JPS6071037A - Preparation of fine powder - Google Patents

Preparation of fine powder

Info

Publication number
JPS6071037A
JPS6071037A JP58183401A JP18340183A JPS6071037A JP S6071037 A JPS6071037 A JP S6071037A JP 58183401 A JP58183401 A JP 58183401A JP 18340183 A JP18340183 A JP 18340183A JP S6071037 A JPS6071037 A JP S6071037A
Authority
JP
Japan
Prior art keywords
powder
metal
zinc
liquid
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58183401A
Other languages
Japanese (ja)
Inventor
Tsuyotoshi Takemura
竹村 剛俊
Masahiro Kobayashi
正洋 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58183401A priority Critical patent/JPS6071037A/en
Publication of JPS6071037A publication Critical patent/JPS6071037A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/02Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor for obtaining at least one reaction product which, at normal temperature, is in the solid state

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To efficiently recover a powder within a liquid, by conveying a molten metal while forming the same into a powder by injecting air thereinto, and generating reaction such as chemical change or condensation in the powder during conveying to introduce a mixture of the powder and air into a liquid. CONSTITUTION:Vapor obtained by melting a metal 12 such as zinc is guided to a conduit 4 and a high m.p. metal (e.g., Co) 10 and a low m.p. metal (e.g., Bi) 11 are respectively melted to be transferred to the conduit 4 as molten droplets or vapor while an oxygen/propylene flame is injected from a heating apparatus 6 and air is injected into the conduit 4 from an oxygen supply apparatus 7. Thus obtained oxide powdery mixture is introduced into a collection apparatus 5 filled with distilled water and recovered. As a result, a powder recovery rate is enhanced and environmental pollution is reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、均一な微粉体が得られるようにした微粉体
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing fine powder that allows uniform fine powder to be obtained.

〔従来技術〕[Prior art]

近年、酸化亜鉛形バリスタは、その優れた電圧・電流特
性から各方面で使用され、例えば、酸化亜鉛に酸化ビス
マス等の添加物を加えた原料を、周知のセラミック技術
、即ち粉砕、混合、造粒、成形、焼結等の一連のプロセ
スを経て製造されている〇 しかし、工業的に用いられる酸化ビスマスやその他の添
加物の多くは、平均粒径が数μm以上と大きく、シかも
純度の高いものを入手することは困難であった@このた
め、原料の粉砕や混合の工程には多くの労力と時間を必
要とし、最終的に得られたバリスタも均一性が悪く、バ
リスタ特性の向上が困難であった。
In recent years, zinc oxide type varistors have been used in various fields due to their excellent voltage and current characteristics. It is manufactured through a series of processes such as granulation, molding, and sintering.However, many of the industrially used bismuth oxides and other additives have large average particle sizes of several micrometers or more, and their purity may vary. It was difficult to obtain expensive varistors. For this reason, the process of crushing and mixing the raw materials required a lot of effort and time, and the final varistors had poor uniformity, making it difficult to improve varistor properties. was difficult.

このため1本発明者の一部は一オ五図に示すように、オ
lの金属の金属蒸気とオ9の金属の液滴または金属蒸気
とを混合して酸化させI?却するようにした陵化物粉体
捧体混合物の製造方法を従来したが、環境汚染が目立ち
、粉体の捕集効率の同上が困難であるという欠点があっ
た。
For this reason, some of the inventors of the present invention mixed the metal vapor of the metal (O) with droplets or metal vapor of the metal (O) to oxidize the mixture, as shown in Figures 1 and 5. Conventionally, a method for producing a mixture of powder particles and powder particles has been proposed, but the disadvantages are that environmental pollution is noticeable and it is difficult to improve the powder collection efficiency.

〔発明の概要〕[Summary of the invention]

この発明は上記欠点′?r、改善するためになされたも
ので、溶融金属に気体を噴射して粉体化して搬送し、搬
送中の粉体に化学変化及び凝縮等の反F3ヲ起させて粉
体と気体との混合物を液体中に導入し、液体中で粉体を
捕集することによって均一な微粉体の、生産性を向上す
るようにした微粉体の製造方法を提供する・ 〔発明の実施例〕 酸化亜鉛(ZnO)は、*属亜鉛(Zn )を蒸発酸化
させることによって製造され、高純度のものが得られる
が、これを単純に亜鉛(Zn)合金に通用することはで
きなかった。即ち、金属亜鉛(Zn)とビスマス(B1
)その他の添加元素とは、熱物理的性質、例えば融点、
S照、蒸気圧等の相違から、亜鉛(Zn )合金に蒸発
法を適用しても、さきに亜沿(Zn)が蒸発し、添加元
素はほとんどスラッジとして伐ってしまう。しかし、合
金を利用することは、各添加金属がその酸化物よシ尚純
度のものが得やすいこと、最終的に酸化雰囲気での焼成
段階で必要な程度に酸化は進み待るので、酸化物粉体と
して約90%以上の酸化率が達成されていればよいこと
、等と併せて平均粒径がl/1m以下の粉体か借られや
すいこと、及び物理的な混合がよシ均一に進められるこ
と等の点で魅力的な方法といえる。
Does this invention have the above drawbacks? r. This was done to improve the situation. Gas is injected into molten metal to turn it into powder and then transported, causing anti-F3 reactions such as chemical changes and condensation to occur in the powder being transported, resulting in the interaction between the powder and gas. To provide a method for producing fine powder that improves productivity by introducing a mixture into a liquid and collecting the powder in the liquid. [Embodiments of the invention] Zinc oxide ZnO (ZnO) is produced by evaporating and oxidizing zinc (Zn), and high purity can be obtained, but it has not been possible to simply apply it to zinc (Zn) alloys. That is, metallic zinc (Zn) and bismuth (B1
) Other additive elements are thermophysical properties such as melting point,
Due to differences in solar radiation, vapor pressure, etc., even if the evaporation method is applied to zinc (Zn) alloys, the zinc (Zn) will evaporate first, and most of the added elements will be turned into sludge. However, the use of alloys makes it easier to obtain additive metals with higher purity than their oxides, and the oxidation progresses to the required degree in the final firing step in an oxidizing atmosphere, so the oxides It is sufficient that the powder has an oxidation rate of about 90% or more, and in addition, it is easy to use powder with an average particle size of 1/1 m or less, and physical mixing is more uniform. This can be said to be an attractive method in that it can be advanced.

酸化物がバリスタの特性に有効な作用を何する金属元素
、例えばビスマス(Bi )、コバルト(00)、マン
ガン(Mn )、アンチモン(sb入入口ロム Or 
)、ニッケル(N1)チタン(T1)、シリコン(sl
)、アルミニクム(Al ) 等々は、金属亜鉛(Zn
 )よシ高い沸点ならびに同一温度で低い蒸気圧をもつ
、例えば、酸化亜鉛(ZrxO)に酸化ビスマス(Bi
to、)、酸化コバルトCC0tOs)酸化マンガン(
Mn O,) 、m 化アンチモン(sb。
Metal elements that have an effective effect on the characteristics of the varistor, such as bismuth (Bi), cobalt (00), manganese (Mn), antimony (sb
), nickel (N1), titanium (T1), silicon (sl
), aluminum (Al ), etc. are metal zinc (Zn
) has a higher boiling point and lower vapor pressure at the same temperature, for example, zinc oxide (ZrxO) and bismuth oxide (Bi
to, ), cobalt oxide CC0tOs) manganese oxide (
MnO, ), antimony chloride (sb.

Os)、酸化クロム(a乃0+t )等をそれぞれ0.
5〜1motチ加えるとき、従来の酸化亜鉛(zno)
製造フロセスにこれらの酸化物を混合する方法は、っぎ
のとおシである〇 金属亜鉛(zn)′t−t−亜化亜鉛ZnO)に酸化さ
せるプロセスでは、金属亜鉛(Zn )を蒸発させるs
lを加えると、金属亜鉛(Zn )の酸化熱によって、
酸素を含有する気体と酸化亜鉛(zno)の混合流体の
温度上昇が起る。この温度上昇は、空気酸化による標準
条件でも1,500℃前後で、空気量の減少、あるいは
酸素二/リッチによりさらに高温となる。したがって、
この経路にビスマス(Bi)、アンチモン(Sb)の供
給が行われると、これらは蒸発し十分な酸素の存在下で
酸化ビスマス(Bis 011 ) (BiO2: X
−ON1.5等もあシ得る]、酸化アンチモン(sb嘗
oa)等への酸化が進み、これによって、酸化亜鉛(z
no)、酸化ビスマス(Bison)、酸化アンチモン
(Sb*OS)の混合粉体が得られ、以下醸ヒコパル)
(Co。
Os), chromium oxide (ano0+t), etc., each at 0.
When adding 5-1 mot, conventional zinc oxide (zno)
The method of mixing these oxides in the production process is as follows: In the process of oxidizing to metallic zinc (Zn)'t-t-zinc suboxide (ZnO), metallic zinc (Zn) is evaporated.
When l is added, due to the oxidation heat of metal zinc (Zn),
A temperature increase occurs in the mixed fluid of oxygen-containing gas and zinc oxide (zno). This temperature increase is around 1,500° C. even under standard conditions due to air oxidation, and becomes even higher due to a decrease in the amount of air or oxygen di/rich. therefore,
When bismuth (Bi) and antimony (Sb) are supplied to this route, they evaporate and form bismuth oxide (Bis 011 ) (BiO2:
-ON1.5, etc.], antimony oxide (sb oxide), etc., and as a result, zinc oxide (zinc oxide)
A mixed powder of Bison oxide (No.
(Co.

01)、酸化マンガン(Mn Os) 、酸化クロムC
Or鵞01)等を加える通常のプロセスを適用して、均
一性を高めることができる◎なおビスマス(Bi)−ク
ロム(Or)等は均一な固溶体を作シにくいので、酸化
亜鉛(ZnO)−[化ビスマス(Bilog)−酸化ア
ンチモン(81)1os)のみの混合微粉を作る全体の
混合物を得るには、次のようにする。ただし、コバルト
(CO)は(Coo)の方が(00104)や(cos
os)よりもボドイ抑制その他に好影響を与えるので、
C0oo入酸化マンガン(Mno)で止まってもよく、
酸化率が90%以上であれば未酸化金属が残留していて
もよい。
01), manganese oxide (MnOs), chromium oxide C
Uniformity can be improved by applying a normal process of adding oxides such as 01) etc. ◎ Since bismuth (Bi)-chromium (Or) etc. are difficult to form a uniform solid solution, zinc oxide (ZnO)- [Bilog - antimony oxide (81) 1 os)] To obtain the entire mixture to make a mixed fine powder of only [Bilog - antimony oxide (81) 1 os], proceed as follows. However, for cobalt (CO), (Coo) is better than (00104) and (cos
os) has a better effect on body suppression and other factors,
It may stop at C0oo input manganese oxide (Mno),
As long as the oxidation rate is 90% or more, unoxidized metal may remain.

なお、酸化率90%以上とは、個々の金属が90%以上
酸化されていることを必要とするのでなく、酸化されや
すい金属が1009I;近く酸化され、酸化されにくい
金属は90%未満の酸化率でも、合金全体の9Oat%
が酸化物に転化しておればよい。酸化率が90%未満で
あると、焼結時の酸化による膨張が、空隙を埋める効果
を越えて、逆に内部と外部の酸化程度の時間的ずれに起
因するわれなどを起丁・ さて、コバルト(Co)とマンガン(Mn)のdaは、
それぞれ1,490℃およびl、247℃で、沸点は2
.900°Cおよび2,151℃である。したがって、
融点以上に加熱して酸素などで噴射する方法、さらに沸
点以上に加熱して同様に噴射し酸化させる方法がある。
Note that an oxidation rate of 90% or more does not require that individual metals be oxidized to 90% or more; metals that are easily oxidized are oxidized to 1009I; metals that are not easily oxidized are oxidized to less than 90%. 9Oat% of the entire alloy
It suffices if it is converted into an oxide. If the oxidation rate is less than 90%, the expansion due to oxidation during sintering will exceed the effect of filling the voids, and will instead cause cracks and cracks due to the time difference between the degree of oxidation between the inside and outside. The da of cobalt (Co) and manganese (Mn) is
1,490°C and 247°C, respectively, and the boiling point is 2
.. 900°C and 2,151°C. therefore,
There is a method of heating it above the melting point and injecting it with oxygen or the like, and a method of heating it above the boiling point and injecting it in the same way to oxidize it.

融点以上沸点以下の温度では、酸化亜鉛(Zno)と酸
素含有気体の温度で到達すべき酸素を噴射すれば、燃焼
熱で高温が維持される。
At temperatures above the melting point and below the boiling point, if oxygen is injected to reach the temperature of zinc oxide (Zno) and the oxygen-containing gas, the high temperature is maintained by the heat of combustion.

沸点以上の加熱には、酸素アセチレン炎などが可能であ
るが、酸化亜鉛(ZnO)製造経路中であることを考臆
すれば、レーデ等の応用も有効である@ 第2図は本発明の一実施例による微粉体を製造する装置
の構成図である0図において(1)は金属亜鉛(Zn)
を溶解する\溶解炉、(2)は溶融された金属亜鉛(z
n ) が入れられた保持炉、(3)は空気供給装置、
(4)は専管で所定の位置に送風機C図示せず)が設け
られている。(5)は捕集装置で、専管(4)と接続さ
れ蒸留水などの液体が充填されている。(6)はバーナ
などの加熱装置、(7)I/′i。
For heating above the boiling point, oxyacetylene flame etc. can be used, but if we consider that it is in the process of producing zinc oxide (ZnO), it is also effective to apply a method such as Rede. In Figure 0, which is a configuration diagram of an apparatus for producing fine powder according to an embodiment, (1) is metallic zinc (Zn).
Melting furnace (2) melts molten metal zinc (z
(3) is an air supply device,
(4) is exclusively provided with a blower C (not shown) at a predetermined position. (5) is a collection device, which is connected to a special pipe (4) and filled with liquid such as distilled water. (6) is a heating device such as a burner, and (7) I/'i.

酸素供給ノズル、(8)は高沸点金属(コパルHCo)
、マンガン(Mn)など沸点が1,500℃以上のもの
)またはそれらの合金c以下金属またはそれらの合金を
単に金属という)供給装置、(9)は低dI8点金属(
アンチモン(sb )ビスマス(B1)など沸点が17
00℃未満のもの)供給装置、(lO)は高沸点金属%
 (11)は低沸点金属、Qカは金属亜鉛(Zn)であ
る。
Oxygen supply nozzle, (8) is a high boiling point metal (copal HCo)
, manganese (Mn) with a boiling point of 1,500°C or higher) or their alloys below C or their alloys are simply referred to as metals), (9) is a low dI 8 point metal (
Antimony (sb), bismuth (B1), etc. with a boiling point of 17
(lower than 00℃) supply device, (lO) is high boiling point metal %
(11) is a low boiling point metal, and Q is metal zinc (Zn).

つぎに、実施例の1条件について説明する。Next, one condition of the example will be explained.

金属亜鉛(zn) (12約6闇を黒鉛なるつほに入れ
、プロパンバーナで加熱して沸騰させる。蒸発量は約2
00沖−とした。1w;融点金属(10)は、コバルト
(Co)k 1xsy、マンガン(Mn)1s4rクロ
ムCar)lo4y−2それぞれ黒鉛るつほで溶解し、
鋳造した後直径が約2 mmの合金線に〃1エした0ま
た、低融点金属(11)は、ビスマス(B1)を418
2、アンチモン(81))486F を溶解、鋳造後直
径約8.5關の合金線に加工し、各金属(10)とl+
)とをそれぞれの供給装置(8)と(9)とで約200
 rtutt4の速度で供給するようにし、加熱装置(
6)からガス消費量を約’ ”hrとして酸素プロピレ
ン炎を噴射させ、酸素供給装置(7)への空気供給は、
円環にノズルヲ設け、このノズルかうB ON m’ 
/winで噴出させるようにした。
Metallic zinc (zn) (approximately 6 ounces of zinc is placed in a graphite tube and heated with a propane burner to bring it to a boil.The amount of evaporation is approximately 2
00 oki-. 1w; The melting point metal (10) is cobalt (Co) k 1xsy, manganese (Mn) 1s4r chromium Car) lo4y-2, each melted in a graphite melting hole,
After casting, it was made into an alloy wire with a diameter of about 2 mm.In addition, the low melting point metal (11) was made of bismuth (B1) at 418 mm.
2. Antimony (81)) 486F was melted and cast into an alloy wire with a diameter of approximately 8.5 mm, and each metal (10) and l +
) and each supply device (8) and (9) approximately 200
The heating device (
From 6), an oxygen-propylene flame is injected with a gas consumption of about '''hr, and air is supplied to the oxygen supply device (7).
A nozzle is provided in the ring, and this nozzle is
/win makes it eject.

これによって、図示左方向から右方向に上記流速で移送
される金属亜鉛(Zn)蒸気に、両融点金属(10)と
低融点金属(1すとがそれぞれ溶融されて溶滴またはそ
れぞれの金属蒸気となって移送され、金属亜鉛(zn 
)蒸気と混合し酸化されて酸化物粉体混合物が構成され
る。
As a result, the two melting point metals (10) and the low melting point metal (1) are melted into the metal zinc (Zn) vapor, which is transferred from the left direction to the right direction in the figure at the above flow rate, and form droplets or respective metal vapors. Zinc metal (zn
) is mixed with steam and oxidized to form an oxide powder mixture.

このようにして得られた酸化物粉体混合物は、蒸留水が
充填された捕集装置(5)で回収される。
The oxide powder mixture thus obtained is collected in a collector (5) filled with distilled water.

全量の金属を蒸発させた後、酸化物粉体混合物を捕集し
た蒸留水全混合機に移し、有機バインダ及び界面活性剤
を所定量投入し、十分攪拌した後、噴霧乾燥器を通して
直径約100μmの造粒粉とする。この造粒粉を、成形
、焼結、研摩、篭極付け、等のプロセスを経て、最終寸
法が直径48n1厚さ24rtrmのバリスタ本体に仕
上げ、バリスタ特性の評価をした。これによると、梃来
の21図の方法とほぼ同等のものが得られた。
After the entire amount of metal has been evaporated, the oxide powder mixture is transferred to a distilled water mixing machine that collects the collected distilled water, and a predetermined amount of organic binder and surfactant are added thereto. After thorough stirring, it is passed through a spray dryer to form a powder with a diameter of approximately 100 μm. granulated powder. This granulated powder was subjected to processes such as molding, sintering, polishing, and gating, and was finished into a varistor body with final dimensions of 48 nm in diameter and 24 rtrm in thickness, and the varistor properties were evaluated. According to this, something almost equivalent to the method shown in Fig. 21 of Korai was obtained.

なお、金属の蒸発熱源τレーザ、アーク、透4那熱等と
し、キャリヤガスを水素(Hl)、窒素(N1)等とし
、液体全曲その他の無酸化性のものとすると、置端や合
金の超微粉の製造も可能である〇 〔発明の効果〕 以上説明したようrClこの発明によれば、金属赦化物
倣粉とこの萱m酸化物微粉を搬送する気体との混合物を
液中に尋人し、気体のみを気泡として赦逸させてスラリ
ー状の粉体を水中で捕集した後、有機バインダや界面粘
性剤を加え噴4乾燥するようにしたので、粉体回収率が
同上し、しかも環境汚染も少ないという効果が得られる
In addition, if the metal evaporation heat source is a τ laser, arc, or 4-nathermal heat source, and the carrier gas is hydrogen (Hl), nitrogen (N1), etc., and a liquid or other non-oxidizing material is used, it is possible to It is also possible to produce ultrafine powder. [Effects of the Invention] As explained above, according to this invention, a mixture of a metal acetate imitation powder and a gas that carries this oxide fine powder is poured into a liquid. However, after collecting the slurry-like powder in water by releasing only the gas as bubbles, an organic binder and an interfacial viscosity agent were added and the powder was dried by spraying, so the powder recovery rate was the same as above. The effect is that there is less environmental pollution.

【図面の簡単な説明】[Brief explanation of the drawing]

21図は従来の製造方法金示す正面図、第2図はCの究
(7)の−実施列き示す正面図である。 図において、(3)は空気供給装置、t51は捕集装置
、(6)は加M装置、(7)は酸素供給装置、(111
(Iりは金属である。 なお各図中同一符号は同−又i”t+目当部分を示す。 代理人 大 岩 増 雄 第1図 第2図
FIG. 21 is a front view showing the conventional manufacturing method, and FIG. 2 is a front view showing the implementation of method C (7). In the figure, (3) is an air supply device, t51 is a collection device, (6) is a heating device, (7) is an oxygen supply device, (111
(I is metal. The same reference numerals in each figure indicate the same - or i"t + target part. Agent Masuo Oiwa Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1) 溶融金属に気体を噴射して粉体化し、上記気体
で搬送される上記粉体に化学変化及び凝縮等の反応を起
させる微粉体の製造方法において、上記粉体と上記気体
との混合物を液体中に導入し、上記粉体を液体中で捕集
することを特徴とする微粉体の製造方法。
(1) A method for producing fine powder in which molten metal is injected with a gas to form a powder, and the powder carried by the gas undergoes reactions such as chemical changes and condensation, in which the powder and the gas are mixed together. A method for producing fine powder, comprising introducing a mixture into a liquid and collecting the powder in the liquid.
(2) 溶融金属に気体を噴射して粉体化し、上記気体
で搬送される上記粉体に化学変化及び凝縮等の反応を起
させる微粉体の製造方法において、上記粉体と上記気体
との混合物を液体中に導入して上記粉体を液体中で捕集
し、上記粉体を噴縛乾燥して造粒することを特徴とする
微粉体の製造方法。
(2) In a method for producing fine powder, in which a gas is injected into a molten metal to form a powder, and the powder carried by the gas undergoes a reaction such as a chemical change or condensation, the powder is mixed with the gas. A method for producing fine powder, which comprises introducing a mixture into a liquid, collecting the powder in the liquid, and granulating the powder by blow drying.
JP58183401A 1983-09-29 1983-09-29 Preparation of fine powder Pending JPS6071037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58183401A JPS6071037A (en) 1983-09-29 1983-09-29 Preparation of fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58183401A JPS6071037A (en) 1983-09-29 1983-09-29 Preparation of fine powder

Publications (1)

Publication Number Publication Date
JPS6071037A true JPS6071037A (en) 1985-04-22

Family

ID=16135128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58183401A Pending JPS6071037A (en) 1983-09-29 1983-09-29 Preparation of fine powder

Country Status (1)

Country Link
JP (1) JPS6071037A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291406A (en) * 1985-06-07 1986-12-22 Res Dev Corp Of Japan Method for producing ultra-fine particle of oxide and apparatus therefor
JPS6246905A (en) * 1985-08-26 1987-02-28 Res Dev Corp Of Japan Method and apparatus for producing ultrafine oxide particles
JPH0297002A (en) * 1988-10-04 1990-04-09 Ngk Insulators Ltd Manufacture of voltage non-linear resistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291406A (en) * 1985-06-07 1986-12-22 Res Dev Corp Of Japan Method for producing ultra-fine particle of oxide and apparatus therefor
JPH0372002B2 (en) * 1985-06-07 1991-11-15 Shingijutsu Jigyodan
JPS6246905A (en) * 1985-08-26 1987-02-28 Res Dev Corp Of Japan Method and apparatus for producing ultrafine oxide particles
JPH0577601B2 (en) * 1985-08-26 1993-10-27 Shingijutsu Kaihatsu Jigyodan
JPH0297002A (en) * 1988-10-04 1990-04-09 Ngk Insulators Ltd Manufacture of voltage non-linear resistor

Similar Documents

Publication Publication Date Title
JPH04254568A (en) Composite flame coated powder consisting of boron nitride and aluminum
JPS58151474A (en) Manufacture of flame spray powder and porous coating
CN109702214B (en) Aluminum-zinc-based multi-component alloy spherical powder and preparation method and application thereof
JPS6071037A (en) Preparation of fine powder
JPH05506637A (en) Method and apparatus for preparing alkali chromates from chromium minerals
EP0562566A1 (en) Method of manufacturing composite ferrite
JPS58207938A (en) Manufacture of fine ceramic particle
JP3476371B2 (en) Iron ore pellet manufacturing method
JP6744730B2 (en) Method for producing fine metal particles
US3317308A (en) Process for reduction of iron ores
JPS63119589A (en) Manufacture of thermoelectric material
US1207708A (en) Manufacture of oxids of nitrogen.
JPH11236607A (en) Production of spherical powder and spherical powder produced thereby
JP3185394B2 (en) High-speed production method of spherical metal fine particles
KR102572728B1 (en) Metal powder manufacturing apparatus and metal powder manufacturing method using same
JPS63288914A (en) Production of globular zinc oxide
JPS63255306A (en) Wet metallurgical method for producing finely divided globular low melting point metal base powder
JP4155438B2 (en) Method for producing spherical oxide powder
JPS605525B2 (en) Method for forming oxide film on silicon powder for welding agent
JP2510524B2 (en) Method for manufacturing solder powder
US2492986A (en) Composition for producing carbon dioxide from hydrogen and carbon containing compounds, and the process for producing the same
JP2003514986A (en) Powder manufacturing method
US3235372A (en) Hard burned agglomerate and process for making same
JPH01262938A (en) Manufacture of fine powder and equipment therefor
US9145A (en) Improvement in preparing zinc from the ores