JPS63288914A - Production of globular zinc oxide - Google Patents

Production of globular zinc oxide

Info

Publication number
JPS63288914A
JPS63288914A JP12253887A JP12253887A JPS63288914A JP S63288914 A JPS63288914 A JP S63288914A JP 12253887 A JP12253887 A JP 12253887A JP 12253887 A JP12253887 A JP 12253887A JP S63288914 A JPS63288914 A JP S63288914A
Authority
JP
Japan
Prior art keywords
zinc
zinc oxide
vapor
oxygen
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12253887A
Other languages
Japanese (ja)
Inventor
Takeshi Mitarai
毅 御手洗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Aen KK
Original Assignee
Nikko Aen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Aen KK filed Critical Nikko Aen KK
Priority to JP12253887A priority Critical patent/JPS63288914A/en
Publication of JPS63288914A publication Critical patent/JPS63288914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the title high-purity, superfine, and globular ZnO by bringing low-temp. and dilute zinc vapor into contact with oxygen. CONSTITUTION:A crucible 2 contg. ultrapure zinc is placed in an electric furnace 1, and heated to 550-950 deg.C to melt the Zn. An inert gas previously freed of oxygen is introduced into the furnace through a preheating pipe 3 to obtain low-temp. dilute zinc vapor contg. 0.06-1mol./m<3> Zn. The vapor is then introduced into an Elema thermal-element 4 kept at 1,000-1,100 deg.C, and brought into contact with oxygen. The formed ZnO is recovered through a filter 5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、球状の酸化亜鉛の製造法に関し、従来のゴム
の加硫促進剤、化粧品、可塑物への添加剤、絵具、窯業
製品等の添加剤などは勿論のこと、電子写真用感光材料
、バリスター、電子部品用材料などに有用な材料を提供
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing spherical zinc oxide, and is applicable to conventional rubber vulcanization accelerators, cosmetics, additives to plastics, paints, ceramic products, etc. It provides useful materials for electrophotographic photosensitive materials, varistors, electronic component materials, etc., as well as additives.

[従来の技術] 従来酸化亜鉛のIJ造法として、所謂フランス法等によ
る金属亜鉛蒸気の酸化燃焼法が知られている。かかる方
法によって得られる酸化亜鉛は、原料の亜鉛蒸気の温度
が高く亜鉛蒸気密度が大きいので、酸化反応により生成
する微細な酸化亜鉛の粒子同士が衝突、焼結し、粗大な
酸化亜鉛粒子になると言われ、その粒径は、細かいもの
でも0.2μm、平均的には0.5〜0.8μmである
[Prior Art] As a conventional IJ manufacturing method of zinc oxide, an oxidation combustion method of metallic zinc vapor, such as the so-called French method, is known. Zinc oxide obtained by this method has a high temperature and high zinc vapor density as a raw material, so fine zinc oxide particles produced by the oxidation reaction collide with each other and sinter, forming coarse zinc oxide particles. The particle size is 0.2 μm at the smallest, and 0.5 to 0.8 μm on average.

これらの酸化亜鉛は、その粘稠性、凝集性のため機械粉
砕ではこれ以上微粒化することは困難である。しかしな
がら、前述の古くから用いられている用途はもちろんの
こと、近年開拓されたバリスター等の用途においては、
従来に増し高純度化とともに超微粒化が要求されはじめ
ている。
Due to the viscosity and cohesiveness of these zinc oxides, it is difficult to further refine them by mechanical grinding. However, in addition to the applications that have been used for a long time as mentioned above, in applications such as varistors that have been developed in recent years,
There is a growing demand for ultra-fine particles as well as higher purity than ever before.

そこで、超微粒酸化亜鉛の製法として大別すめると、一
旦微細な亜鉛化合物を生成した後これを加熱焙焼する熱
分解法と、亜鉛蒸気を直接酸化燃焼させる気相反応法と
が知られている。
Therefore, methods for producing ultrafine zinc oxide can be roughly divided into two types: a thermal decomposition method in which a fine zinc compound is generated and then heated and roasted, and a gas phase reaction method in which zinc vapor is directly oxidized and burned. There is.

熱分解法の第1の例は、例えば塩化亜鉛、硫酸亜鉛、硝
酸亜鉛等の亜鉛イオン溶液中に、蓚酸、蓚酸アルカリま
たは蓚酸アンモニウム溶液を添加し、蓚酸亜鉛の微細結
晶を生ぜしめ、濾別乾燥後、酸化焙焼して酸化亜鉛とな
す方法(特願昭56−90782号参照)で、得られる
酸化亜鉛の粒径は約0.03μ■とされている。
The first example of the thermal decomposition method is to add oxalic acid, alkali oxalate, or ammonium oxalate solution to a zinc ion solution such as zinc chloride, zinc sulfate, or zinc nitrate to generate fine crystals of zinc oxalate, which are then filtered out. After drying, the powder is oxidized and roasted to produce zinc oxide (see Japanese Patent Application No. 56-90782), and the particle size of the resulting zinc oxide is said to be about 0.03 .mu.m.

熱分解法の第2の例は、亜鉛塩溶液に水酸化アルカリ又
は炭酸アルカリを添加し、それぞれ得られる水酸化亜鉛
又は塩基性亜鉛を濾別、乾燥後、酸化焙焼する方法で、
水酸化亜鉛の焙焼により得られる酸化亜鉛の粒径は0.
1μlまでであり、塩基性炭酸亜鉛の焙焼による場合は
0.07〜0.1μmが可能とされている。
The second example of the thermal decomposition method is a method in which alkali hydroxide or alkali carbonate is added to a zinc salt solution, the resulting zinc hydroxide or basic zinc is filtered, dried, and then oxidized and roasted.
The particle size of zinc oxide obtained by roasting zinc hydroxide is 0.
The amount is up to 1 .mu.l, and in the case of roasting basic zinc carbonate, it is said that 0.07 to 0.1 .mu.m is possible.

熱分解法の第3の例は、密閉容器内において、酸化亜鉛
の水スラリーとCO2ガスとを反応させて塩基性炭酸亜
鉛を生成し、この塩基性炭酸亜鉛を熱分解して酸化亜鉛
となす方法(特願昭59−111720号参照)で、得
られる酸化亜鉛は比表面積が15m 2/!IIであり
、これから換算すると平均粒径は0.07μ請である。
The third example of the pyrolysis method is to react a water slurry of zinc oxide with CO2 gas in a closed container to produce basic zinc carbonate, and then pyrolyze this basic zinc carbonate to form zinc oxide. method (see Japanese Patent Application No. 59-111720), the zinc oxide obtained has a specific surface area of 15 m 2 /! II, and when converted from this, the average particle size is 0.07 μm.

又、気相反応法の例としては、酸素を含有する雰囲気中
に金属亜鉛蒸気を噴出して亜鉛を酸化燃焼せしめた後、
直ちに生成した酸化亜鉛を急冷することによって針状亜
鉛を製造し、この針状亜鉛をベースに所望特性(粒径、
粒度分布、嵩密度、吸着特性等)の団塊状酸化亜鉛を得
る方法(特願昭55−23516号参照)が挙げられる
In addition, as an example of a gas phase reaction method, after spouting metallic zinc vapor into an oxygen-containing atmosphere to oxidize and burn zinc,
Acicular zinc is produced by rapidly cooling the immediately generated zinc oxide, and desired properties (particle size,
There is a method for obtaining nodular zinc oxide (particle size distribution, bulk density, adsorption characteristics, etc.) (see Japanese Patent Application No. 55-23516).

[発明が解決しようとする問題点] 前述の熱分解法の第1および第2の例においては、例え
ば亜鉛塩の濃度と添加する炭酸アカリの濃度を稀薄化す
ることによって、生成する塩基性炭酸亜鉛粒子の肥大化
を抑制して、0.1μ踵程度の超微粒酸化亜鉛を得るこ
とができるが、反応条件の調整だけで微細化するには限
界があり、また、いずれの方法も目的とする反応生成物
(塩基性炭酸亜鉛)から反応系で残留する亜鉛塩(例え
ば塩化亜鉛、硫酸亜鉛等)並びに生成系の副産物(例え
ば塩化ナトリウム、芒硝等)を洗浄・除去するための工
程が避けられないため、生成物が微細であるが故にこの
洗浄は容易には行えずミ経済的なデメリットが大きい。
[Problems to be Solved by the Invention] In the first and second examples of the pyrolysis method described above, for example, by diluting the concentration of zinc salt and the concentration of alkali carbonate to be added, the basic carbonate produced can be reduced. Although it is possible to suppress the enlargement of zinc particles and obtain ultrafine zinc oxide particles with a diameter of about 0.1μ, there is a limit to how fine they can be made by simply adjusting the reaction conditions, and neither method can achieve the desired goal. Avoid the process of washing and removing residual zinc salts (e.g. zinc chloride, zinc sulfate, etc.) and by-products of the production system (e.g. sodium chloride, Glauber's salt, etc.) from the reaction product (basic zinc carbonate). Since the products are fine, this washing cannot be carried out easily and is a major economic disadvantage.

そして洗浄が不十分な場合には当然酸化亜鉛中にNa、
S等が不純物として混入し、高純度の要求には応えられ
ないという問題がある。
And if cleaning is insufficient, naturally Na,
There is a problem in that S and the like are mixed in as impurities, making it impossible to meet the demands for high purity.

熱分解法の第3の例は不純物を含まない塩基性炭酸亜鉛
の製法を開示しており、それを熱分解した酸化亜鉛も不
純物を含まないものとすることは可能であるが、製造に
密閉容器を用いなければならない問題がある。
The third example of the pyrolysis method discloses a method for producing basic zinc carbonate that does not contain impurities, and it is possible to make zinc oxide by pyrolyzing it free of impurities; There is a problem in that a container must be used.

気相法の例では、本質的には針状酸化亜鉛の製造を目的
としており、超微粒の酸化亜鉛の製造の開示はない。し
かしながら、酸化亜鉛の新しい用途が開発されるととも
に、超微細粒子が望まれ、さらに粒子の形状についても
、針状ではなく、球状のものが必要とされる状況が生じ
ている。
In the example of the gas phase method, the purpose is essentially to produce acicular zinc oxide, and there is no disclosure of production of ultrafine zinc oxide. However, as new uses for zinc oxide are developed, ultrafine particles are desired, and a situation has arisen in which the shape of the particles is not acicular but spherical.

[問題点を解決するための手段] 本発明は、従来の上記問題点を解決し、高純度で超微細
であり、しかも球状化された酸化亜鉛を製造することを
目的とするもので、その要旨は、低温稀薄亜鉛蒸気を酸
素と接触せしめることを特徴とする球状酸化亜鉛の製造
方法である。
[Means for Solving the Problems] The purpose of the present invention is to solve the above-mentioned conventional problems and to produce highly pure, ultrafine, and spheroidized zinc oxide. The gist is a method for producing spherical zinc oxide, which is characterized by bringing low-temperature dilute zinc vapor into contact with oxygen.

すなわち、微細な酸化亜鉛を得るためには、前記フラン
ス法等における亜鉛粒子同士の衝突や焼結を抑制するこ
とが必要で、このためには酸化反応の低温化、酸化反応
における亜鉛蒸気の低密度化が効果的であるとの結論に
至った。
In other words, in order to obtain fine zinc oxide, it is necessary to suppress the collision and sintering of zinc particles in the French method, etc., and to do this, it is necessary to lower the temperature of the oxidation reaction and reduce the amount of zinc vapor in the oxidation reaction. It was concluded that densification is effective.

そして、酸化反応の低温化と亜鉛蒸気の低密度化を指向
した場合に、必然的に起こる処理速度の低下というデメ
リットに対し、予熱した不活性ガスを蒸気発生系に吹き
込むことによって、蒸気量の確保と蒸気の低密度化の両
者を満足させることができた。
In order to overcome the disadvantage of a reduction in processing speed that inevitably occurs when aiming to lower the temperature of the oxidation reaction and lower the density of zinc vapor, the amount of steam can be reduced by injecting preheated inert gas into the steam generation system. It was possible to satisfy both of the requirements of security and lowering the density of steam.

ところで、亜鉛溶湯温度、亜鉛蒸気圧および亜鉛蒸気密
度の関係を示すと表1のとおりである。この表1におい
て、亜鉛蒸気密度は不活性ガスで全圧を1気圧にバラン
スさせたときの理想気体としての亜鉛飽和蒸気の濃度で
ある。
Incidentally, Table 1 shows the relationship among molten zinc temperature, zinc vapor pressure, and zinc vapor density. In Table 1, the zinc vapor density is the concentration of zinc saturated vapor as an ideal gas when the total pressure is balanced to 1 atmosphere with an inert gas.

表1 上表から明らかなとおり1.800℃を境として蒸気密
度に変化がある。温度550℃から800℃までの亜鉛
蒸気密度は小さいので、亜鉛溶湯に不活性ガスを吹き込
むことによって低温稀薄の亜鉛蒸気を発生せしめられる
。高温の亜鉛溶湯から発生する蒸気は蒸気密度が大きい
ので、不活性ガスを吹き込むことによって希釈・冷Wす
る。
Table 1 As is clear from the table above, there is a change in vapor density at 1.800°C. Since the density of zinc vapor at temperatures between 550° C. and 800° C. is low, low-temperature and dilute zinc vapor can be generated by blowing inert gas into molten zinc. The steam generated from high-temperature molten zinc has a high steam density, so it is diluted and cooled by blowing inert gas.

酸素と接触させる亜鉛蒸気の稀薄さは、0.06〜1m
ol/m 3の範囲が好適である。
The dilution of zinc vapor that is brought into contact with oxygen is 0.06 to 1 m.
A range of ol/m 3 is preferred.

亜鉛蒸気の酸化反応は、酸素又は空気によって行う。The oxidation reaction of zinc vapor is carried out with oxygen or air.

[作用] 本発明によれば、生成する酸化亜鉛粒子同士の衝突、焼
結が避けられる。
[Function] According to the present invention, collision and sintering of generated zinc oxide particles can be avoided.

[実施例] つぎに実施例について述べる。[Example] Next, examples will be described.

実施例1 第1図に示すように、電気炉1内に最純亜鉛の入ったる
つは2を入れ、所定の温度に昇温する。予じめ酸素を除
去した窒素ガスを予熱管3を通してるつぼ2内の亜鉛溶
湯中に吹き込む。
Example 1 As shown in FIG. 1, a crucible 2 containing the purest zinc is placed in an electric furnace 1 and heated to a predetermined temperature. Nitrogen gas from which oxygen has been removed in advance is blown into the molten zinc in the crucible 2 through the preheating tube 3.

るつぼ2天井部に取り付けたエレマ発熱体4に電圧をか
け、発熱対の温度を、蒸気加熱のためではなく、亜鉛蒸
気の凝縮を避けるため、1000〜1100℃程度に保
つ。
A voltage is applied to the Elema heating element 4 attached to the ceiling of the crucible 2, and the temperature of the heating pair is maintained at about 1000 to 1100°C, not for steam heating but to avoid condensation of zinc vapor.

このようにして、るつぼ2内から、稀薄亜鉛蒸気を大気
中に放出し、酸化亜鉛を得る。酸化反応による炎は観察
されなかった。生成した酸化亜鉛はフィルター5を通し
て回収する。図中6は温度計である。
In this way, diluted zinc vapor is released into the atmosphere from inside the crucible 2 to obtain zinc oxide. No flame due to oxidation reaction was observed. The generated zinc oxide is collected through a filter 5. 6 in the figure is a thermometer.

余熱管3を通じて吹き込む窒素ガスの原石を100NI
/Hrとして、亜鉛溶湯の温度を550℃から700℃
として反応させたところ、得られた白色粉体はX線回折
の結果ZnOと同定された。
100 NI of nitrogen gas is injected through the preheating pipe 3.
/Hr, the temperature of the molten zinc is 550℃ to 700℃
The resulting white powder was identified as ZnO by X-ray diffraction.

また、電子顕微鏡写真によると各溶湯温度のものの粒径
は表2に示すとおりであった。この中、600℃のもの
と700℃のものについては、第3図、第4図に示す。
Further, according to electron micrographs, the particle diameters at each molten metal temperature were as shown in Table 2. Among these, the temperature at 600°C and the temperature at 700°C are shown in FIGS. 3 and 4.

第3図のものでは、団塊状のものも見られるが、団塊を
構成する粒子ひとつひとつの径は0.01μm程度であ
り、容易に分離し易く、非常に比表面積が大きいもので
あった。
In the case of FIG. 3, some particles were seen in the form of nodules, but the diameter of each particle constituting the nodules was about 0.01 μm, which made them easy to separate and had a very large specific surface area.

第4図のものは多少針状のものも見られるが、大部分は
球状のものであった。
In the one in Figure 4, some needle-like shapes can be seen, but most of them are spherical.

表2 実施例2 第2図に示す装置を用いて実施した。第2図における第
1図と同一名称部分は第1図と同じ符号を付しである。
Table 2 Example 2 The experiment was carried out using the apparatus shown in FIG. Components in FIG. 2 with the same names as those in FIG. 1 are given the same reference numerals as in FIG. 1.

7は希釈用窒素送給管、8は冷却炉である。7 is a nitrogen supply pipe for dilution, and 8 is a cooling furnace.

るつぼ2内の800℃以上に加熱された亜鉛溶湯中に、
酸素を除去した窒素ガスを予熱管3を通して吹き込む。
In the molten zinc heated to over 800℃ in crucible 2,
Nitrogen gas from which oxygen has been removed is blown through the preheating tube 3.

又、希釈用窒素送給管7を通  −じ、るつぼ2上部の
孔から予熱された窒素ガスを吹き込み、溶湯から発生す
る亜鉛蒸気を希釈する。希釈された亜鉛蒸気はエレマ発
熱体4を通り、冷却炉8に入る。そして、冷却炉8の天
井部に取付けたノズルから稀薄亜鉛蒸気を大気中に放出
する。酸化反応にともなう炎は観察されなかった。生成
した酸化亜鉛はフィルター5を通して回収する。
Further, preheated nitrogen gas is blown into the hole at the top of the crucible 2 through the dilution nitrogen supply pipe 7 to dilute the zinc vapor generated from the molten metal. The diluted zinc vapor passes through the Elema heating element 4 and enters the cooling furnace 8. Then, dilute zinc vapor is released into the atmosphere from a nozzle attached to the ceiling of the cooling furnace 8. No flame associated with the oxidation reaction was observed. The generated zinc oxide is collected through a filter 5.

かかる方法を表3に示すa、bの条件で行った。This method was carried out under conditions a and b shown in Table 3.

表3 いずれにおいても白色粉体が得られ、X線回折の結果Z
nOと同定された。第5図は条件aにより生成した酸化
亜鉛の顕微鏡写真で、多少団塊化しているようにみえる
が、団塊を構成する粒子ひとつひとつの径は0.01μ
m程度であり、容易に分離し易く、非常に比表面積が大
きいものであった。
Table 3 In all cases, white powder was obtained, and the results of X-ray diffraction Z
It was identified as nO. Figure 5 is a microscopic photograph of zinc oxide produced under condition a. It appears to be agglomerated to some extent, but the diameter of each particle making up the agglomeration is 0.01μ.
It was easy to separate and had a very large specific surface area.

[発明の効果] 本発明によれば、超微細で球状をした酸化亜鉛を容易に
得ることができる。特に球状のものは、かさ密度が大で
、流動性が良く、取扱いが簡単で、一定量の切り出しが
容易で、生産工程の自動化に有効である。そして、超微
細で球状ということは、化粧品その他に用いたときの展
延性や均一混和性を増大する。又、螢光性、圧電性、半
導体性の特性値が変化し、電子部品用材料等の新規用途
に対しても有効である。
[Effects of the Invention] According to the present invention, ultrafine and spherical zinc oxide can be easily obtained. In particular, spherical materials have a high bulk density, good fluidity, are easy to handle, and are easy to cut out in a certain amount, making them effective for automating production processes. The ultrafine and spherical shape increases spreadability and uniform miscibility when used in cosmetics and other products. In addition, the characteristic values of fluorescence, piezoelectricity, and semiconductivity change, making it effective for new applications such as materials for electronic parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図並びに第2図はそれぞれ本発明の実施に適する装
置の概念図、第3図ないし第5図は本発明の実施例で得
た酸化亜鉛のgi微鏡写真である。 1・・・電気炉  2・・・るつぼ 3・・・予熱管  4・・・エレマ発熱体5・・・フィ
ルター  6・・・温度計7・・・希釈用窒素送給管 8・・・冷却炉 牙3図 ×606α刀 牙 4 図 X90.σD 牙5図 ×90.αD 手続ネ巾正書(方式) %式% 1、事件の表示     昭和62年特許願第1225
38号2、発明の名称     球状酸化亜鉛の11造
方法名  称     日鉱亜鉛株式会社 (発送日昭和62年7月28日) 6、補正の対象     明細書中、図面の簡単な説明
の欄。 7、補正の内容
FIGS. 1 and 2 are conceptual diagrams of an apparatus suitable for carrying out the present invention, and FIGS. 3 to 5 are GI microphotographs of zinc oxide obtained in Examples of the present invention. 1... Electric furnace 2... Crucible 3... Preheating tube 4... Elema heating element 5... Filter 6... Thermometer 7... Nitrogen feed pipe for dilution 8... Cooling Toga 3 diagrams x 606α Toga 4 diagrams X90. σD Fang 5 drawings x 90. αD Procedure book (method) % formula % 1, Indication of case 1986 Patent Application No. 1225
38 No. 2, Title of the invention: 11 Manufacturing method for spherical zinc oxide Name: Nikko Zinc Co., Ltd. (Delivery date: July 28, 1986) 6. Subject of amendment: A column for a brief explanation of the drawings in the specification. 7. Contents of correction

Claims (3)

【特許請求の範囲】[Claims] (1)低温稀薄亜鉛蒸気を酸素と接触せしめることを特
徴とする球状酸化亜鉛の製造方法。
(1) A method for producing spherical zinc oxide, which comprises bringing low-temperature diluted zinc vapor into contact with oxygen.
(2)低温稀薄亜鉛蒸気は温度550〜800℃の亜鉛
溶湯に不活性ガスを吹き込むことにより発生せしめる特
許請求の範囲第(1)項記載の記載の球状酸化亜鉛の製
造方法。
(2) The method for producing spherical zinc oxide according to claim (1), wherein the low-temperature diluted zinc vapor is generated by blowing an inert gas into molten zinc at a temperature of 550 to 800°C.
(3)低温稀薄亜鉛蒸気は、温度800〜950℃の亜
鉛溶湯から亜鉛蒸気を蒸発させ、これに不活性ガスを吹
き込んで希釈、冷却することにより生成せしめる特許請
求範囲第(1)項記載の球状酸化亜鉛の製造方法。
(3) Low-temperature diluted zinc vapor is produced by evaporating zinc vapor from molten zinc at a temperature of 800 to 950°C, diluting and cooling it by blowing inert gas into it, as described in claim (1). Method for producing spherical zinc oxide.
JP12253887A 1987-05-21 1987-05-21 Production of globular zinc oxide Pending JPS63288914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12253887A JPS63288914A (en) 1987-05-21 1987-05-21 Production of globular zinc oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12253887A JPS63288914A (en) 1987-05-21 1987-05-21 Production of globular zinc oxide

Publications (1)

Publication Number Publication Date
JPS63288914A true JPS63288914A (en) 1988-11-25

Family

ID=14838341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12253887A Pending JPS63288914A (en) 1987-05-21 1987-05-21 Production of globular zinc oxide

Country Status (1)

Country Link
JP (1) JPS63288914A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985676B1 (en) 2008-05-28 2010-10-05 이춘홍 zinc oxide powder manufacturing apparatus and method
JP5850189B1 (en) * 2015-01-30 2016-02-03 住友大阪セメント株式会社 Zinc oxide powder, dispersion, paint, cosmetics
JP6037080B1 (en) * 2016-06-14 2016-11-30 住友大阪セメント株式会社 Zinc oxide powder for cosmetics, dispersions, cosmetics
KR20180044276A (en) 2015-08-28 2018-05-02 스미토모 오사카 세멘토 가부시키가이샤 Zinc oxide powder, dispersion, composition, and cosmetic
WO2022114179A1 (en) 2020-11-30 2022-06-02 住友大阪セメント株式会社 Zinc oxide powder, dispersion liquid, coating material, and cosmetic
WO2022114169A1 (en) 2020-11-30 2022-06-02 住友大阪セメント株式会社 Zinc oxide powder, liquid dispersion, coating material, and cosmetic

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985676B1 (en) 2008-05-28 2010-10-05 이춘홍 zinc oxide powder manufacturing apparatus and method
JP5850189B1 (en) * 2015-01-30 2016-02-03 住友大阪セメント株式会社 Zinc oxide powder, dispersion, paint, cosmetics
US9403691B1 (en) 2015-01-30 2016-08-02 Sumitomo Osaka Cement Co., Ltd. Zinc oxide powder, dispersion, paint, and cosmetic material
EP3252011A4 (en) * 2015-01-30 2018-09-05 Sumitomo Osaka Cement Co., Ltd. Zinc oxide powder, dispersion, paint, cosmetic
KR20180044276A (en) 2015-08-28 2018-05-02 스미토모 오사카 세멘토 가부시키가이샤 Zinc oxide powder, dispersion, composition, and cosmetic
US11497695B2 (en) 2015-08-28 2022-11-15 Sumitomo Osaka Cement Co., Ltd. Zinc oxide powder, dispersion, composition, and cosmetic
JP6037080B1 (en) * 2016-06-14 2016-11-30 住友大阪セメント株式会社 Zinc oxide powder for cosmetics, dispersions, cosmetics
JP2017222589A (en) * 2016-06-14 2017-12-21 住友大阪セメント株式会社 Zinc oxide powder for cosmetics, dispersion liquid, and cosmetics
KR20190018635A (en) 2016-06-14 2019-02-25 스미토모 오사카 세멘토 가부시키가이샤 Zinc oxide powder, dispersion, cosmetic
US11364185B2 (en) 2016-06-14 2022-06-21 Sumitomo Osaka Cement Co., Ltd. Zinc oxide powder, dispersion, and cosmetics
WO2017216989A1 (en) * 2016-06-14 2017-12-21 住友大阪セメント株式会社 Zinc oxide powder, dispersion, and cosmetics
WO2022114179A1 (en) 2020-11-30 2022-06-02 住友大阪セメント株式会社 Zinc oxide powder, dispersion liquid, coating material, and cosmetic
WO2022114169A1 (en) 2020-11-30 2022-06-02 住友大阪セメント株式会社 Zinc oxide powder, liquid dispersion, coating material, and cosmetic

Similar Documents

Publication Publication Date Title
US11247270B2 (en) Method for preparing vanadium and vanadium alloy powder from vanadium-containing materials through shortened process
KR100411578B1 (en) Method for producing metal powder
US5246683A (en) Process for producing small particles of aluminum nitride and particles so-produced
KR102568496B1 (en) Amorphous tungstic acid composite and tungsten oxide prepared using the same
KR100481783B1 (en) Metal powder, method for preparing metal powder and conductor paste containing the same
JP4978237B2 (en) Method for producing nickel powder
US6869461B2 (en) Fine powder of metallic copper and process for producing the same
JP2007290887A (en) Bismuth titanate-based nanoparticle, piezoelectric ceramic using the same, and methods for producing them
JPS63288914A (en) Production of globular zinc oxide
JPH1180816A (en) Nickel powder for conductive paste and its production
JPH0585482B2 (en)
JPH0244766B2 (en)
JPS63288913A (en) Production of zinc oxide
JP4614197B2 (en) Method for producing metal oxide short fiber
KR20010084867A (en) Process for the production of extra fine powder of Cobalt
JP2023553197A (en) Amorphous tungstic acid fusion and tungsten oxide produced using the same
KR100420276B1 (en) Preparation of ZnO Powder by Pyrophoric Synthesis Method
KR100503126B1 (en) A method for producing ultrafine spherical particles of nickel metal using gas-phase synthesis
US2964388A (en) Method for the production of zirconium boride
JP2004123488A (en) Method for manufacturing nickel oxide powder
JP3399970B2 (en) Method for producing copper monodisperse particles
EP0434762B1 (en) Nonpigmentary titanium dioxide powders
JP2706883B2 (en) Manufacturing method of aluminum borate whisker
US3431073A (en) Method of production of active beryllium oxide powders
JPH0257623A (en) Production of fine copper powder