JPH0828285B2 - Method of manufacturing voltage non-linear resistor - Google Patents

Method of manufacturing voltage non-linear resistor

Info

Publication number
JPH0828285B2
JPH0828285B2 JP63248964A JP24896488A JPH0828285B2 JP H0828285 B2 JPH0828285 B2 JP H0828285B2 JP 63248964 A JP63248964 A JP 63248964A JP 24896488 A JP24896488 A JP 24896488A JP H0828285 B2 JPH0828285 B2 JP H0828285B2
Authority
JP
Japan
Prior art keywords
zinc oxide
voltage
linear resistor
voltage non
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63248964A
Other languages
Japanese (ja)
Other versions
JPH0297002A (en
Inventor
今井  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63248964A priority Critical patent/JPH0828285B2/en
Publication of JPH0297002A publication Critical patent/JPH0297002A/en
Publication of JPH0828285B2 publication Critical patent/JPH0828285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化亜鉛を主成分とする電圧非直線抵抗体の
製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a voltage nonlinear resistor containing zinc oxide as a main component.

(従来の技術) 従来から酸化亜鉛(ZnO)を主成分としBi2O3,Sb2O3,S
iO2,Co2O3,MnO2等の少量の添加物を副成分として含有し
た抵抗体は、優れた電圧非直線性を示すことが広く知ら
れており、その性質を利用して避雷器等に使用されてい
る。
(Prior Art) Bi 2 O 3 , Sb 2 O 3 , S containing zinc oxide (ZnO) as a main component
It is widely known that resistors containing a small amount of additives such as iO 2 , Co 2 O 3 , and MnO 2 as an auxiliary component show excellent voltage nonlinearity. Is used for.

この酸化亜鉛を主成分とする電圧非直線抵抗体におい
て、大電流領域での非直線性を改善させるために、従
来、(1)微量のAlイオン,Gaイオン,Inイオンを焼結中
に拡散させ、ZnOの比抵抗を下げる原子価制御法、
(2)特開昭58−122703号公報で開示された、ZnOとAl2
O3,Ga2O3,In2O3を予じめ仮焼してAl,Ga,Inイオンを焼結
体中へ拡散させた後、副成分と混合し成形する方法が知
られている。
In order to improve the non-linearity in a large current region, the voltage non-linear resistor containing zinc oxide as the main component has been conventionally (1) diffused a small amount of Al ions, Ga ions and In ions during sintering. Valence control method to lower the specific resistance of ZnO,
(2) ZnO and Al 2 disclosed in JP-A-58-122703
A method is known in which O 3 , Ga 2 O 3 and In 2 O 3 are preliminarily calcined to diffuse Al, Ga and In ions into the sintered body, and then mixed with auxiliary components and molded. .

(発明が解決しようとする課題) しかしながら、上述した原子価制御法(1)において
は、主成分のZnOや副成分とともにAlイオン等を単に混
合成形して焼結するだけであるため、微量のAl,Ga,Inイ
オンが十分にZnO結晶中へ均一に分散されず、大部分は
粗界層、スピネル相へとりこまれていた。従って、大電
流領域の非直線性の改善が不充分で、課電寿命が悪化す
るとともに、雷サージ印加後のV1mAの変化率が大きくな
る問題があった。
(Problems to be Solved by the Invention) However, in the valence control method (1) described above, only a small amount of ZnO or a sub-component, Al ion, etc. is simply mixed and molded and sintered. Al, Ga and In ions were not sufficiently dispersed in the ZnO crystal, and most of them were incorporated into the coarse boundary layer and spinel phase. Therefore, there is a problem that the improvement of the non-linearity in the large current region is insufficient, the charging life is deteriorated, and the rate of change of V 1 mA after application of a lightning surge becomes large.

また、特開昭58−122703号公報で開示された方法
(2)では、上述した原子価制御方法(1)よりも効果
はあるが、ZnOが不均一に粒子成長するためサージ耐量
が低下する問題があった。
Further, the method (2) disclosed in JP-A-58-122703 is more effective than the valence control method (1) described above, but the surge resistance is lowered because ZnO grows nonuniformly. There was a problem.

本発明の目的は上述した課題を解消して、大電流域に
おける電圧非直線性を改善できるとともに、課電寿命お
よびサージ耐量も良好な電圧非直線抵抗体を得ることが
できる製造方法を提供しようとするものである。
An object of the present invention is to solve the above-mentioned problems and to provide a manufacturing method capable of improving voltage nonlinearity in a large current region, and obtaining a voltage nonlinear resistor having a good voltage-carrying life and surge resistance. It is what

(課題を解決するための手段) 本発明の電圧非直線抵抗体の製造方法は、亜鉛蒸気を
酸化する間接法により製造した酸化亜鉛原料を主成分と
する電圧非直線抵抗体の製造方法において、酸化亜鉛原
料として、亜鉛蒸気を少なくともアルミニウムまたはイ
ンジウムまたはガリウムを含む雰囲気中で酸化して得
た、前記金属元素が固溶した酸化亜鉛を使用することを
特徴とするものである。
(Means for Solving the Problems) A method for producing a voltage nonlinear resistor according to the present invention is a method for producing a voltage nonlinear resistor containing a zinc oxide raw material as a main component produced by an indirect method of oxidizing zinc vapor, As the zinc oxide raw material, zinc oxide obtained by oxidizing zinc vapor in an atmosphere containing at least aluminum, indium, or gallium, in which the metal element is in solid solution, is used.

(作 用) 上述した構成において、亜鉛蒸気を少なくともアルミ
ニウムまたはインジウムまたはガリウムを含む雰囲気中
で酸化することにより、亜鉛が酸化亜鉛になる課程でア
ルミニウムまたはインジウムまたはガリウムが酸化亜鉛
に十分固溶するため、この酸化亜鉛原料を使用して電圧
非直線抵抗体を従来法と同様の方法で製造すれば、大電
流域における電圧非直線性を改善できるとともに課電寿
命およびサージ耐量も良好な電圧非直線抵抗体を得るこ
とができる。
(Operation) In the above-described structure, since zinc vapor is oxidized in an atmosphere containing at least aluminum, indium, or gallium, aluminum, indium, or gallium is sufficiently dissolved in zinc oxide in the process in which zinc becomes zinc oxide. If a non-linear voltage resistor is manufactured using this zinc oxide raw material by the same method as the conventional method, the voltage non-linearity in the large current region can be improved, and the voltage non-linearity also has good voltage life and surge withstand capability. A resistor can be obtained.

この際、好ましくはアルミニウムイオンまたはインジ
ウムイオンまたはガリウムイオンを含む溶液すなわち硝
酸アルミニウム水溶液等を、超音波噴霧器等で微細なミ
ストとして分散し、1200〜1300℃の高温中で気化した雰
囲気中で酸化することにより、好ましい電圧非直線抵抗
体を得ることができる。
At this time, preferably, a solution containing aluminum ions, indium ions, or gallium ions, that is, an aqueous solution of aluminum nitrate or the like is dispersed as fine mist with an ultrasonic atomizer or the like, and is oxidized in a vaporized atmosphere at a high temperature of 1200 to 1300 ° C. As a result, a preferable voltage non-linear resistor can be obtained.

また、アルミニウムまたはインジウムまたはガリウム
を含む気体すなわち臭化物やヨウ化物等の気体を導入し
た雰囲気中で酸化することにより、さらに良好な電圧非
直線抵抗体を得ることができる。
Further, by oxidizing in a gas containing a gas containing aluminum, indium or gallium, that is, a gas such as bromide or iodide, a better voltage non-linear resistor can be obtained.

ここで、これらの雰囲気中の酸素分圧は0.2気圧以上
が好ましい。また、雰囲気中のアルミニウム、インジウ
ム、カリウムの量はAl,In,Gaとして総量で0.00001〜0.0
1g/が好ましい。なお、0.00001g/未満では、アルミ
ニウム、インジウム、ガリウムの固溶の効果が充分発現
されず、また0.01g/を越えると固溶せず、ZnO粒子表
面に付着する量が著るしく増加し、素子特性に悪影響を
与えるので好ましくない。
Here, the oxygen partial pressure in these atmospheres is preferably 0.2 atm or more. The amount of aluminum, indium, and potassium in the atmosphere is 0.00001 to 0.0 in total as Al, In, and Ga.
1 g / is preferred. Incidentally, if less than 0.00001 g /, aluminum, indium, the effect of solid solution of gallium is not sufficiently expressed, and if more than 0.01 g / does not dissolve, the amount attached to the surface of ZnO particles significantly increases, This is not preferable because it adversely affects the device characteristics.

さらにまた、ZnO粉末原料を得る際、高温例えば400℃
以上のZnOを徐冷したものを使用すると、急冷による針
状結晶の発生を防止できるため好ましい。
Furthermore, when obtaining ZnO powder raw material, high temperature, for example, 400 ℃
It is preferable to use a material obtained by gradually cooling the above ZnO, because it is possible to prevent the generation of needle crystals due to rapid cooling.

また、生成したZnO粒子表面に付着している固溶しな
い酸化アルミニウム等の付着物を完全に除去するため
に、生成したZnO粉末を酸化およびアルミニウムで洗浄
することがよい。
Further, in order to completely remove deposits such as aluminum oxide which do not form a solid solution and adhere to the surface of the generated ZnO particles, the generated ZnO powder may be oxidized and washed with aluminum.

(実施例) 第1図は従来から公知の本発明の電圧非直線抵抗体の
製造方法を実施する装置の一例の構成を示す図である。
第1図において、1は原料となる金属亜鉛、2は金属亜
鉛1を溶融するための熔融炉、3は酸化反応を実施する
レトルト炉、4は冷却ダクト、5は捕集タンク、6は排
風器、7はバッグフィルタである。上述した構成の装置
において、熔融炉2で熔融した金属亜鉛1をレトルト炉
3に入れ、外部より約1300〜1400℃に加熱すると、レト
ルト炉3内の亜鉛は沸点(約900℃)に達し、蒸発口よ
り噴出し、レトルト炉3内の酸化室3aで導入した空気中
の酸素と燃焼酸化する。燃焼酸化して酸化室3a中に得ら
れた高温の酸化亜鉛は、排風器6の吸引力により吸引さ
れて、冷却ダクト4を通過して冷却された後、大部分が
捕集タンク5内にまた一部はバッグフィルタ7内に酸化
亜鉛して得ることができる。
(Embodiment) FIG. 1 is a diagram showing a configuration of an example of an apparatus for carrying out a conventionally known method of manufacturing a voltage nonlinear resistor according to the present invention.
In FIG. 1, 1 is metallic zinc as a raw material, 2 is a melting furnace for melting metallic zinc 1, 3 is a retort furnace for carrying out an oxidation reaction, 4 is a cooling duct, 5 is a collection tank, and 6 is a discharge tank. The air blower, 7 is a bag filter. In the apparatus having the above-mentioned structure, when the metallic zinc 1 melted in the melting furnace 2 is put into the retort furnace 3 and heated to about 1300 to 1400 ° C from the outside, the zinc in the retort furnace 3 reaches the boiling point (about 900 ° C), It is jetted from the evaporation port and burns and oxidizes with oxygen in the air introduced in the oxidation chamber 3a in the retort furnace 3. The high temperature zinc oxide obtained by combustion and oxidation in the oxidation chamber 3a is sucked by the suction force of the exhaust fan 6, passes through the cooling duct 4 and is cooled, and then most of it is in the collection tank 5. In addition, a part of them can be obtained by zinc oxide in the bag filter 7.

この際、本発明では、レトルト炉3の酸化室3aへ導入
する空気の中に、硝酸アルミニウム、硝酸インジウム、
硝酸ガリウムの各水溶液等を超音波噴霧器で微細なミス
トとしたものを含ませたり、臭化アルミニウムまたはヨ
ウ化アルミニウムのガス等をAl,In,Gaの量として0.0000
1〜0.01g/量雰囲気中に含ませている。また、ZnOは冷
却ダクト4を設けて、ダクト4内で徐冷するよう構成し
て約0.5μmの粒径の結晶として酸化亜鉛を得ている。
At this time, in the present invention, in the air introduced into the oxidation chamber 3a of the retort furnace 3, aluminum nitrate, indium nitrate,
Included each gallium nitrate aqueous solution, etc. made into a fine mist with an ultrasonic atomizer, and aluminum bromide or aluminum iodide gas etc. as the amount of Al, In, Ga 0.0000
1 to 0.01 g / quantity It is included in the atmosphere. Further, ZnO is provided with a cooling duct 4 and is configured to be gradually cooled in the duct 4 to obtain zinc oxide as crystals having a grain size of about 0.5 μm.

上述して得た酸化亜鉛原料から電圧非直線抵抗体を得
る方法は、以下の通りである。
The method for obtaining the voltage nonlinear resistor from the zinc oxide raw material obtained as described above is as follows.

酸化亜鉛を主成分とする電圧非直線抵抗体を得るに
は、まず所定の粒度に調整した酸化亜鉛原料と所定の粒
度に調整した酸化ビスマス、酸化コバルト、酸化マンガ
ン、酸化アンチモン、酸化クロム、好ましくは非晶質の
酸化ケイ素、酸化ニッケル、酸化ホウ素、酸化銀等より
なる添加物の所定量を混合する。なお、この場合酸化
銀、酸化ホウ素の代わりに硝酸銀、ホウ酸を用いてもよ
い。好ましくは銀を含むホウケイ酸ビスマスガラスを用
いるとよい。この際、これらの原料粉末に対して所定量
のポリビニルアルコール水溶液等を加える。
In order to obtain a voltage nonlinear resistor containing zinc oxide as a main component, first, a zinc oxide raw material adjusted to a predetermined particle size and bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, chromium oxide adjusted to a predetermined particle size, preferably Is mixed with a predetermined amount of an additive such as amorphous silicon oxide, nickel oxide, boron oxide or silver oxide. In this case, silver nitrate or boric acid may be used instead of silver oxide or boron oxide. Bismuth borosilicate glass containing silver is preferably used. At this time, a predetermined amount of polyvinyl alcohol aqueous solution or the like is added to these raw material powders.

次に好ましくは200mmHg以下の真空度で減圧脱気を行
い混合泥漿を得る。ここに混合泥漿の水分量は30〜35wt
%程度に、またその混合泥漿の粘度は100±50cpとする
のが好ましい。次に得られた混合泥漿を噴霧乾燥装置に
供給して平均粒径50〜150μm、好ましくは80〜120μm
で、水分量が0.5〜2.0wt%、より好ましくは0.9〜1.5wt
%の造粒粉を造粒する。次に得られた造粒粉を、成形工
程において、成形圧力800〜1000kg/cm2の下で所定の形
状に成形する。そしてその成形体を昇降温速度50〜70℃
/hrで800〜1000℃、保持時間1〜5時間という条件で焼
成する。なお、仮焼成の前に成形体を昇降温速度10〜10
0℃/hrで400〜600℃、保持時間1〜10時間で結合剤を飛
散除去することが好ましい。
Next, vacuum degassing is preferably performed at a vacuum degree of 200 mmHg or less to obtain a mixed sludge. The water content of the mixed slurry is 30-35 wt.
%, And the viscosity of the mixed slurry is preferably 100 ± 50 cp. Next, the obtained mixed sludge is supplied to a spray dryer to have an average particle size of 50 to 150 μm, preferably 80 to 120 μm.
And the water content is 0.5 to 2.0 wt%, more preferably 0.9 to 1.5 wt
Granulate% granulated powder. Next, the obtained granulated powder is molded into a predetermined shape under a molding pressure of 800 to 1000 kg / cm 2 in a molding step. Then, the molded body is heated / cooled at a temperature of 50 to 70 ° C.
Firing is performed under the conditions of 800 to 1000 ° C./hr and a holding time of 1 to 5 hours. In addition, the temperature rising / falling rate of the molded body is 10 to 10 before the calcination.
It is preferable to remove the binder by scattering at 400 to 600 ° C. at 0 ° C./hr and a holding time of 1 to 10 hours.

次に、仮焼成した仮焼体の側面に絶縁被覆層を形成す
る。本願発明では、Bi2O3,Sb2O3,ZnO,SiO2等の所定量に
有機結合剤としてエチルセルロース、ブチルカルビトー
ル、酢酸nブチル等を加えた酸化物ペーストを、60〜30
0μmの厚さに仮焼体の側面に塗布する。次に、これを
昇降温速度20〜60℃/hr、1000〜1300℃好ましくは1100
〜1250℃、3〜7時間という条件で本焼成する。なお、
ガラス粉末に有機結合剤としてエチルセルロース、ブチ
ルカルビトール、酢酸nブチル等を加えたガラスペース
トを前記の絶縁被覆層上に100〜300μmの厚さに塗布
し、空気中で昇降温速度50〜200℃/hr、400〜900℃保持
時間0.5〜2時間という条件で熱処理することによりガ
ラス層を形成すると好ましい。
Next, an insulating coating layer is formed on the side surface of the calcined body that has been calcined. In the present invention, an oxide paste obtained by adding ethyl cellulose, butyl carbitol, n-butyl acetate or the like as an organic binder to a predetermined amount of Bi 2 O 3 , Sb 2 O 3 , ZnO, SiO 2 or the like is used in an amount of 60 to 30.
The thickness of 0 μm is applied to the side surface of the calcined body. Next, the temperature rising / falling rate is 20 to 60 ° C / hr, 1000 to 1300 ° C, preferably 1100.
Main-baking is performed under the conditions of ~ 1250 ° C and 3-7 hours. In addition,
A glass paste obtained by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as an organic binder to glass powder is applied on the above-mentioned insulating coating layer to a thickness of 100 to 300 μm, and the temperature rising and falling speed is 50 to 200 ° C. in air. It is preferable that the glass layer is formed by heat treatment under the conditions of / hr and 400 to 900 ° C. holding time of 0.5 to 2 hours.

その後、得られた電圧非直線抵抗体の両端面をSiC,Al
2O3,ダイヤモンド等の#400〜2000相当の研磨剤により
水好ましくは油を研磨液として使用して研磨する。次
に、研磨面を洗浄後、研磨した両端面に例えばアルミニ
ウムメタリコン等によってメタリコン電極を例えば溶射
により設けて電圧非直線抵抗体を得ている。
After that, both end surfaces of the obtained voltage nonlinear resistor are
Polishing is performed with water, preferably oil, as a polishing liquid with an abrasive corresponding to # 400 to 2000 such as 2 O 3 and diamond. Next, after cleaning the polished surface, a voltage non-linear resistor is obtained by, for example, spraying a metallikon electrode made of, for example, aluminum metallikon on the polished both end surfaces.

以下、実際に本発明の範囲内および範囲外の電圧非直
線低抗体において、各種特性を測定した結果について説
明する。
Hereinafter, the results of actually measuring various characteristics of the voltage nonlinear low antibody within and outside the range of the present invention will be described.

実施例 上述した方法に従って、Bi2O3,Co3O4,MnO2,Sb2O3,Cr2
O3,NiO,SiO2を各々0.1〜2.0モル%、銀を含むホウケイ
酸ビスマスガラス0.01〜0.3wt%、および残部が第1表
に示すAl,In,Gaを含む雰囲気中が生成されたZnOからな
る原料から直径47mm、厚さ22.5mmの形状でバリスタ電圧
(V1mA)が200〜230V/mmの第1表に示す本発明試料No.1
〜5と比較例試料No.1,2の電圧非直線抵抗体を準備し
た。
Examples Bi 2 O 3 , Co 3 O 4 , MnO 2 , Sb 2 O 3 , Cr 2 according to the method described above
ZnO produced in an atmosphere containing 0.1 to 2.0 mol% of O 3 , NiO, and SiO 2 , 0.01 to 0.3 wt% of bismuth borosilicate glass containing silver, and the balance of Al, In, and Ga shown in Table 1. Inventive sample No. 1 shown in Table 1 having a diameter of 47 mm and a thickness of 22.5 mm and a varistor voltage (V 1 mA ) of 200 to 230 V / mm.
5 and Comparative Example Sample Nos. 1 and 2 were prepared.

比較例1の従来法1は、従来法により得た酸化亜鉛粉
末を使用して原料混合物中にAl(NO3・9H2O 0.01モ
ル%添加して焼成によりAlイオンを拡散させた原子価制
御法によるものを、また比較例2の従来法2は、特開昭
58−122703号公報に開示されたように、従来法により得
た酸化亜鉛粉末を使用してこれとAl2O3を混合後900℃で
仮焼したものを示している。なお、使用したZnOの平均
粒径および焼結体中のAl,In,Ga量を第1表中に示す。な
お、本実施例では酸化室に空気を送入した。
The conventional method 1 of the comparative example 1 uses zinc oxide powder obtained by the conventional method to add 0.01 mol% of Al (NO 3 ) 3 .9H 2 O to the raw material mixture, and burns the Al ions to diffuse the atoms. The value control method and the conventional method 2 of Comparative Example 2 are disclosed in
As disclosed in JP-A-58-122703, zinc oxide powder obtained by a conventional method is used, and this is mixed with Al 2 O 3 and then calcined at 900 ° C. The average particle size of ZnO used and the amounts of Al, In and Ga in the sintered body are shown in Table 1. In this example, air was sent into the oxidation chamber.

準備した本発明および比較例の低抗体に対して、制御
電圧比、V1mA低下率、雷サージ耐量および開閉サージ耐
量を測定するとともに、漏洩電流の比を求めた。結果を
第1表に示す。ここで、制限電圧比は、バリスタ電圧V
10KAとV1mAの比より求めた。V1mA低下率は、30KAの電流
を8/20μsの電流波形で10回印加した前後のV1mAより求
めた。雷サージ耐量は、130KAおよび150KAの電流を4/10
μsの電流波形で2回繰り返し印加した後破壊したもの
を×、破壊しなかったものを○と表示した。開閉サージ
耐量は800Aおよび1000Aの電流を2mSの電流波形で20回繰
り返し印加した後破壊したものを×、破壊しなかったも
のを○と表示した。さらに、漏洩電流の比は、素子を周
囲温度130℃、課電率95%で課電し、課電直後に対する
課電100時間後の電流比I100時間/I0時間から求めた。
With respect to the prepared low antibodies of the present invention and the comparative example, the control voltage ratio, V 1mA decrease rate, lightning surge withstand capability and switching surge withstand capability were measured, and the leakage current ratio was determined. The results are shown in Table 1. Here, the limiting voltage ratio is the varistor voltage V
It was calculated from the ratio of 10KA and V 1mA . The V 1mA decrease rate was obtained from V 1mA before and after applying a current of 30 KA with a current waveform of 8/20 μs 10 times. Lightning surge withstand current of 130KA and 150KA is 4/10
A sample which was destroyed after being applied twice with a current waveform of μs was marked with X, and a sample which was not broken was marked with ◯. The switching surge resistance is indicated by x when the current of 800 A and 1000 A was repeatedly applied 20 times with a current waveform of 2 mS and was broken, and when it was not broken, it was marked as o. Further, the ratio of the leakage current was obtained from the current ratio I 100 hours / I 0 hours immediately after the power was applied 100 hours after the power was applied to the element at an ambient temperature of 130 ° C. and a charge rate of 95%.

第1表の結果から、所定雰囲気での酸化により得た酸
化亜鉛原料を使用した本発明の抵抗体は、比較例に比べ
て諸特性が良好なことがわかる。
From the results shown in Table 1, it can be seen that the resistor of the present invention using the zinc oxide raw material obtained by the oxidation in the predetermined atmosphere has various excellent properties as compared with the comparative example.

(発明の効果) 以上の説明から明らかなように、本発明の電圧比直線
抵抗体の製造方法によれば、所定雰囲気中で亜鉛蒸気を
酸化して得た酸化亜鉛原料を使用することにより、大電
流域における電圧非直線性を改善できるとともに、課電
寿命およびサージ耐量も良好な電圧非直線抵抗体を得る
ことができる。
(Effects of the Invention) As is apparent from the above description, according to the method for producing a voltage-ratio linear resistor of the present invention, by using a zinc oxide raw material obtained by oxidizing zinc vapor in a predetermined atmosphere, It is possible to obtain a voltage non-linear resistor which can improve the voltage non-linearity in a large current region and also have a good electric charge life and surge withstand capability.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の電圧非直線抵抗体の製造方法を実施す
る装置の一例の構成を示す図である。 1……金属亜鉛、2……熔融炉 3……レトルト炉、3a……酸化室 4……冷却ダクト、5……捕集タンク 6……排風器、7……バッグフィルタ
FIG. 1 is a diagram showing the configuration of an example of an apparatus for carrying out the method of manufacturing a voltage nonlinear resistor according to the present invention. 1 ... Metal zinc, 2 ... Melting furnace, 3 ... Retort furnace, 3a ... Oxidizing chamber, 4 ... Cooling duct, 5 ... Collection tank, 6 ... Fan, 7 ... Bag filter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】亜鉛蒸気を酸化する間接法により製造した
酸化亜鉛原料を主成分とする電圧非直線抵抗体の製造方
法において、酸化亜鉛原料として、亜鉛蒸気を少なくと
もアルミニウムまたはインジウムまたはガリウムを含む
雰囲気中で酸化して得た、前記金属元素が固溶した酸化
亜鉛を使用することを特徴とする電圧非直線抵抗体の製
造方法。
1. A method for producing a voltage non-linear resistor containing a zinc oxide raw material as a main component, which is produced by an indirect method of oxidizing zinc vapor, in an atmosphere containing at least aluminum, indium or gallium as the zinc oxide raw material. A method for producing a voltage non-linear resistor, characterized in that zinc oxide in which the metal element is formed as a solid solution is used, which is obtained by oxidizing in a medium.
JP63248964A 1988-10-04 1988-10-04 Method of manufacturing voltage non-linear resistor Expired - Lifetime JPH0828285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63248964A JPH0828285B2 (en) 1988-10-04 1988-10-04 Method of manufacturing voltage non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248964A JPH0828285B2 (en) 1988-10-04 1988-10-04 Method of manufacturing voltage non-linear resistor

Publications (2)

Publication Number Publication Date
JPH0297002A JPH0297002A (en) 1990-04-09
JPH0828285B2 true JPH0828285B2 (en) 1996-03-21

Family

ID=17186017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248964A Expired - Lifetime JPH0828285B2 (en) 1988-10-04 1988-10-04 Method of manufacturing voltage non-linear resistor

Country Status (1)

Country Link
JP (1) JPH0828285B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071037A (en) * 1983-09-29 1985-04-22 Mitsubishi Electric Corp Preparation of fine powder

Also Published As

Publication number Publication date
JPH0297002A (en) 1990-04-09

Similar Documents

Publication Publication Date Title
JPH0252409B2 (en)
JPH0828285B2 (en) Method of manufacturing voltage non-linear resistor
JPH0734403B2 (en) Voltage nonlinear resistor
JPH07109805B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JP2836893B2 (en) Method of manufacturing voltage non-linear resistor
JPH0555008A (en) Voltage-dependent nonlinear resistor
JPH0379850B2 (en)
JPH0812804B2 (en) Voltage nonlinear resistor
JPH0734402B2 (en) Voltage nonlinear resistor
JPH0555011A (en) Manufacture of voltage-dependent nonlinear resistor
JPH0541307A (en) Manufacturing method of potential nonlinear resistor
JPH0686322B2 (en) Zinc oxide raw material for voltage nonlinear resistors
JPH0734406B2 (en) Voltage nonlinear resistor
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JPH0817122B2 (en) Method of manufacturing voltage non-linear resistor
JPH07105286B2 (en) Voltage nonlinear resistor
JP2533597B2 (en) Method of manufacturing voltage non-linear resistor
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JP2608626B2 (en) Method of manufacturing voltage non-linear resistor
JPH03142801A (en) Manufacture of voltage-dependent nonlinear resistor
JPH05258920A (en) Manufacture of voltage non-linear resistor
JPH01230205A (en) Manufacture of nonlinear voltage resistor
JPH0812805B2 (en) Voltage nonlinear resistor
JPH04253301A (en) Manufacture of non-linear varistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13