JPH07109805B2 - Voltage nonlinear resistor and method of manufacturing the same - Google Patents

Voltage nonlinear resistor and method of manufacturing the same

Info

Publication number
JPH07109805B2
JPH07109805B2 JP1039258A JP3925889A JPH07109805B2 JP H07109805 B2 JPH07109805 B2 JP H07109805B2 JP 1039258 A JP1039258 A JP 1039258A JP 3925889 A JP3925889 A JP 3925889A JP H07109805 B2 JPH07109805 B2 JP H07109805B2
Authority
JP
Japan
Prior art keywords
zinc oxide
voltage
zinc
resistor
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1039258A
Other languages
Japanese (ja)
Other versions
JPH02220402A (en
Inventor
今井  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1039258A priority Critical patent/JPH07109805B2/en
Publication of JPH02220402A publication Critical patent/JPH02220402A/en
Publication of JPH07109805B2 publication Critical patent/JPH07109805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化亜鉛を主成分とする電圧非直線抵抗体およ
びその製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a voltage nonlinear resistor containing zinc oxide as a main component and a method for manufacturing the same.

(従来の技術) 従来から酸化亜鉛(ZnO)を主成分としてBi2O3,Sb2O3,S
iO2,Co2O3,MnO2等の少量の添加物を副成分として含有し
た抵抗体は、優れた電圧非直線性を示すことが広く知ら
れており、その性質を利用して避雷器等に使用されてい
る。
(Prior Art) Bi 2 O 3 , Sb 2 O 3 , S containing zinc oxide (ZnO) as a main component
It is widely known that resistors containing a small amount of additives such as iO 2 , Co 2 O 3 , and MnO 2 as an auxiliary component show excellent voltage nonlinearity. Is used for.

この酸化亜鉛を主成分とする電圧非直線抵抗体におい
て、大電流領域での非直線性を改善させるために、従
来、(1)微量のAlイオン、Gaイオン、Inイオンを焼結
体中に拡散させ、ZnOの比抵抗を下げる原子価制御法、
(2)特開昭58−122703号公報で開示された、ZnOとAl2
O3,Ga2O3,In2O3を予じめ仮焼してAl,Ga,InイオンをZnO
中へ拡散させた後、副成分と混合し成形焼成する方法が
知られている。
In order to improve the non-linearity in a large current region, in the voltage non-linear resistor containing zinc oxide as a main component, (1) a small amount of Al ions, Ga ions, and In ions are conventionally added to the sintered body. Valence control method to diffuse and reduce the specific resistance of ZnO,
(2) ZnO and Al 2 disclosed in JP-A-58-122703
O 3, Ga 2 O 3, In 2 O 3 to be pre Ji because calcining Al, Ga, ZnO and In ions
A method is known in which, after diffusing into the inside, mixing with auxiliary components and molding and firing are carried out.

(発明が解決しようとする課題) しかしながら、上述した原子価制御法(1)において
は、主成分のZnOや副成分とともにAlイオン等を単に混
合成形して焼結するだけであるため、微量のAl,Ga,Inイ
オンが十分にZnO結晶中へ均一に拡散されず、大部分は
粒界層、スピネル相へとり込まれていた。従って、大電
流領域の非直線の改善が不充分で、課電寿命が悪化する
とともに、雷サージ印加後のバリスタ電圧が大きく低下
するため、常時課電では抵抗体が熱暴走するという問題
があった。
(Problems to be Solved by the Invention) However, in the valence control method (1) described above, only a small amount of ZnO or a sub-component, Al ion, etc. is simply mixed and molded and sintered. Al, Ga and In ions were not sufficiently diffused into the ZnO crystal, and most of them were taken into the grain boundary layer and spinel phase. Therefore, the non-linearity of the large current region is not sufficiently improved, the life of the voltage is deteriorated, and the varistor voltage after the lightning surge is applied is greatly reduced. It was

また、特開昭58−122703号公報で開示された方法(2)
では、上述した原子価制御方法(1)よりも効果はある
が、ZnOが不均一に粒子成長するためサージ耐量が低下
する問題があった。
In addition, the method (2) disclosed in JP-A-58-122703
Then, although it is more effective than the valence control method (1) described above, there is a problem that the surge resistance is lowered because ZnO grows nonuniformly.

本発明の目的は上述した課題を解消して、大電流域にお
ける電圧非直線性を改善できるとともに、課電寿命およ
びサージ耐量も良好な電圧非直線抵抗体およびその製造
方法を提供しようとするものである。
An object of the present invention is to solve the above-mentioned problems and to provide a voltage non-linear resistor which can improve voltage non-linearity in a large current region, and which also has good voltage-applied life and surge withstand capability, and a method for manufacturing the same. Is.

(課題を解決するための手段) 本発明の電圧非直線抵抗体は、酸化亜鉛を主成分とし、
電圧非直線性を有する焼結体において、焼結体中の酸化
亜鉛粒子がZn1+xO(x≧1×10-5)である酸化亜鉛相を
含有することを特徴とするものである。
(Means for Solving the Problems) The voltage nonlinear resistor of the present invention contains zinc oxide as a main component,
In a sintered body having voltage non-linearity, zinc oxide particles in the sintered body contain a zinc oxide phase of Zn 1 + x O (x ≧ 1 × 10 −5 ). .

また、本発明の電圧非直線抵抗体の製造方法は、亜鉛蒸
気を酸化する間接法により製造した酸化亜鉛原料に金属
酸化物を添加混合後、成形、焼成する電圧非直線抵抗体
の製造方法において、酸化亜鉛原料として亜鉛蒸気を酸
素分圧120torr以下の雰囲気で酸化して得たものを使用
するとともに、酸素分圧150torr以上の雰囲気で焼成す
ることを特徴とするものである。
The method for producing a voltage non-linear resistor of the present invention is a method for producing a voltage non-linear resistor in which a zinc oxide raw material produced by an indirect method of oxidizing zinc vapor is mixed with a metal oxide, and then molded and fired. A zinc oxide raw material obtained by oxidizing zinc vapor in an atmosphere having an oxygen partial pressure of 120 torr or less is used, and is fired in an atmosphere having an oxygen partial pressure of 150 torr or more.

(作 用) 上述した構成において、本発明の電圧非直線抵抗体で
は、酸化亜鉛(ZnO)粒子中にZn1+xO(x≧1×10-5
ましくはx≧1×10-4)である酸化亜鉛相すなわち酸素
が定比よりも少ない相を含ませることにより、各粒子の
抵抗が小さくでき、各粒界間の電位障壁も均一にするこ
とができるため、大電流域における電圧非直線性を改善
できるとともに、各種特製も良好な抵抗体を得ることが
できる。このとき、Zn1+xOの相を含む酸化亜鉛粒子の中
央部の酸素濃度が表面部より小さいと好ましい。また、
全てのZnO粒子がZn1+xOであることが好ましいが、必ず
しもこれに限定されるものではない。
(Operation) In the above-described structure, in the voltage nonlinear resistor of the present invention, Zn 1 + x O (x ≧ 1 × 10 −5, preferably x ≧ 1 × 10 −4 ) in zinc oxide (ZnO) particles. By including a zinc oxide phase, that is, a phase in which oxygen is less than a stoichiometric ratio, the resistance of each particle can be reduced and the potential barrier between each grain boundary can be made uniform. The linearity can be improved and various specially manufactured resistors can be obtained. At this time, it is preferable that the oxygen concentration in the central portion of the zinc oxide particles containing the Zn 1 + x O phase is lower than that in the surface portion. Also,
Although it is preferable that all the ZnO particles are Zn 1 + x O, it is not necessarily limited thereto.

また、本発明の電圧非直線抵抗体の製造方法では、亜鉛
蒸気を酸素分圧120torr以下好ましくは50torr以下の雰
囲気で酸化させることにより上述したZnO粒子を得るこ
とができ、さらにこのZnO粒子を使用して電圧非直線抵
抗体を製造するにあたり、素体の焼成を酸素分圧150tor
r以上の雰囲気下好ましくは1000〜1300℃で実施するこ
とにより、上述したように大電流域における電圧非直線
性を改善できるとともに、各種特性も良好な抵抗体を得
ることができる。
Further, in the method for manufacturing a voltage non-linear resistor of the present invention, the ZnO particles described above can be obtained by oxidizing zinc vapor in an atmosphere having an oxygen partial pressure of 120 torr or less, preferably 50 torr or less, and further using the ZnO particles. In order to manufacture a voltage non-linear resistor, the oxygen partial pressure is 150 torr for firing the element body.
By carrying out in an atmosphere of r or higher, preferably at 1000 to 1300 ° C., it is possible to improve the voltage non-linearity in the large current region as described above, and obtain a resistor having various excellent characteristics.

(実施例) 第1図は従来から公知の本発明の電圧非直線抵抗体の製
造方法を実施する装置の一例の構成を示す図である。第
1図において、1は原料となる金属亜鉛、2は金属亜鉛
1を溶融するための熔融炉、3は酸化反応を実施するレ
トルト炉、4は冷却ダクト、5は捕集タンク、6は排風
器、7はバッグフィルタである。上述した構成の装置に
おいて、熔融炉2で熔融した金属亜鉛1をレトルト炉3
に入れ、外部より約1300〜1400℃に加熱すると、レトル
ト炉3内の亜鉛は沸点(約900℃)に達し、蒸発口より
噴出し、レトルト炉3内の酸素分圧120torr以下の雰囲
気に保持した酸化室3aで燃焼酸化する。燃焼酸化して酸
化室3a中に得られた高温の酸化亜鉛は、排風器6の吸引
力により吸引されて、冷却ダクト4を通過して冷却され
た後、大部分が捕集タンク5内にまた一部はバッグフィ
ルタ7内に本発明の酸化亜鉛として得ることができる。
(Embodiment) FIG. 1 is a diagram showing a configuration of an example of an apparatus for carrying out a conventionally known method of manufacturing a voltage nonlinear resistor according to the present invention. In FIG. 1, 1 is metallic zinc as a raw material, 2 is a melting furnace for melting metallic zinc 1, 3 is a retort furnace for carrying out an oxidation reaction, 4 is a cooling duct, 5 is a collection tank, and 6 is a discharge tank. The air blower, 7 is a bag filter. In the apparatus having the above-mentioned configuration, the metal zinc 1 melted in the melting furnace 2 is retort furnace 3
When heated to about 1300 to 1400 ° C from the outside, zinc in the retort furnace 3 reaches the boiling point (about 900 ° C), ejects from the evaporation port, and is maintained in an atmosphere with an oxygen partial pressure of 120 torr or less in the retort furnace 3. Combustion oxidation is performed in the oxidation chamber 3a. The high temperature zinc oxide obtained by combustion and oxidation in the oxidation chamber 3a is sucked by the suction force of the exhaust fan 6, passes through the cooling duct 4 and is cooled, and then most of it is in the collection tank 5. Further, a part of the zinc oxide can be obtained in the bag filter 7 as the zinc oxide of the present invention.

上述して得た酸化亜鉛原料から電圧非直線抵抗体を得る
方法は、以下の通りである。
The method for obtaining the voltage nonlinear resistor from the zinc oxide raw material obtained as described above is as follows.

酸化亜鉛を主成分とする電圧非直線抵抗体を得るには、
まず0.1〜3μmの所定の粒度に調整した酸化亜鉛原料
と1μm以下の所定の粒度に調整した酸化ビスマス、酸
化コバルト、酸化マンガン、酸化アンチモン、酸化クロ
ム、好ましくは非晶質の酸化ケイ素、酸化ニッケル、酸
化ホウ素、酸化銀等よりなる添加物の所定量を混合す
る。なお、この場合酸化銀、酸化ホウ素の代わりに硝酸
銀、ホウ酸を用いてもよい。好ましくは銀を含むホウケ
イ酸ビスマスガラスを用いるとよい。この際、これらの
原料粉末に対して所定量のポリビニルアルコール水溶液
および酸化アルミニウム源として硝酸アルミニウム溶液
の所定量等を加える。
To obtain a voltage nonlinear resistor whose main component is zinc oxide,
First, zinc oxide raw material adjusted to a predetermined particle size of 0.1 to 3 μm and bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, chromium oxide, preferably amorphous silicon oxide, nickel oxide adjusted to a predetermined particle size of 1 μm or less. A predetermined amount of an additive such as boron oxide, silver oxide, etc. is mixed. In this case, silver nitrate or boric acid may be used instead of silver oxide or boron oxide. Bismuth borosilicate glass containing silver is preferably used. At this time, a predetermined amount of polyvinyl alcohol aqueous solution and a predetermined amount of aluminum nitrate solution as an aluminum oxide source are added to these raw material powders.

次に好ましくは200mmHg以下の真空度で源圧脱気を行い
混合泥漿を得る。ここに混合泥漿の水分量は30〜35wt%
程度に、またの混合泥漿の粘度は100±50cpとするのが
好ましい。次に得られた混合泥漿を噴霧乾燥装置に供給
して平均粒径50〜150μm、好ましくは80〜120μmで、
水分量が0.5〜2.0wt%、より好ましくは0.9%〜1.5wt%
の造粒粉を造粒する。次に得られた造粒粉を、成形工程
において、成形圧力800〜1000kg/cm2の下で所定の形状
に成形する。そしてその成形体を空気中で昇降温速度10
〜100℃/hrで400〜600℃、保持時間1〜10時間で結合剤
を飛散除去することが好ましい。
Next, source pressure degassing is preferably performed at a vacuum degree of 200 mmHg or less to obtain a mixed sludge. The water content of the mixed slurry is 30-35wt%
The viscosity of the mixed slurry is preferably 100 ± 50 cp. Next, the obtained mixed sludge is supplied to a spray dryer to have an average particle size of 50 to 150 μm, preferably 80 to 120 μm,
Water content is 0.5-2.0wt%, more preferably 0.9% -1.5wt%
Granulate the granulated powder of. Next, the obtained granulated powder is molded into a predetermined shape under a molding pressure of 800 to 1000 kg / cm 2 in a molding step. Then, the temperature rise / fall rate of the molded body in air is 10
It is preferable to remove the binder by scattering at 400 to 600 ° C. at a temperature of 100 ° C./hr and a holding time of 1 to 10 hours.

次に、素体の側面に絶縁被覆層を形成する。なお、本願
発明の素体とは成形体または成形体を上記条件で熱処理
した脱脂体をいう。本願発明では、Bi2O3,Sb2O3,ZnO,Si
O2等の所定量に有機結合剤としてエチルセルロース,ブ
チルカルビトール、酢酸ブチル等を加えた酸化物ペース
トを、60〜300μmの厚さに素体の側面に塗布する。な
お、素体を昇降温速度20〜70℃/hr、800〜1000℃、保持
時間1〜5時間保持(好ましくは昇温過程を酸化性また
は中性雰囲気、最高温度保持及び冷却過程を中性雰囲
気)仮焼後、その側面に酸化物ペーストを塗布すると好
ましい。次に、これを昇降温速度20〜60℃/hr、1000〜1
300℃好ましくは1100〜1250℃、3〜7時間という条件
で本発明の要件である酸素分圧150torr以上の雰囲気で
本焼成する。なお、ガラス粉末に有機結合剤としてエチ
ルセルロース、ブチルカルビトール、酢酸nブチル等を
加えたガラスペーストを前記の絶縁被覆層上に100〜300
μmの厚さに塗布し、空気中で昇降温速度50〜200℃/h
r、400〜900℃保持時間0.5〜2時間という条件で熱処理
することによりガラス層を形成すると好ましい。
Next, an insulating coating layer is formed on the side surface of the element body. The element body of the present invention means a molded body or a degreased body obtained by heat-treating the molded body under the above conditions. In the present invention, Bi 2 O 3 , Sb 2 O 3 , ZnO, Si
An oxide paste obtained by adding ethyl cellulose, butyl carbitol, butyl acetate or the like as an organic binder to a predetermined amount of O 2 or the like is applied to the side surface of the element body to a thickness of 60 to 300 μm. The temperature of the element body is maintained at 20 to 70 ℃ / hr, 800 to 1000 ℃, and the holding time is 1 to 5 hours (preferably the heating process is oxidizing or neutral atmosphere, the maximum temperature holding and cooling process are neutral) (Atmosphere) After calcination, it is preferable to apply an oxide paste to the side surface. Next, this is heated / cooled at a rate of 20-60 ℃ / hr, 1000-1
Main calcination is performed at 300 ° C., preferably 1100 to 1250 ° C. for 3 to 7 hours in an atmosphere having an oxygen partial pressure of 150 torr or more, which is a requirement of the present invention. It should be noted that a glass paste obtained by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as an organic binder to glass powder is applied to the insulating coating layer in the range of 100 to 300.
It is applied to a thickness of μm and the temperature rising / falling rate is 50-200 ℃ / h in air.
It is preferable that the glass layer is formed by heat treatment under the conditions of r, 400 to 900 ° C., holding time 0.5 to 2 hours.

その後、得られた電圧非直線抵抗体の両端面をSiC,Al2O
3,ダイヤモンド等の#400〜2000相当の研磨剤により水
好ましくは油を研磨液として使用して研磨する。次に、
研磨面を洗浄後、研磨した両端面に例えばアルミニウム
等によって電極を例えば溶射により設けて電圧非直線抵
抗体を得ている。
After that, both end surfaces of the obtained voltage non-linear resistor are covered with SiC, Al 2 O.
3. Polishing is carried out with water, preferably oil, as a polishing liquid with a polishing agent corresponding to # 400 to 2000 such as diamond. next,
After cleaning the polished surface, an electrode made of, for example, aluminum is provided by thermal spraying on both polished surfaces to obtain a voltage non-linear resistor.

以下、実際に本発明の範囲内および範囲外の電圧非直線
抵抗体において、各種特性を測定した結果について説明
する。
Hereinafter, the results of actually measuring various characteristics of the voltage nonlinear resistor within and outside the range of the present invention will be described.

実施例1 上述した方法に従って、Bi2O3,Co3O4,MnO2,Sb2O3,Cr
2O3,NiO,SiO2を各々0.1〜2.0モル%、Al2O30.005モル
%、銀を含むホウケイ酸ビスマスガラス0.01〜0.3wt
%、および残部が第1表に示す酸素分圧の雰囲気中から
生成されたZnOからなる原料から第1表に示す本焼条件
で直径47mm、厚さ20mmの形状でバリスタ電圧(V1mA)が
200〜230V/mmの第1表に示す本発明試験No.1〜8と比較
例試験No.1〜3の電圧非直線抵抗体を準備した。なお、
抵抗体の焼成は、400℃5間で脱脂後第1表に示す酸素
分圧の雰囲気下で1150℃5時間保持の条件で実施した。
Example 1 According to the method described above, Bi 2 O 3 , Co 3 O 4 , MnO 2 , Sb 2 O 3 , Cr
2 O 3 , NiO, SiO 2 0.1-2.0 mol% each, Al 2 O 3 0.005 mol%, bismuth borosilicate glass containing silver 0.01-0.3 wt%
%, And the balance is ZnO produced from an atmosphere with an oxygen partial pressure shown in Table 1, and the varistor voltage (V 1mA ) is 47 mm in diameter and 20 mm in thickness under the main firing conditions shown in Table 1.
The voltage non-linear resistors of the present invention tests No. 1 to 8 and the comparative example tests No. 1 to 3 shown in Table 1 of 200 to 230 V / mm were prepared. In addition,
The resistor was fired at 400 ° C. for 5 hours and then degreased at 1150 ° C. for 5 hours under an oxygen partial pressure atmosphere shown in Table 1.

なお、抵抗体をX線回折法により格子定数の変化からZn
O粒子中の亜鉛量を確認した結果、Zn1+xO(x≧1×10
-5)のものであった。
The resistance of the resistor was changed to Zn by the X-ray diffraction method.
As a result of confirming the amount of zinc in the O particles, Zn 1 + x O (x ≧ 1 × 10
-5 ).

比較例試験No.2の従来法1は、従来法により空気中で亜
鉛蒸気で酸化して得た酸化亜鉛粉末を使用して原料混合
物中にAl(NO3・9H2O0.005モル%添加して焼成によ
りAlイオンを拡散させた原子価制御法によるものを、ま
た比較例試験No.3の従来法2は、特開昭58−122703号公
報に開示されたように、従来法により得た酸化亜鉛粉末
を使用してこれとAl2O3を混合後900℃で仮焼したものを
使用し、さらに両者とも大気中で本焼成したものを示し
ている。
Conventional Method 1 of the comparative example Test No.2 is, Al (NO 3) the raw material mixture using a zinc oxide powder obtained by oxidizing zinc vapor in air by conventional means 3 · 9H 2 O0.005 moles % By the valence control method in which Al ions are diffused by firing, and the conventional method 2 of the comparative example test No. 3 is the conventional method as disclosed in JP-A-58-122703. The zinc oxide powder obtained in Example 1 was mixed with Al 2 O 3 and then calcined at 900 ° C., and both were calcined in the air.

準備した本発明および比較例の抵抗体に対して、制限電
圧比、V1mA低下率、雷サージ耐量および開閉サージ耐量
を測定するとともに、漏洩電流の比を求めた。結果を第
1表に示す。ここで、制限電圧比は、バリスタ電圧V
1OKAとV1mAの比より求めた。V1mA低下率は、30KAの電流
を8/20μsの電流波形で10回印加した前後のV1mAより求
めた。雷サージ耐量は、100KA,110KA,120KAの電流を4/1
0μsの電流波形で2回繰り返し印加した後破壊したも
のを×、破壊しなかったものを○と表示した。開閉サー
ジ耐量は800A,900A,1000Aの電流を2msの電流波形で20回
繰り返し印加した後破壊したものを×、破壊しなかった
ものを○と表示した。さらに、漏洩電流の比は、素子を
周囲温度130℃、課電率95%で課電し、画電直後に対す
る課電100時間後の電流比I100時間/IO時間から求めた。
なお、参考までに、各試験No.のZnO原料の平均粒径を求
め、あわせて第1表に記載した。
With respect to the prepared resistors of the present invention and the comparative example, the limiting voltage ratio, the V 1 mA reduction rate, the lightning surge withstand capability and the switching surge withstand capability were measured, and the leakage current ratio was determined. The results are shown in Table 1. Here, the limiting voltage ratio is the varistor voltage V
It was calculated from the ratio of 1OKA and V 1mA . The V 1mA decrease rate was obtained from V 1mA before and after applying a current of 30 KA with a current waveform of 8/20 μs 10 times. Lightning surge withstand current of 100KA, 110KA, 120KA is 4/1
A sample that was destroyed after being applied twice with a current waveform of 0 μs was shown as x, and a sample that was not destroyed was shown as ◯. The switching surge resistance is indicated by x when the current of 800 A, 900 A, and 1000 A was repeatedly applied 20 times with a current waveform of 2 ms and was broken, and when it was not broken, it was indicated by ◯. Further, the ratio of the leakage current was obtained from the current ratio I 100 hours / I O hours 100 hours after the power was applied to the element immediately after the power was applied, with the element being charged at an ambient temperature of 130 ° C. and a charging rate of 95%.
For reference, the average particle size of the ZnO raw material of each test No. was determined and is also shown in Table 1.

第1表の結果から、所定の酸素分圧からなる雰囲気中で
の酸化亜鉛原料を使用し、所定の酸素分圧で焼成して得
たZn1+xO(x≧1×10-5)粒子からなる本発明の抵抗体
は、比較例に比べて諸特性が良好なことがわかった。
From the results of Table 1 , Zn 1 + x O (x ≧ 1 × 10 −5 ) obtained by using a zinc oxide raw material in an atmosphere having a predetermined oxygen partial pressure and firing at a predetermined oxygen partial pressure It has been found that the resistor of the present invention composed of particles has better various characteristics than the comparative example.

実施例2 上述した実施例1に従って、酸素分圧120torr以下のN2
+O2雰囲気中で生成された酸化亜鉛を用い、焼成後のZn
O粒子の不定比性を調べるため、Zn1+xOにおけるxの値
を変化させた抵抗体を作製し、実施例1と同様各種特性
を測定した。結果を第2表に示す。
Example 2 N 2 with an oxygen partial pressure of 120 torr or less according to Example 1 described above.
Zn oxide after firing using zinc oxide generated in + O 2 atmosphere
In order to investigate the non-stoichiometry of O particles, resistors having different values of x in Zn 1 + x O were prepared, and various characteristics were measured as in Example 1. The results are shown in Table 2.

第2表の結果から、Zn1+xOにおけるxの値がx≧1×10
-5の本発明の試験No.1〜5は、比較例試験No.1,2と比べ
て、諸特性が良好なことがわかった。
From the results in Table 2, the value of x in Zn 1 + x O is x ≧ 1 × 10
It was found that Test Nos. 1 to 5 of the present invention of No. -5 had better various characteristics than Comparative Examples Test Nos. 1 and 2.

(発明の効果) 以上の説明から明らかなように、本発明の電圧非直線抵
抗体およびその製造方法によれば、亜鉛蒸気を酸素分圧
120torr以下の雰囲気で酸化させることによりZn1+xO
(x≧1×10-5)とした粒子を使用して電圧非直線抵抗
体を製造することにより、大電流域における電圧非直線
性を改善できるとともに、課電寿命およびサージ耐量も
良好な電圧非直線抵抗体を得ることができる。
(Effects of the Invention) As is apparent from the above description, according to the voltage nonlinear resistor and the method for manufacturing the same of the present invention, zinc vapor is converted into oxygen partial pressure.
Zn 1 + x O by oxidizing in an atmosphere of 120 torr or less
By manufacturing voltage non-linear resistors using particles with (x ≧ 1 × 10 −5 ), voltage non-linearity in a large current range can be improved, and a voltage with a good voltage life and surge withstand capability can be obtained. A non-linear resistor can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の電圧非直線抵抗体の製造方法を実施す
る装置の一例の構成を示す図である。 1……金属亜鉛、2……熔融炉 3……レトルト炉、3a……酸化室 4……冷却ダクト、5……捕集タンク 6……排風器、7……バッグフィルタ
FIG. 1 is a diagram showing the configuration of an example of an apparatus for carrying out the method of manufacturing a voltage nonlinear resistor according to the present invention. 1 ... Metal zinc, 2 ... Melting furnace, 3 ... Retort furnace, 3a ... Oxidizing chamber, 4 ... Cooling duct, 5 ... Collection tank, 6 ... Fan, 7 ... Bag filter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛を主成分とし、電圧非直線性を有
する焼結体において、焼結体中の酸化亜鉛粒子がZn1+xO
(x≧1×10-5)である酸化亜鉛相を含有することを特
徴とする電圧非直線抵抗体。
1. In a sintered body containing zinc oxide as a main component and having voltage non-linearity, zinc oxide particles in the sintered body are Zn 1 + x O 2.
A voltage nonlinear resistor comprising a zinc oxide phase of (x ≧ 1 × 10 −5 ).
【請求項2】亜鉛蒸気を酸化する間接法により製造した
酸化亜鉛原料に金属酸化物を添加混合後、成形、焼成す
る電圧非直線抵抗体の製造方法において、酸化亜鉛原料
として亜鉛蒸気を酸素分圧120torr以下の雰囲気で酸化
して得たものを使用するとともに、酸素分圧150torr以
上の雰囲気で焼成することを特徴とする電圧非直線抵抗
体の製造方法。
2. A method for producing a voltage non-linear resistor, comprising adding and mixing a metal oxide to a zinc oxide raw material produced by an indirect method of oxidizing zinc vapor, followed by molding and firing, and using zinc vapor as the zinc oxide raw material and oxygen content. A method for producing a voltage non-linear resistor, which comprises using a material obtained by oxidation in an atmosphere having a pressure of 120 torr or less and firing the material in an atmosphere having an oxygen partial pressure of 150 torr or more.
JP1039258A 1989-02-21 1989-02-21 Voltage nonlinear resistor and method of manufacturing the same Expired - Lifetime JPH07109805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1039258A JPH07109805B2 (en) 1989-02-21 1989-02-21 Voltage nonlinear resistor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1039258A JPH07109805B2 (en) 1989-02-21 1989-02-21 Voltage nonlinear resistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02220402A JPH02220402A (en) 1990-09-03
JPH07109805B2 true JPH07109805B2 (en) 1995-11-22

Family

ID=12548118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1039258A Expired - Lifetime JPH07109805B2 (en) 1989-02-21 1989-02-21 Voltage nonlinear resistor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH07109805B2 (en)

Also Published As

Publication number Publication date
JPH02220402A (en) 1990-09-03

Similar Documents

Publication Publication Date Title
JPH07109805B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH0734403B2 (en) Voltage nonlinear resistor
JPH0828285B2 (en) Method of manufacturing voltage non-linear resistor
JP2836893B2 (en) Method of manufacturing voltage non-linear resistor
JPH0555008A (en) Voltage-dependent nonlinear resistor
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JPH0686322B2 (en) Zinc oxide raw material for voltage nonlinear resistors
JP2634838B2 (en) Method of manufacturing voltage non-linear resistor
JPH05258920A (en) Manufacture of voltage non-linear resistor
JP2608626B2 (en) Method of manufacturing voltage non-linear resistor
JPH0734406B2 (en) Voltage nonlinear resistor
JPH0555011A (en) Manufacture of voltage-dependent nonlinear resistor
JPH0541307A (en) Manufacturing method of potential nonlinear resistor
JPH0812804B2 (en) Voltage nonlinear resistor
JPH0817122B2 (en) Method of manufacturing voltage non-linear resistor
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JPH0734402B2 (en) Voltage nonlinear resistor
JPH03142801A (en) Manufacture of voltage-dependent nonlinear resistor
JPH07105286B2 (en) Voltage nonlinear resistor
JPH0429206B2 (en)
JPH0555012A (en) Manufacture of voltage-dependent nonlinear resistor
JPH0812808B2 (en) Method of manufacturing voltage non-linear resistor
JPH0525364B2 (en)
JPH04253301A (en) Manufacture of non-linear varistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 14