合として求めた。バリスタ電圧のバラツキは、第
2図(a)に示すように、素子11の中央部を切断研磨
し、厚さa=2mmの試料を作製した後、第2図(b)
に示す測定点12のすべてにおいて、第2図(c)に示
すように底面に電極13を付与し、表面を直径1鵬のプ
ローブ14でバリスタ電圧(VIAA/+a+a)を測
定し、そのバラツキを求めて評価した。
For the prepared resistors of the present invention example and comparative example, the fired body defect occurrence rate (%) and the switching surge discharge withstand breakdown rate (%)
, the lightning surge discharge withstand breakdown rate (%) and the variation in varistor voltage were measured. The results are shown in Table 1. Here, the defect occurrence rate of the fired product is determined by ultrasonic flaw detection test with a diameter of 0.5 m.
It was determined as the percentage of resistors that had the above defects. The breakdown rate of switching surge discharge capacity was determined as the percentage of breakdowns after 20 repeated applications of currents of 1200 A and 1300 A with a current waveform of 2 ms. The lightning surge discharge withstand breakdown rate is 4/10 t with a current of 120 KA and 140 KA.
It was determined as the percentage of the breakdown after repeated application of the current waveform of ts twice. The variation in the varistor voltage was determined by cutting and polishing the central part of the element 11 to prepare a sample with a thickness of a=2 mm, as shown in FIG. 2(b), as shown in FIG. 2(a).
At all of the measurement points 12 shown in FIG. 2(c), an electrode 13 is provided on the bottom surface, and the varistor voltage (VIAA/+a+a) is measured on the surface with a probe 14 with a diameter of 1 inch, and its variation is sought and evaluated.

なお、SiC含有量は、原料を酸、アルカリ等で溶解し
、濾過、洗浄後不溶解残渣を蛍光X線及びX線回折等で
定量する方法より求めた。
The SiC content was determined by dissolving the raw material with an acid, alkali, etc., and quantifying the undissolved residue after filtration and washing using fluorescent X-rays, X-ray diffraction, etc.

第1表の結果から、所定の平均粒径及び粒度分布、所定
の針状結晶の割合、SiC含有量を所定以下に低減した
酸化亜鉛原料を使用した本発明試験NCLI〜9は、い
ずれかの点で本発明の要件を満たさない比較例試験Nα
1〜5と比べて緒特性が良好なことがわかる。
From the results in Table 1, it can be seen that tests of the present invention using zinc oxide raw materials with a predetermined average particle size and particle size distribution, a predetermined proportion of acicular crystals, and a SiC content reduced to a predetermined value or less, Comparative example test Nα that does not meet the requirements of the present invention in terms of
It can be seen that the characteristics are better than those of Nos. 1 to 5.

上記実施例では酸化ビスマス系バリスタについて記載し
たが、酸化ビスマスを酸化プラセオジウムで置換した酸
化プラセオジウム系バリスタについても同様である。ま
た酸化亜鉛の製法については金属亜鉛の酸化による方法
を記載したが、塩基性炭酸亜鉛の熱分解による方法によ
って得られる酸化亜鉛原料についても前述と同様である
Although the above embodiment describes a bismuth oxide varistor, the same applies to a praseodymium oxide varistor in which bismuth oxide is replaced with praseodymium oxide. Furthermore, as for the method for manufacturing zinc oxide, a method using oxidation of metal zinc has been described, but the same method as described above is also applied to a zinc oxide raw material obtained by a method using thermal decomposition of basic zinc carbonate.

(発明の効果) 以上の説明から明らかなように、所定の平均粒径及び粒
度分布を有し、所定の針状結晶および所定のSiC含有
量を満たす本発明の酸化亜鉛原料によれば、これを使用
して電圧非直線抵抗体を製造することにより、内在欠陥
を低減し素子の均一性を向上させ電気的特性の良好な電
圧非直線抵抗体を得ることができる。
(Effects of the Invention) As is clear from the above explanation, according to the zinc oxide raw material of the present invention, which has a predetermined average particle size and particle size distribution, and satisfies a predetermined acicular crystal and a predetermined SiC content, By manufacturing a voltage nonlinear resistor using the method, it is possible to reduce inherent defects, improve device uniformity, and obtain a voltage nonlinear resistor with good electrical characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の酸化亜鉛原料を製造する装置の一例を
示す図、 第2図(a)〜(c)はそれぞれバリスタ電圧のバラツ
キを測定する方法を説明するための図である。 1・・・金属亜鉛     2・・・溶融炉3・・・レ
トルト炉    3a・・・酸化室4・・・冷却ダクト
    5・・・捕集タンク6・・・排風器     
 7・・・ハソグフィルタ第2図 +a) (b) 手 続 補 正  書 平成3年2月26日
FIG. 1 is a diagram showing an example of an apparatus for manufacturing the zinc oxide raw material of the present invention, and FIGS. 2(a) to 2(c) are diagrams for explaining a method for measuring variations in varistor voltage, respectively. 1... Metallic zinc 2... Melting furnace 3... Retort furnace 3a... Oxidation chamber 4... Cooling duct 5... Collection tank 6... Exhaust fan
7... Hasog filter Figure 2 + a) (b) Procedural amendment document February 26, 1991

Claims (1)

【特許請求の範囲】[Claims] 1.平均粒径0.1〜2.0μmの粒度および平均粒径
の1/2〜2倍の間に70wt%以上の粒度分布を有し
、針状結晶が20wt%以下であるとともに、不純物と
してのSiC含有量が0.001wt%以下であること
を特徴とする電圧非直線抵抗体用酸化亜鉛原料。
1. It has an average particle size of 0.1 to 2.0 μm and a particle size distribution of 70 wt% or more between 1/2 and 2 times the average particle size, and has acicular crystals of 20 wt% or less and contains no impurities. A zinc oxide raw material for a voltage nonlinear resistor, characterized in that the SiC content is 0.001 wt% or less.
JP2064432A 1989-07-11 1990-03-16 Zinc oxide raw material for voltage nonlinear resistors Expired - Lifetime JPH0686322B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2064432A JPH0686322B2 (en) 1990-03-16 1990-03-16 Zinc oxide raw material for voltage nonlinear resistors
CA002020788A CA2020788C (en) 1989-07-11 1990-07-10 Process for manufacturing a voltage non-linear resistor and a zinc oxide material to be used therefor
DE69013252T DE69013252T2 (en) 1989-07-11 1990-07-10 Method of making a non-linear voltage dependent resistor using a zinc oxide material.
EP90307522A EP0408308B1 (en) 1989-07-11 1990-07-10 Process for manufacturing a voltage non-linear resistor and a zinc oxide material to be used therefor
KR1019900010500A KR970007283B1 (en) 1989-07-11 1990-07-11 Process for manufacturing a voltage non-linear resistor & a zinc oxide material to be used therefor
US07/551,151 US5248452A (en) 1989-07-11 1990-07-11 Process for manufacturing a voltage non-linear resistor
US07/796,367 US5250281A (en) 1989-07-11 1991-11-22 Process for manufacturing a voltage non-linear resistor and a zinc oxide material to be used therefor
US07/921,327 US5269971A (en) 1989-07-11 1992-07-29 Starting material for use in manufacturing a voltage non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2064432A JPH0686322B2 (en) 1990-03-16 1990-03-16 Zinc oxide raw material for voltage nonlinear resistors

Publications (2)

Publication Number Publication Date
JPH03265559A true JPH03265559A (en) 1991-11-26
JPH0686322B2 JPH0686322B2 (en) 1994-11-02

Family

ID=13258110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2064432A Expired - Lifetime JPH0686322B2 (en) 1989-07-11 1990-03-16 Zinc oxide raw material for voltage nonlinear resistors

Country Status (1)

Country Link
JP (1) JPH0686322B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611192B1 (en) 1999-11-12 2003-08-26 Murata Manufacturing Co., Ltd. Voltage-nonlinear resistor, method for making the same, and varistor using the same
JP2007234995A (en) * 2006-03-02 2007-09-13 Tdk Corp Method of manufacturing laminated chip varistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611192B1 (en) 1999-11-12 2003-08-26 Murata Manufacturing Co., Ltd. Voltage-nonlinear resistor, method for making the same, and varistor using the same
KR100469626B1 (en) * 1999-11-12 2005-02-02 가부시키가이샤 무라타 세이사쿠쇼 Voltage-nonlinear resistor, method for making the same, and varistor using the same
JP2007234995A (en) * 2006-03-02 2007-09-13 Tdk Corp Method of manufacturing laminated chip varistor
JP4710654B2 (en) * 2006-03-02 2011-06-29 Tdk株式会社 Manufacturing method of multilayer chip varistor

Also Published As

Publication number Publication date
JPH0686322B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
JPH03265559A (en) Zinc oxide as starting material for voltage nonlinear resistor
Asokan et al. Influence of Process Variables on Microstructure and V‐I Characteristics of Multicomponent ZnO‐Based Nonlinear Resistors
US5248452A (en) Process for manufacturing a voltage non-linear resistor
US5250281A (en) Process for manufacturing a voltage non-linear resistor and a zinc oxide material to be used therefor
JPH0817122B2 (en) Method of manufacturing voltage non-linear resistor
JP5264929B2 (en) Method for manufacturing voltage nonlinear resistor
JPH0297002A (en) Manufacture of voltage non-linear resistor
JP4443122B2 (en) Method for manufacturing voltage nonlinear resistor
JP5334636B2 (en) Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
US5269971A (en) Starting material for use in manufacturing a voltage non-linear resistor
JPH02220402A (en) Voltage non-linear resistor and its manufacture
JP2559838B2 (en) Voltage nonlinear resistor
JP2003297612A (en) Voltage nonlinear resistor and its manufacturing method
JPH03142802A (en) Manufacture of voltage-dependent nonlinear resistor
JP4003309B2 (en) Varistor and manufacturing method thereof
JPH07109804B2 (en) Method for manufacturing voltage non-linear resistor
JPH01222404A (en) Manufacture of voltage dependent non-linear resistor
JPH05258920A (en) Manufacture of voltage non-linear resistor
JPH0323601A (en) Manufacture of nonlinear voltage resistor
JPH01120004A (en) Manufacture of voltage nonlinear resistor
JPH0734406B2 (en) Voltage nonlinear resistor
JPH0379852B2 (en)
JPH0812808B2 (en) Method of manufacturing voltage non-linear resistor
JPH0412007B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 16