JPH02220402A - Voltage non-linear resistor and its manufacture - Google Patents

Voltage non-linear resistor and its manufacture

Info

Publication number
JPH02220402A
JPH02220402A JP1039258A JP3925889A JPH02220402A JP H02220402 A JPH02220402 A JP H02220402A JP 1039258 A JP1039258 A JP 1039258A JP 3925889 A JP3925889 A JP 3925889A JP H02220402 A JPH02220402 A JP H02220402A
Authority
JP
Japan
Prior art keywords
zinc oxide
voltage
voltage non
zinc
nonlinear resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1039258A
Other languages
Japanese (ja)
Other versions
JPH07109805B2 (en
Inventor
Osamu Imai
修 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1039258A priority Critical patent/JPH07109805B2/en
Publication of JPH02220402A publication Critical patent/JPH02220402A/en
Publication of JPH07109805B2 publication Critical patent/JPH07109805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To improve the voltage non-linear characteristics in a large current region and to improve electro-life and surge-strength by incorporating zinc oxide phase of Zn1+xO (x>=1X10<-5>) into zinc oxide particles in a sintered body. CONSTITUTION:In a sintered body which has a main element of zinc oxide and is provided with voltage non-linear characteristics, zinc oxide phase of Zn1+xO (x>=1X10<-5>) is incorporated into zinc oxide particles. That is, small resistance of each particle and uniform potential barrier among grain boundaries can be realized by incorporating a phase whose oxygen is less than a constant ratio. Thereby, it becomes possible to improve voltage non-linear characteristics in a large current region and to acquire a voltage non-linear resistor of good electro-life and surge strength.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化亜鉛を主成分とする電圧非直線抵抗体およ
びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a voltage nonlinear resistor containing zinc oxide as a main component and a method for manufacturing the same.

(従来の技術) 従来から酸化亜鉛(Zn0)を主成分としBi2O2゜
5bzO3+ 5iOz+Co*Oz+ Mn0g等の
少量の添加物を副成分として含有した抵抗体は、優れた
電圧非直線性を示すことが広く知られており、その性質
を利用して避雷器等に使用されている。
(Prior art) Conventionally, resistors containing zinc oxide (Zn0) as a main component and a small amount of additives such as Bi2O2゜5bzO3+ 5iOz+Co*Oz+Mn0g as subcomponents have widely shown excellent voltage nonlinearity. This property is known to be used in lightning arresters, etc.

この酸化亜鉛を主成分とする電圧非直線抵抗体において
、大電流領域での非直線性を改善させるために、従来、
(1)微量のAffiイオン、Gaイオン、Inイオン
を焼結体中に拡散させ、ZnOの比抵抗を下げる原子価
制御法、(2)特開昭58−122703号公報で開示
された、ZnOとAl z03+ Gat03. In
103を予じめ仮焼してAl、 Ga、 Inイオンを
ZnO中へ拡散させた後、副成分と混合し成形焼成する
方法が知られている。
Conventionally, in order to improve the nonlinearity in the large current region of this voltage nonlinear resistor whose main component is zinc oxide,
(1) A valence control method for lowering the resistivity of ZnO by diffusing trace amounts of Affi ions, Ga ions, and In ions into a sintered body, (2) ZnO disclosed in JP-A-58-122703. and Al z03+ Gat03. In
A method is known in which ZnO is preliminarily calcined to diffuse Al, Ga, and In ions into ZnO, and then mixed with subcomponents and then shaped and fired.

(発明が解決しようとする課題) しかしながら、上述した原子価制御法(1)においては
、主成分のZnOや副成分とともにA2イオン等を単に
混合成形して焼結するだけであるため、微量のAN、 
Ga、 Inイオンが十分にZnO結晶中へ均一に拡散
されず、大部分は粒界層、スピネル相へとり込まれてい
た。従って、大電流領域の非直線の改善が不充分で、課
電寿命が悪化するとともに、雷サージ印加後のバリスタ
電圧が大きく低下するため、常時課電では抵抗体が熱暴
走するという問題があった。
(Problem to be Solved by the Invention) However, in the above-mentioned valence control method (1), A2 ions, etc. are simply mixed and molded together with the main component ZnO and the subcomponents and sintered. AN,
Ga and In ions were not sufficiently uniformly diffused into the ZnO crystal, and most of them were incorporated into the grain boundary layer and spinel phase. Therefore, the non-linearity in the large current region is not sufficiently improved, the life of the energized material is deteriorated, and the varistor voltage decreases significantly after a lightning surge is applied, resulting in the problem of thermal runaway of the resistor when energized constantly. Ta.

また、特開昭58−122703号公報で開示された方
法(2)では、上述した原子価制御方法(1)よりも効
果はあるが、ZnOが不均一に粒子成長するためサージ
耐量が低下する問題があった。
Furthermore, method (2) disclosed in JP-A-58-122703 is more effective than the above-mentioned valence control method (1), but the surge resistance is reduced due to non-uniform grain growth of ZnO. There was a problem.

本発明の目的は上述した課題を解消して、大電流域にお
ける電圧非直線性を改善できるとともに、課電寿命およ
びサージ耐量も良好な電圧非直線抵抗体およびその製造
方法を提供しようとするものである。
An object of the present invention is to solve the above-mentioned problems and provide a voltage nonlinear resistor that can improve voltage nonlinearity in a large current range and also has good charging life and surge resistance, and a method for manufacturing the same. It is.

(課題を解決するための手段) 本発明の電圧非直線抵抗体は、酸化亜鉛を主成分とし、
電圧非直線性を有する焼結体において、焼結体中の酸化
亜鉛粒子がZn1..0 (x≧I Xl0−5)であ
る酸化亜鉛相を含有することを特徴とするものである。
(Means for Solving the Problems) The voltage nonlinear resistor of the present invention contains zinc oxide as a main component,
In the sintered body having voltage nonlinearity, the zinc oxide particles in the sintered body are Zn1. .. 0 (x≧I Xl0-5).

また、本発明の電圧非直線抵抗体の製造方法は、亜鉛蒸
気を酸化する間接法により製造した酸化亜鉛原料に金属
酸化物を添加混合後、成形、焼成する電圧非直線抵抗体
の製造方法において、酸化亜鉛原料として亜鉛蒸気を酸
素分圧120torr以下の雰囲気で酸化して得たもの
を使用するとともに、酸素分圧150 torr以上の
雰囲気で焼成することを特徴とするものである。
In addition, the method for manufacturing a voltage nonlinear resistor of the present invention includes adding and mixing a metal oxide to a zinc oxide raw material manufactured by an indirect method of oxidizing zinc vapor, followed by molding and firing. The method is characterized in that a zinc oxide raw material obtained by oxidizing zinc vapor in an atmosphere with an oxygen partial pressure of 120 torr or less is used, and firing is performed in an atmosphere with an oxygen partial pressure of 150 torr or more.

(作 用) 上述した構成において、本発明の電圧非直線抵抗体では
、酸化亜鉛(ZnO)粒子中にZn、、Xo(x≧lX
l0−’好ましくはX≧1xto−5)である酸化亜鉛
相すなわち酸素が足止よりも少ない相を含ませることに
より、各粒子の抵抗が小さくでき、各粒界間の電位障壁
も均一にすることができるため、大電流域における電圧
非直線性を改善できるとともに、各種特性も良好な抵抗
体を得ることができる。このとき、Znl*10の相を
含む酸化亜鉛粒子の中央部の酸素濃度が表面部より小さ
いと好ましい。また、全てのZnO粒子がZn、、Oで
あることが好ましいが、必ずしもこれに限定されるもの
ではない。
(Function) In the above-described configuration, the voltage nonlinear resistor of the present invention contains Zn, Xo (x≧lX) in the zinc oxide (ZnO) particles.
By including a zinc oxide phase (preferably Therefore, voltage nonlinearity in a large current range can be improved, and a resistor with good various characteristics can be obtained. At this time, it is preferable that the oxygen concentration in the central part of the zinc oxide particles containing the Znl*10 phase is lower than that in the surface part. Further, it is preferable that all the ZnO particles are Zn, , O, but the invention is not necessarily limited to this.

また、本発明の電圧非直線抵抗体の製造方法では、亜鉛
蒸気を酸素分圧120torr以下好ましくは50to
rr以下の雰囲気で酸化させることにより上述したZn
O粒子を得ることができ、さらにこのZnO粒子を使用
して電圧非直線抵抗体を製造するにあたり、素体の焼成
を酸素分圧150torr以上の雰囲気下好ましくは1
000〜1300℃で実施することにより、上述したよ
うに大電流域における電圧非直線性を改善できるととも
に、各種特性も良好な抵抗体を得ることができる。
Further, in the method for manufacturing a voltage nonlinear resistor of the present invention, zinc vapor is heated to an oxygen partial pressure of 120 torr or less, preferably 50 torr.
The above-mentioned Zn is oxidized in an atmosphere below rr.
In order to obtain O particles and to manufacture a voltage nonlinear resistor using these ZnO particles, the element body is preferably fired in an atmosphere with an oxygen partial pressure of 150 torr or more.
By carrying out the test at a temperature of 000 to 1300[deg.] C., voltage nonlinearity in a large current range can be improved as described above, and a resistor with good various characteristics can be obtained.

(実施例) 第1図は従来から公知の本発明の電圧非直線抵抗体の製
造方法を実施する装置の一例の構成を示す図である。第
1図において、1は原料となる金属亜鉛、2は金属亜鉛
1を溶融するための溶融炉、3は酸化反応を実施するレ
トルト炉、4は冷却ダクト、5は捕集タンク、6は排風
器、7はバングフィルタである。上述した構成の装置に
おいて、溶融炉2で熔融した金属亜鉛lをレトルト炉3
に入れ、外部より約1300〜1イ00°Cに加熱する
と、レトルト炉3内の亜鉛は沸点(約900°C)に達
し、蒸発口より噴出し、レトルト炉3内の酸素分圧12
0torr以下の雰囲気に保持した酸化室3aで燃焼酸
化する。燃焼酸化して酸化室3a中に得られた高温の酸
化亜鉛は、排風器6の吸引力により吸引されて、冷却ダ
クト4を通過して冷却された後、大部分が捕集タンク5
内にまた一部はバッグフィルタ7内に本発明の酸化亜鉛
として得ることができる。
(Example) FIG. 1 is a diagram showing the configuration of an example of an apparatus for implementing the conventionally known method for manufacturing a voltage nonlinear resistor of the present invention. In Figure 1, 1 is metal zinc as a raw material, 2 is a melting furnace for melting metal zinc 1, 3 is a retort furnace for carrying out an oxidation reaction, 4 is a cooling duct, 5 is a collection tank, and 6 is an exhaust gas. Wind fan 7 is a bang filter. In the apparatus configured as described above, the metal zinc l melted in the melting furnace 2 is transferred to the retort furnace 3.
When the zinc in the retort furnace 3 reaches its boiling point (approximately 900°C) and is ejected from the evaporation port, the oxygen partial pressure inside the retort furnace 3 rises to 12
Combustion oxidation is performed in the oxidation chamber 3a maintained at an atmosphere of 0 torr or less. The high-temperature zinc oxide obtained in the oxidation chamber 3a through combustion oxidation is sucked by the suction force of the exhaust fan 6, passes through the cooling duct 4 and is cooled, and then most of the zinc oxide is transferred to the collection tank 5.
A portion of the zinc oxide of the present invention can also be obtained in the bag filter 7.

上述して得た酸化亜鉛原料から電圧非直線抵抗体を得る
方法は、以下の通りである。
A method for obtaining a voltage nonlinear resistor from the zinc oxide raw material obtained above is as follows.

酸化亜鉛を主成分とする電圧非直線抵抗体を得るには、
まず0.1〜3μ−の所定の粒度に調整した酸化亜鉛原
料と1μ−以下の所定の粒度に調整した酸化ビスマス、
酸化コバルト、酸化マンガン、酸化アンチモン、酸化ク
ロム、好ましくは非晶質の酸化ケイ素、酸化ニッケル、
酸化ホウ素、酸化恨等よりなる添加物の所定量を混合す
る。なお、この場合酸化銀、酸化ホウ素の代わりに硝酸
銀、ホウ酸を用いてもよい。好ましくは銀を含むホウケ
イ酸ビスマスガラスを用いるとよい。この際、これらの
原料粉末に対して所定量のポリビニルアルコール水溶液
および酸化アルミニウム源として硝酸アルミニウム溶液
の所定量等を加える。
To obtain a voltage nonlinear resistor whose main component is zinc oxide,
First, zinc oxide raw material adjusted to a predetermined particle size of 0.1 to 3μ-, bismuth oxide adjusted to a predetermined particle size of 1μ or less,
Cobalt oxide, manganese oxide, antimony oxide, chromium oxide, preferably amorphous silicon oxide, nickel oxide,
A predetermined amount of additives such as boron oxide, oxide, etc. are mixed. In this case, silver nitrate or boric acid may be used instead of silver oxide or boron oxide. Preferably, bismuth borosilicate glass containing silver is used. At this time, a predetermined amount of a polyvinyl alcohol aqueous solution and a predetermined amount of an aluminum nitrate solution as an aluminum oxide source are added to these raw material powders.

次に好ましくは200 mm1g以下の真空度で減圧脱
気を行い混合泥漿を得る。ここに混合泥漿の水分量は3
0〜35w tχ程度に、またその混合泥漿の粘度は1
00±50cpとするのが好ましい0次に得られた混合
泥漿を噴霧乾燥装置に供給して平均粒径50〜150μ
m、好ましくは80〜120μ輪で、水分量が0.5〜
2.0 iitχ、より好ましくは0.9〜1.5袢t
χの造粒粉を造粒する。次に得られた造粒粉を、成形工
程におイテ、成形圧力800〜1000kg/C1zノ
下で所定の形状に成形する。そしてその成形体を空気中
で昇降温速度10〜LOO”C/hrで400〜600
°C1保持時間1−10時間で結合剤を飛散除去するこ
とが好ましい。
Next, deaeration is performed under reduced pressure, preferably at a vacuum level of 200 mm/g or less, to obtain a mixed slurry. Here, the water content of the mixed slurry is 3
0 to 35w tχ, and the viscosity of the mixed slurry is 1
The mixed slurry obtained in the 0th order is preferably set to 00±50cp and is fed to a spray dryer to obtain an average particle size of 50 to 150μ.
m, preferably 80 to 120μ ring, and moisture content is 0.5 to
2.0 iitχ, more preferably 0.9 to 1.5 t
The granulated powder of χ is granulated. Next, the obtained granulated powder is subjected to a molding step and molded into a predetermined shape under a molding pressure of 800 to 1000 kg/C1z. Then, the molded body was heated in air at a heating and cooling rate of 10 to 400 to 600 C/hr.
It is preferable that the binder is removed by scattering for a holding time of 1 to 10 hours at °C.

次に、素体の側面に絶縁被覆層を形成する。なお、本願
発明の素体とは成形体または成形体を上記条件で熱処理
した脱脂体をいう。本願発明では、BizOz+ 5l
)z(h+ ZnO,Sing等の所定量に有機結合剤
としてエチルセルロース、ブチルカルピトール、酢酸n
ブチル等を加えた酸化物ペーストを、60〜300μ閘
の厚さに素体の側面に塗布する。なお、素体を昇降温速
度20〜70°C/hr 、 800〜1000°C1
保持時間1〜5時間保持(好ましくは昇温過程を酸化性
または中性雰囲気、最高温度保持及び冷却過程を中性雰
囲気)仮焼後、その側面に酸化物ペーストを塗布すると
好ましい0次に、これを昇降温速度20〜60°C/h
r 、 1000〜1300°C好ましくは1100〜
1250°C13〜7時間という条件で本発明の要件で
ある酸素分圧150torr以上の雰囲気で本焼成する
。なお、ガラス粉末に有機結合剤としてエチルセルロー
ス、ブチルカルピトール、酢酸nブチル等を加えたガラ
スペーストを前記の絶縁被覆層上に100〜300μ剛
の厚さに塗布し、空気中で昇降温速度50〜200°C
/hr 、400〜900°C保持時間0.5〜2時間
という条件で熱処理することによりガラス層を形成する
と好ましい。
Next, an insulating coating layer is formed on the side surface of the element body. Incidentally, the element body of the present invention refers to a molded body or a degreased body obtained by heat-treating the molded body under the above conditions. In the present invention, BizOz+ 5l
)z(h+ Ethyl cellulose, butyl calpitol, acetic acid n as an organic binder to a predetermined amount of ZnO, Sing, etc.
An oxide paste containing butyl or the like is applied to the side surface of the element body to a thickness of 60 to 300 μm. In addition, the heating and cooling rate of the element body is 20 to 70°C/hr, 800 to 1000°C1
Holding time: 1 to 5 hours (preferably in an oxidizing or neutral atmosphere during the heating process, and in a neutral atmosphere during the maximum temperature holding and cooling process) After calcination, it is preferable to apply an oxide paste to the side surface. This temperature increase/decrease rate is 20~60°C/h.
r, 1000~1300°C, preferably 1100~
Main firing is performed at 1250° C. for 13 to 7 hours in an atmosphere with an oxygen partial pressure of 150 torr or more, which is a requirement of the present invention. A glass paste prepared by adding ethyl cellulose, butyl calpitol, n-butyl acetate, etc. as an organic binder to glass powder was applied to a thickness of 100 to 300 μm on the above-mentioned insulating coating layer, and the temperature was raised and lowered at a rate of 50 μm in air. ~200°C
It is preferable to form the glass layer by heat treatment under the following conditions: /hr, 400 to 900°C for 0.5 to 2 hours.

その後、得られた電圧非直線抵抗体の両端面をSac、
 AI!zOi+ダイヤモンド等の1400〜2000
相当の研磨剤により水好ましくは油を研磨液として使用
して研磨する。次に、研磨面を洗浄後、研摩した両端面
に例えばアルミニウム等によって電極を例えば溶射によ
り設けて電圧非直線抵抗体を得ている。
After that, both end faces of the obtained voltage nonlinear resistor are Sac,
AI! zOi + diamond etc. 1400~2000
Polishing is performed with a suitable abrasive using water, preferably oil, as the polishing fluid. Next, after cleaning the polished surface, electrodes made of aluminum or the like are provided on both polished end surfaces by, for example, thermal spraying to obtain a voltage nonlinear resistor.

以下、実際に本発明の範囲内および範囲外の電圧非直線
抵抗体において、各種特性を測定した結果について説明
する。
Hereinafter, the results of actually measuring various characteristics of voltage nonlinear resistors within and outside the scope of the present invention will be described.

実施■上 上述した方法に従って、Biz031 Coz04. 
Mn01゜5btO,、Crt03. Nto、 St
o、を各々0.1〜2.Qモル%、八〇 zOx O,
005モル%、銀を含むホウケイ酸ビスマスガラス0.
01〜0.3 wtχ、および残部が第1表に示す酸素
分圧の雰囲気中から生成されたZnOからなる原料から
第1表に示す本焼条件で直径47m、厚さ20鴎の形状
でバリスタ電圧(V+□)が200〜230 V /n
+s+の第1表に示す本発明試験Nα1〜8と比較例試
験NO,1〜3の電圧非直線抵抗体を準備した。なお、
抵抗体の焼成は、400″C5時間で脱脂後第1表に示
す酸素分圧の雰囲気下で1150°C5時間保持の条件
で実施した。
Implementation ■ According to the method described above, Biz031 Coz04.
Mn01゜5btO,, Crt03. Nto, St
o, respectively 0.1 to 2. Q mol%, 80 zOx O,
Bismuth borosilicate glass containing 0.05 mol% silver.
A varistor with a diameter of 47 m and a thickness of 20 mm was made from a raw material consisting of ZnO produced in an atmosphere with 01 to 0.3 wtχ and the balance having an oxygen partial pressure shown in Table 1 under the firing conditions shown in Table 1. Voltage (V+□) is 200 to 230 V/n
Voltage nonlinear resistors of present invention tests Nα1 to Nα8 and comparative example tests NO, 1 to 3 shown in Table 1 of +s+ were prepared. In addition,
The resistor was fired at 1150° C. for 5 hours in an atmosphere with an oxygen partial pressure shown in Table 1 after degreasing at 400° C. for 5 hours.

なお、抵抗体をX線回折法により格子定数の変化からZ
nO粒子中の亜鉛量を確認した結果、Zn、、0(X≧
I Xl0−5)のものであった。
In addition, Z
As a result of confirming the amount of zinc in nO particles, Zn, 0 (X≧
IXl0-5).

比較例試験N112の従来法1は、従来法により空気中
で亜鉛蒸気で酸化して得た酸化亜鉛粉末を使用して原料
混合物中に^1(N(h)s・9HzOo、oosモル
%添加して焼成によりへ2イオンを拡散させた原子価制
御法によるものを、また比較例試験隘3の従来法2は、
特開昭58−122703号公報に開示されたように、
従来法により得た酸化亜鉛粉末を使用してこれとA l
 zOsを混合後900°Cで仮焼したものを使用し、
さらに両者とも大気中で本焼成したものを示している。
Conventional method 1 of comparative example test N112 uses zinc oxide powder obtained by oxidizing with zinc vapor in air according to the conventional method, and adds ^1(N(h)s・9HzOo, oos mol%) to the raw material mixture. The method using the valence control method in which 2 ions were diffused by firing, and the conventional method 2 in Comparative Example Test No. 3,
As disclosed in Japanese Patent Application Laid-open No. 58-122703,
Using zinc oxide powder obtained by the conventional method, this and Al
After mixing zOs, we calcined it at 900°C.
Furthermore, both of them show those that were actually fired in the atmosphere.

準備した本発明および比較例の抵抗体に対して、制限電
圧比、■、□低下率、雷サージ耐量および開閉サージ耐
量を測定する、とともに、漏洩電流の比を求めた。結果
を第1表に示す。ここで、制限電圧比は、バリスタ電圧
v1゜、とv1□の比より求めたeVIlIA低下率は
、30KAの電流を8/20 u sの電流波形で10
回印加した前後のVIIIAより求めた。雷サージ耐量
は、100に八、 ll0KA、 120KAの電流を
4710μsの電流波形で2回繰り返し印加した後破壊
したものを×、破壊しなかったものをOと表示した。開
閉サージ耐量は800A、 900^、 100OAの
電流を211Isの電流波形で20回繰り返し印加した
後破壊したものを×、破壊しなかったものを○と表示し
た。さらに、漏洩電流の比は、素子を周囲温度130 
’C1課電率95%で課電し、課電直後に対する課電1
00時間後の電流比11゜。時間/1.時間から求めた
。なお、参考までに、各試験NαのZnO原料の平均粒
径を求め、°あわせて第1表に記載した。
For the prepared resistors of the present invention and comparative examples, the limiting voltage ratio, ■, □ reduction rate, lightning surge withstand capacity, and switching surge withstand capacity were measured, and the leakage current ratio was determined. The results are shown in Table 1. Here, the limiting voltage ratio is the varistor voltage v1°, and the eVIlIA reduction rate obtained from the ratio of v1□ is 10
It was determined from VIIIA before and after application. The lightning surge resistance is indicated as 8 in 100, 100 KA, and those that were destroyed after applying a current of 120 KA twice with a current waveform of 4710 μs as ×, and those that were not destroyed as O. For the switching surge resistance, the circuits that were destroyed after repeatedly applying currents of 800A, 900^, and 100OA with a current waveform of 211Is 20 times were indicated as ×, and those that were not destroyed were indicated as ○. Furthermore, the ratio of leakage current is
'Charging at C1 charging rate of 95%, charging 1 immediately after charging
Current ratio 11° after 00 hours. Time/1. I asked for it from time. For reference, the average particle size of the ZnO raw material for each test Nα was determined and is also listed in Table 1.

第1表の結果から、所定の酸素分圧からなる雰囲気中で
の酸化亜鉛原料を使用し、所定の酸素分圧で焼成して得
たZn1+、0 (x≧l Xl0−5)粒子からなる
本発明の抵抗体は、比較例に比べて緒特性が良好なこと
がわかった。
From the results in Table 1, it can be seen that the zinc oxide raw material is composed of Zn1+,0 (x≧l It was found that the resistor of the present invention had better resistance characteristics than the comparative example.

裏m 上述した実施例1に従って、酸素分圧120torr以
下のNi+(h雰囲気中で生成された酸化亜鉛を用い、
焼成後のZnO粒子の不定比性を調べるため、Znl+
xOにおけるXの値を変化させた抵抗体を作製し、実施
例1と同様各種特性を測定した。結果を第2表に示す。
Back m According to Example 1 described above, using zinc oxide produced in a Ni + (h atmosphere) with an oxygen partial pressure of 120 torr or less,
In order to investigate the non-stoichiometry of ZnO particles after firing, Znl+
Resistors in which the value of X in xO was varied were manufactured, and various characteristics were measured in the same manner as in Example 1. The results are shown in Table 2.

第2表の結果から、Zn1+、OにおけるXの値がX≧
lXl0−’の本発明の試験顯1〜5は、比較例試験N
α1.2と比べて、緒特性が良好なことがわかった。
From the results in Table 2, the value of X in Zn1+, O is X≧
Tests 1 to 5 of the present invention of lXl0-' are comparative test N
It was found that the characteristics were better compared to α1.2.

(発明の効果) 以上の説明から明らかなように、本発明の電圧非直線抵
抗体およびその製造方法によれば、亜鉛蒸気を酸素分圧
120torr以下の雰囲気で酸化させることによりZ
n+*xO(x≧I Xl0−5)とした粒子を使用し
て電圧非直線抵抗体を製造することにより、大電流域に
おける電圧非直線性を改善できるとともに、課電寿命お
よびサージ耐量も良好な電圧非直線抵抗体を得ることが
できる。
(Effects of the Invention) As is clear from the above description, according to the voltage nonlinear resistor and the manufacturing method thereof of the present invention, Zinc vapor is oxidized in an atmosphere with an oxygen partial pressure of 120 torr or less.
By manufacturing a voltage nonlinear resistor using particles with n+*xO (x≧I A voltage nonlinear resistor can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電圧非直線抵抗体の製造方法を実施す
る装置の一例の構成を示す図である。 ■・・・金属亜鉛     2・・・溶融炉3・・・レ
トルト炉    3a・・・酸化室4・・・冷却ダクト
    5・・・捕集タンク6・・・排風器     
 7・・・バッグフィルタ第1図
FIG. 1 is a diagram showing the configuration of an example of an apparatus for carrying out the method of manufacturing a voltage nonlinear resistor of the present invention. ■... Metallic zinc 2... Melting furnace 3... Retort furnace 3a... Oxidation chamber 4... Cooling duct 5... Collection tank 6... Exhaust fan
7...Bag filter Figure 1

Claims (2)

【特許請求の範囲】[Claims] 1.酸化亜鉛を主成分とし、電圧非直線性を有する焼結
体において、焼結体中の酸化亜鉛粒子がZn_1_+_
xO(x≧1×10^−^5)である酸化亜鉛相を含有
することを特徴とする電圧非直線抵抗体。
1. In a sintered body containing zinc oxide as a main component and having voltage nonlinearity, the zinc oxide particles in the sintered body are Zn_1_+_
A voltage nonlinear resistor characterized by containing a zinc oxide phase where xO (x≧1×10^-^5).
2.亜鉛蒸気を酸化する間接法により製造した酸化亜鉛
原料に金属酸化物を添加混合後、成形、焼成する電圧非
直線抵抗体の製造方法において、酸化亜鉛原料として亜
鉛蒸気を酸素分圧120torr以下の雰囲気で酸化し
て得たものを使用するとともに、酸素分圧150tor
r以上の雰囲気で焼成することを特徴とする電圧非直線
抵抗体の製造方法。
2. In a method for manufacturing a voltage nonlinear resistor in which a metal oxide is added to a zinc oxide raw material produced by an indirect method of oxidizing zinc vapor, mixed, molded, and fired, zinc vapor is used as a zinc oxide raw material in an atmosphere with an oxygen partial pressure of 120 torr or less. At the same time, the oxygen partial pressure is 150 torr.
A method for manufacturing a voltage nonlinear resistor, characterized by firing in an atmosphere of r or more.
JP1039258A 1989-02-21 1989-02-21 Voltage nonlinear resistor and method of manufacturing the same Expired - Lifetime JPH07109805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1039258A JPH07109805B2 (en) 1989-02-21 1989-02-21 Voltage nonlinear resistor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1039258A JPH07109805B2 (en) 1989-02-21 1989-02-21 Voltage nonlinear resistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02220402A true JPH02220402A (en) 1990-09-03
JPH07109805B2 JPH07109805B2 (en) 1995-11-22

Family

ID=12548118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1039258A Expired - Lifetime JPH07109805B2 (en) 1989-02-21 1989-02-21 Voltage nonlinear resistor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH07109805B2 (en)

Also Published As

Publication number Publication date
JPH07109805B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
JPS63136603A (en) Manufacture of voltage nonlinear resistor
CA2217328A1 (en) Lateral high-resistance additive for zinc oxide varistor, zinc oxide varistor produced using the same, and process for producing the varistor
JPH02220402A (en) Voltage non-linear resistor and its manufacture
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH03142801A (en) Manufacture of voltage-dependent nonlinear resistor
JPH0297002A (en) Manufacture of voltage non-linear resistor
JPH0734406B2 (en) Voltage nonlinear resistor
JPH01222404A (en) Manufacture of voltage dependent non-linear resistor
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JPH04253301A (en) Manufacture of non-linear varistor
JPH0379850B2 (en)
JPH02142101A (en) Manufacture of voltage nonlinear resistor and high-density voltage nonlinear resistor
JP2559838B2 (en) Voltage nonlinear resistor
JPH03265559A (en) Zinc oxide as starting material for voltage nonlinear resistor
JPS62249401A (en) Manufacture of voltage nonlinear resistance element
JPS5831721B2 (en) Voltage nonlinear resistance element and its manufacturing method
JPH03142802A (en) Manufacture of voltage-dependent nonlinear resistor
JPH07105286B2 (en) Voltage nonlinear resistor
JPH0323601A (en) Manufacture of nonlinear voltage resistor
JPH09260109A (en) Voltage nonlinear resistor manufacturing method
JPH03181102A (en) Manufacture of nonlinearly voltage-dependent resistor
JPH01230205A (en) Manufacture of nonlinear voltage resistor
JPH0817122B2 (en) Method of manufacturing voltage non-linear resistor
JPH0247802A (en) Voltage nonlinear resistor body
JPH02238603A (en) Manufacture of voltage-dependent nonlinear resistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 14