JP2559838B2 - Voltage nonlinear resistor - Google Patents

Voltage nonlinear resistor

Info

Publication number
JP2559838B2
JP2559838B2 JP1028679A JP2867989A JP2559838B2 JP 2559838 B2 JP2559838 B2 JP 2559838B2 JP 1028679 A JP1028679 A JP 1028679A JP 2867989 A JP2867989 A JP 2867989A JP 2559838 B2 JP2559838 B2 JP 2559838B2
Authority
JP
Japan
Prior art keywords
phase
resistance layer
resistor
high resistance
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1028679A
Other languages
Japanese (ja)
Other versions
JPH02208901A (en
Inventor
今井  修
立 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1028679A priority Critical patent/JP2559838B2/en
Publication of JPH02208901A publication Critical patent/JPH02208901A/en
Application granted granted Critical
Publication of JP2559838B2 publication Critical patent/JP2559838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化亜鉛を主成分とする電圧非直線抵抗体に
関し、安定した電気特性に雷サージ耐量特性を有する電
圧非直線抵抗体に関するものでる。
Description: TECHNICAL FIELD The present invention relates to a voltage non-linear resistor containing zinc oxide as a main component, and more particularly to a voltage non-linear resistor having stable electrical characteristics and lightning surge withstand characteristics. .

(従来の技術) 従来から酸化亜鉛を主成分としBi2O3,Sb2O3,SiO2,Co2
O3,MnO2等の少量の添加物を含有した抵抗体は、優れた
電圧非直線性を示すことが広く知られており、その性質
を利用して避雷器等に使用されている。
(Prior art) Bi 2 O 3 , Sb 2 O 3 , SiO 2 and Co 2 containing zinc oxide as a main component have been conventionally used.
It is widely known that a resistor containing a small amount of additives such as O 3 and MnO 2 exhibits excellent voltage non-linearity, and it is used in a lightning arrester or the like by utilizing the property.

この電圧非直線抵抗体では、雷等のサージ電流が素子
に印加された場合に主として素子側面に沿った放電いわ
ゆる沿面放電が生じ素子が破壊することがあるため、円
周側面に少なくとも酸化ビスマス相および珪酸亜鉛相を
含む例えばBi−Sb−Si系化合物またはBi−Sb−Si−Zn系
化合物よりなる側面高抵抗層を設けるのが一般的であ
る。
In this voltage non-linear resistor, when a surge current such as lightning is applied to the element, discharge may occur mainly along the side surface of the element, so-called creeping discharge, and the element may be destroyed. It is common to provide a lateral high-resistance layer made of, for example, a Bi-Sb-Si-based compound or a Bi-Sb-Si-Zn-based compound containing a zinc silicate phase.

(発明が解決しようとする課題) このうち、酸化ビスマス相は吸湿性に影響をおよぼす
ため、酸化ビスマスの結晶相の状態によっては、側面高
抵抗層の吸湿性が低下する問題があった。その結果、側
面高抵抗層における沿面放電を高いレベルで防止するこ
とができず、抵抗体の雷サージ耐量が低下してしまう問
題があった。
(Problems to be Solved by the Invention) Among these, since the bismuth oxide phase affects the hygroscopicity, there is a problem that the hygroscopicity of the side surface high resistance layer is lowered depending on the state of the crystal phase of bismuth oxide. As a result, creeping discharge in the side surface high resistance layer cannot be prevented at a high level, and there is a problem that the lightning surge resistance of the resistor is reduced.

本発明の目的は上述した課題を解消して、側面高抵抗
層の耐湿性を改善可能で、抵抗体の雷サージ耐量の向上
も可能な電圧非直線抵抗体を提供しようとするものであ
る。
An object of the present invention is to solve the above-mentioned problems and to provide a voltage non-linear resistor which can improve the moisture resistance of the lateral high-resistance layer and can also improve the lightning surge withstand capability of the resistor.

(課題を解決するための手段) 本発明の電圧非直線抵抗体は、酸化亜鉛を主成分とし
て少なくとも一種以上の金属酸化物を含んでなる焼結体
の側面に、少なくとも酸化ビスマス相および珪酸亜鉛相
を含む側面高抵抗層を有する電圧非直線抵抗体におい
て、側面高抵抗層中に存在する酸化ビスマス相が30重量
%以上のγ相を含むことを特徴とするものである。
(Means for Solving the Problem) The voltage nonlinear resistor of the present invention has at least a bismuth oxide phase and a zinc silicate on a side surface of a sintered body containing zinc oxide as a main component and at least one metal oxide. A voltage non-linear resistor having a side surface high resistance layer containing a phase is characterized in that the bismuth oxide phase present in the side surface high resistance layer contains 30% by weight or more of the γ phase.

(作 用) 上述した構成において、側面高抵抗層中に存在する酸
化ビスマス相が30重量%(以下、単に%と記す)以上の
γ相を含むと、側面高抵抗層の緻密性が向上しその結果
耐湿性も向上するため、抵抗体の雷サージ耐量も向上す
ることを見出した。
(Operation) In the above structure, if the bismuth oxide phase present in the lateral high-resistance layer contains 30% by weight (hereinafter simply referred to as%) or more of the γ phase, the denseness of the lateral high-resistance layer is improved. As a result, it has been found that the resistance to lightning surge of the resistor is also improved because the moisture resistance is also improved.

また、側面高抵抗層中に存在する珪酸亜鉛相が連続層
になっていると、更に耐湿性が向上し抵抗体の雷サージ
耐量も向上するため好ましいとともに、側面高抵抗層中
にスピネル結晶相を含むと、抵抗体中からの必要以上の
酸化ビスマスの拡散、蒸発を防ぎ、均一な側面高抵抗層
を形成するため好ましい。
Further, it is preferable that the zinc silicate phase present in the side surface high resistance layer is a continuous layer because it further improves the moisture resistance and the lightning surge resistance of the resistor, and at the same time, the side surface high resistance layer has a spinel crystal phase. It is preferable to contain the above because it prevents unnecessary diffusion and evaporation of bismuth oxide from the resistor and forms a uniform side surface high resistance layer.

上記γ相を含有する側面高抵抗層を得るためには、高
抵抗層を形成する混合物中のSi成分としてその平均粒径
が10μm以下好ましくは3μm以下の非晶質シリカを使
用するとともに、平均粒径が10μm以下好ましくは5μ
m以下のBi2O3および必要に応じて平均粒径が10μm以
下好ましくは3μm以下のSb2O3を使用する必要があ
る。また、抵抗体の側面に5.5〜33.0mg/cm2の塗布量で
側面高抵抗層を設けるとともに、1000〜1300℃で側面高
抵抗層を焼成した後600〜900℃の冷却速度を10〜60℃/h
rとすると好ましい。
In order to obtain the lateral high resistance layer containing the γ phase, amorphous silica having an average particle size of 10 μm or less, preferably 3 μm or less is used as the Si component in the mixture forming the high resistance layer, and Particle size is 10μm or less, preferably 5μ
It is necessary to use Bi 2 O 3 of m or less and, if necessary, Sb 2 O 3 having an average particle size of 10 μm or less, preferably 3 μm or less. In addition, a side surface high resistance layer is provided on the side surface of the resistor at a coating amount of 5.5 to 33.0 mg / cm 2 , and after cooling the side surface high resistance layer at 1000 to 1300 ° C, a cooling rate of 600 to 900 ° C is set to 10 to 60 ° C. ° C / h
r is preferable.

なお、使用する非晶質シリカの製造方法については特
に限定するものではないが、珪酸ナトリウムの複分解反
応から得られたものまたは四塩化珪素の熱分解により得
られたものを使用すると好ましく、その純度もSiO2とし
て95%以上であると好ましい。
The method for producing the amorphous silica to be used is not particularly limited, but it is preferable to use the one obtained from the metathesis reaction of sodium silicate or the one obtained by the thermal decomposition of silicon tetrachloride. Also, SiO 2 is preferably 95% or more.

(実施例) 酸化亜鉛を主成分とする電圧非直線抵抗体を得るに
は、まず所定の粒度に調整した酸化亜鉛原料と所定の粒
度に調整したBi2O3,Co3O4,MnO2,Sb2O3,Cr2O3,SiO2,NiO
等よりなる添加物の所定量を混合する。この際、これら
の原料粉末に対して所定量のポリビニルアルコール水溶
液等を加え、好ましくはディスパーミルにより混合した
後、好ましくはスプレードライヤにより造粒して造粒物
を得る。造粒後、成形圧力800〜1000kg/cm2の下で所定
の形状に成形する。その成形体を昇降温速度50〜70℃/h
rで800〜1000℃、保持時間1〜5時間という条件で仮焼
成する。
(Example) In order to obtain a voltage nonlinear resistor containing zinc oxide as a main component, first, a zinc oxide raw material adjusted to a predetermined particle size and Bi 2 O 3 , Co 3 O 4 , MnO 2 adjusted to a predetermined particle size were prepared. , Sb 2 O 3 ,, Cr 2 O 3 ,, SiO 2 , NiO
And the like. At this time, a predetermined amount of polyvinyl alcohol aqueous solution or the like is added to these raw material powders, preferably mixed by a disper mill, and then preferably granulated by a spray dryer to obtain a granulated product. After granulation, it is molded into a predetermined shape under a molding pressure of 800 to 1000 kg / cm 2 . The temperature rise / fall rate of the molded body is 50-70 ℃ / h
Preliminary firing is performed under the conditions of r = 800 to 1000 ° C. and holding time of 1 to 5 hours.

なお、仮焼の前に成形体を昇降温速度10〜100℃/hrで
400〜600℃で1〜10時間保持し、有機結合剤等を飛散除
去することが好ましい。そして本発明の素体とは成形体
と前記条件で熱処理した脱脂体をいう。
Before calcination, the molded body should be heated / cooled at a rate of 10-100 ° C / hr.
It is preferable to hold at 400 to 600 ° C. for 1 to 10 hours to scatter and remove the organic binder and the like. The element body of the present invention refers to a molded body and a degreased body that has been heat-treated under the above conditions.

次に、仮焼成した仮焼体の側面に側面高抵抗層を形成
する。本発明では、所定粒度に調整したビスマス化合
物、アンチモン化合物、珪素化合物等の所定量に有機結
合剤としてエチルセルロース、ブチルカルビトール、酢
酸nブチル等を加えた側面高抵抗層用の混合物ペースト
を、60〜300μmの厚さに仮焼体の側面に塗布する。こ
の際、本発明では珪素化合物として、平均粒径が10μm
以下の非晶質シリカを使用する。なお、前記混合物ペー
ストは素体に塗布してもよい。次に、これを昇降温速度
40〜60℃/hr、1000〜1300℃好ましくは1100〜1250℃、
3〜7時間という条件で本焼成した後、600〜900℃を冷
却速度10〜60℃/hrで冷却するのが好ましい。なお、カ
ラス粉末に有機結合剤としてエチルセルロース、ブチル
カルビトール、酢酸nブチル等を加えたガラスペースト
を前記の側面高抵抗層上に100〜300μmの厚さに塗布
し、空気中で昇降温速度100〜200℃/hr、400〜600℃、
保持時間0.5〜2時間という条件で熱処理することによ
りガラス層を形成すると好ましい。
Next, a side surface high resistance layer is formed on the side surface of the calcined body that has been calcined. In the present invention, a mixture paste for side surface high resistance layer is prepared by adding ethyl cellulose, butyl carbitol, n-butyl acetate or the like as an organic binder to a predetermined amount of a bismuth compound, an antimony compound, a silicon compound or the like adjusted to a predetermined particle size. Apply to the side of the calcined body to a thickness of ~ 300 μm. At this time, in the present invention, the silicon compound has an average particle size of 10 μm.
The following amorphous silica is used. The mixture paste may be applied to the element body. Next, set this temperature
40-60 ° C / hr, 1000-1300 ° C, preferably 1100-1250 ° C,
After the main calcination under the condition of 3 to 7 hours, it is preferable to cool at 600 to 900 ° C at a cooling rate of 10 to 60 ° C / hr. A glass paste prepared by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as an organic binder to crow powder is applied on the above-mentioned lateral high resistance layer to a thickness of 100 to 300 μm, and the temperature rising / falling rate is 100 in air. ~ 200 ℃ / hr, 400-600 ℃,
The glass layer is preferably formed by heat treatment under the condition of holding time of 0.5 to 2 hours.

その後、得られた電圧非直線抵抗体を両端面をSiC,Al
2O3,ダイヤモンド等の#400〜2000相当の研磨剤により
水好ましくは油を使用して研磨する。次に、研磨面を清
浄後、研磨した両端面に例えばアルミニウムによって電
極を例えば溶射により設けて電圧非直線抵抗体を得てい
る。
After that, the voltage non-linear resistor obtained was
Polishing is performed with water, preferably oil, using a polishing agent corresponding to # 400 to 2000 such as 2 O 3 and diamond. Next, after cleaning the polished surface, an electrode made of, for example, aluminum is provided on both polished surfaces by, for example, thermal spraying to obtain a voltage non-linear resistor.

以下、実際に本発明範囲内および範囲外の電圧非直線
抵抗体について各種特性を測定した結果について説明す
る。
Hereinafter, the results of actually measuring various characteristics of the voltage nonlinear resistor within and outside the range of the present invention will be described.

実 施 例 上述した方法で作成した直径47mm、厚さ22.5mmの電圧
非直線抵抗体において、側面高抵抗層中のγ相含有量の
影響を調べるため、素子本体の組成はBi2O31.0モル%、
Co3O40.7モル%、MnO20.5モル%、Sb2O31.0モル%、Cr2
O30.5モル%、NiO0.5モル%、Al2O30.005モル%、SiO22
モル%および残部がZnOとし、側面高抵抗層用の混合物
として、平均粒径3μmの非晶質シリカ、平均粒径5μ
mの酸化ビスマス、平均粒径3μmの酸化アンチモンを
SiO280〜90モル%、Bi2O32〜7モル%、Sb2O3残部の組
成に調整し、酸化ビスマス相の30%以上がγ相の本発明
範囲内の試料No.1〜9と、γ相が30%未満の比較例試料
No.1〜5を準備した。準備した各試料について、酸化ビ
スマスのγ相含有量、珪酸亜鉛層の状態、耐湿性および
雷サージ耐量を測定した。結果を第1表に示す。
Example In order to investigate the effect of the γ-phase content in the lateral high-resistance layer in a voltage nonlinear resistor with a diameter of 47 mm and a thickness of 22.5 mm prepared by the method described above, the composition of the element body was Bi 2 O 3 1.0 Mol%,
Co 3 O 4 0.7 mol%, MnO 2 0.5 mol%, Sb 2 O 3 1.0 mol%, Cr 2
O 3 0.5 mol%, NiO 0.5 mol%, Al 2 O 3 0.005 mol%, SiO 2 2
Mol% and the balance ZnO, the mixture for the side surface high resistance layer is amorphous silica having an average particle size of 3 μm, the average particle size is 5 μm.
m bismuth oxide and an average particle size of 3 μm antimony oxide
SiO 2 80 to 90 mol%, Bi 2 O 3 2 to 7 mol%, Sb 2 O 3 balance was adjusted to a composition, and 30% or more of the bismuth oxide phase was the γ phase. 9 and a comparative example sample in which the γ phase is less than 30%
No. 1 to 5 were prepared. For each prepared sample, the γ-phase content of bismuth oxide, the state of the zinc silicate layer, the humidity resistance and the lightning surge resistance were measured. The results are shown in Table 1.

第1表中、酸化ビスマスのγ相の含有量はX線回折に
よる内部標準法により求めた(内部標準としてCaCO3
使用)。また、珪酸亜鉛層の状態は試料から側面高抵抗
層を含む試験片を切り出し顕微鏡で観察して求めた。さ
らに、側面高抵抗層の耐湿性は、素子を蛍光探傷液中に
圧力200kg/cm2の状態で24時間浸漬した後の吸湿状態を
検査し、高抵抗層に滲みのないものを○、滲みの若干あ
るものを△、全体に滲みのあるものを×として表示し
た。さらにまた、雷サージ耐量は、100KA、110KA、120K
A、130KAのパルス電流を4/10μSの電流波形で2回印加
した後破壊しなかったものを○、破壊したものを×とし
て表示した。
In Table 1, the γ-phase content of bismuth oxide was determined by an internal standard method by X-ray diffraction (using CaCO 3 as an internal standard). The state of the zinc silicate layer was obtained by cutting out a test piece including the lateral high-resistance layer from the sample and observing it with a microscope. Furthermore, the moisture resistance of the high-resistance layer on the side surface was measured by observing the moisture absorption state after immersing the element in the fluorescent flaw detection liquid at a pressure of 200 kg / cm 2 for 24 hours. The sample with a small amount of is shown as Δ, and the sample with the entire blur is shown as ×. Furthermore, the lightning surge resistance is 100KA, 110KA, 120K.
After the pulse currents of A and 130 KA were applied twice with a current waveform of 4/10 μS, those which were not destroyed were indicated by ◯, and those which were destroyed were indicated by ×.

第1表の結果から、側面高抵抗層中の酸化ビスマス相
が30%以上のγ相を含有する本発明の抵抗体は、γ相が
30%未満の比較例の抵抗体に比して、側面高抵抗層の耐
湿性が良好で抵抗体の雷サージ耐量も良好であった。ま
た、本発明の中でも、珪酸亜鉛層が連続する試験No.1,
3,6〜9は、連続していない試験No.2,4,5と比べて雷サ
ージ耐量が良好であることもわかった。
From the results shown in Table 1, in the resistor of the present invention in which the bismuth oxide phase in the side surface high resistance layer contains 30% or more of the γ phase, the γ phase is
The resistance of the lateral high-resistance layer was good and the resistance to lightning surge of the resistor was good as compared with the resistor of less than 30% in the comparative example. Further, among the present invention, the test No. 1, in which the zinc silicate layer is continuous.
It was also found that Nos. 3,6 to 9 had better lightning surge withstanding capability than the discontinuous test Nos. 2,4,5.

(発明の効果) 以上の説明から明らかなように、本発明の電圧非直線
抵抗体によれば、側面高抵抗層中の酸化ビスマス相に30
%以上のγ相を含ますことにより、側面高抵抗層の耐湿
性が良好で、抵抗体の雷サージ耐量の向上を達成するこ
とができる。
(Effects of the Invention) As is apparent from the above description, according to the voltage nonlinear resistor of the present invention, the bismuth oxide phase in the lateral high-resistance layer has a resistance of 30%.
% Of the γ phase, the side surface high resistance layer has good moisture resistance, and the lightning surge resistance of the resistor can be improved.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化亜鉛を主成分として少なくとも一種以
上の金属酸化物を含んでなる焼結体の側面に、少なくと
も酸化ビスマス相および珪酸亜鉛相を含む側面高抵抗層
を有する電圧非直線抵抗体において、側面高抵抗層中に
存在する酸化ビスマス相が30重量%以上のγ相を含むこ
とを特徴とする電圧非直線抵抗体。
1. A voltage non-linear resistor having a side surface high resistance layer containing at least a bismuth oxide phase and a zinc silicate phase on a side surface of a sintered body containing zinc oxide as a main component and at least one kind of metal oxide. In the non-linear voltage resistor, the bismuth oxide phase present in the side surface high resistance layer contains 30 wt% or more of the γ phase.
【請求項2】前記側面高抵抗層中の珪酸亜鉛相を形成す
る珪酸亜鉛粒子が連続している請求項1記載の電圧非直
線抵抗体。
2. The voltage nonlinear resistor according to claim 1, wherein the zinc silicate particles forming the zinc silicate phase in the side surface high resistance layer are continuous.
【請求項3】前記側面高抵抗層中にスピネル相を含有す
る請求項1記載の電圧非直線抵抗体。
3. The voltage non-linear resistor according to claim 1, wherein the lateral high resistance layer contains a spinel phase.
JP1028679A 1989-02-09 1989-02-09 Voltage nonlinear resistor Expired - Lifetime JP2559838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028679A JP2559838B2 (en) 1989-02-09 1989-02-09 Voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028679A JP2559838B2 (en) 1989-02-09 1989-02-09 Voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPH02208901A JPH02208901A (en) 1990-08-20
JP2559838B2 true JP2559838B2 (en) 1996-12-04

Family

ID=12255184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028679A Expired - Lifetime JP2559838B2 (en) 1989-02-09 1989-02-09 Voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JP2559838B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015127B2 (en) * 1980-04-07 1985-04-17 株式会社日立製作所 Voltage nonlinear resistor and its manufacturing method
JPS62282406A (en) * 1986-05-30 1987-12-08 松下電器産業株式会社 Manufacture of voltage nonlinear resistance element

Also Published As

Publication number Publication date
JPH02208901A (en) 1990-08-20

Similar Documents

Publication Publication Date Title
EP0452511B1 (en) Zinc oxide varistor, manufacture thereof, and crystallized glass composition for coating
JPH0812807B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH0429204B2 (en)
JP2559838B2 (en) Voltage nonlinear resistor
EP0332462B1 (en) Voltage non-linear resistor
JPH04253302A (en) Non-linear varistor
JPH0812808B2 (en) Method of manufacturing voltage non-linear resistor
JPH0379850B2 (en)
JPH0734405B2 (en) Voltage nonlinear resistor
JPH0379852B2 (en)
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH04257201A (en) Voltage non-linear resistor
JP2533597B2 (en) Method of manufacturing voltage non-linear resistor
JPH0812812B2 (en) Method of manufacturing voltage non-linear resistor
JPH0812804B2 (en) Voltage nonlinear resistor
JPH04253301A (en) Manufacture of non-linear varistor
JPH0812810B2 (en) Method of manufacturing voltage non-linear resistor
JPH07109804B2 (en) Method for manufacturing voltage non-linear resistor
JPH07105286B2 (en) Voltage nonlinear resistor
JPH0734406B2 (en) Voltage nonlinear resistor
JPH01230205A (en) Manufacture of nonlinear voltage resistor
JPH0686322B2 (en) Zinc oxide raw material for voltage nonlinear resistors
JPH0734402B2 (en) Voltage nonlinear resistor
JPH0812805B2 (en) Voltage nonlinear resistor
JPH0412007B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13