JPS63288913A - Production of zinc oxide - Google Patents

Production of zinc oxide

Info

Publication number
JPS63288913A
JPS63288913A JP12253787A JP12253787A JPS63288913A JP S63288913 A JPS63288913 A JP S63288913A JP 12253787 A JP12253787 A JP 12253787A JP 12253787 A JP12253787 A JP 12253787A JP S63288913 A JPS63288913 A JP S63288913A
Authority
JP
Japan
Prior art keywords
zinc
zinc oxide
zinc carbonate
carbonate
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12253787A
Other languages
Japanese (ja)
Other versions
JPH075308B2 (en
Inventor
Tomoaki Takechi
武市 知明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Aen KK
Original Assignee
Nikko Aen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Aen KK filed Critical Nikko Aen KK
Priority to JP12253787A priority Critical patent/JPH075308B2/en
Publication of JPS63288913A publication Critical patent/JPS63288913A/en
Publication of JPH075308B2 publication Critical patent/JPH075308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To stably produce the superfine particles of ZnO by allowing an aq. slurry contg. ZnO to react with gaseous CO2 to obtain basic zinc carbonate which is then pulverized, and thermally decomposing the pulverized material. CONSTITUTION:Gaseous CO2 is blown at the rate of 0.5-5l/min per kg Zn and at 10-70 deg.C into an aq. slurry contg. 100-800g/l ZnO, and allowed to react with the ZnO to obtain basic zinc carbonate. The obtained basic zinc carbonate is pulverized, and then heated and decomposed at 250-1,000 deg.C to obtain ZnO having 0.02-0.1mum particle diameter.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はゴムの加硫促進剤、塗料、化粧品、インキ、顔
料、医薬等は無論のこと、バリスター、電子写真用感光
材料、ガスセンサー、触媒等の用途に用いられる酸化亜
鉛の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to rubber vulcanization accelerators, paints, cosmetics, inks, pigments, pharmaceuticals, etc., as well as varistors, electrophotographic photosensitive materials, and gas sensors. , relates to a method for producing zinc oxide used in applications such as catalysts.

〔従来の技術] 従来酸化亜鉛の製造法として、所謂フランス法等による
金属亜鉛蒸気の酸化燃焼法が知られている。かかる方法
によって得られる酸化亜鉛の粒径は、細かいものでも0
.2μm、平均的には0.5〜0.8μmである。
[Prior Art] As a conventional method for producing zinc oxide, an oxidative combustion method of metal zinc vapor, such as the so-called French method, is known. The particle size of zinc oxide obtained by such a method is 0, even if it is fine.
.. 2 μm, on average 0.5 to 0.8 μm.

これらの酸化亜鉛は、その粘稠性、凝集性のため、機械
的粉砕ではこれ以上微粒化することは困難である。しか
しながら、前述の古くから用いられている用途はもちろ
んのこと、近年開拓されたバリスター等の用途において
は従来に増し高純度化とともに超微粒化が要求されはじ
めている。
Due to the viscosity and cohesiveness of these zinc oxides, it is difficult to further refine them by mechanical grinding. However, in addition to the applications that have been used for a long time as mentioned above, in applications such as varistors that have been developed in recent years, higher purity and ultra-fine grains are required than ever before.

そこで、超微粒酸化亜鉛の製法として大別すると、一旦
微細な亜鉛化合物を生成した後、これを加熱分解する熱
分解法と、亜鉛蒸気を直接酸化燃焼させる気相反応法と
が知られている。
Therefore, methods for producing ultrafine zinc oxide can be roughly divided into two types: a thermal decomposition method in which a fine zinc compound is generated and then thermally decomposed, and a gas phase reaction method in which zinc vapor is directly oxidized and burned. .

熱分解法の第1の例は、例えば塩化亜鉛、硫酸亜鉛、硝
酸亜鉛等の亜鉛イオン溶液中に、蓚酸、蓚酸アルカリま
たは蓚酸アンモニウム溶液を添加し、B酸亜鉛の微細結
晶を生ぜしめ、濾別、乾燥後、加熱分解して酸化亜鉛と
なす方法(特願昭56−90782@参照)で、得られ
る酸化亜鉛の粒径は約0.03μmとされている。
The first example of the thermal decomposition method is to add oxalic acid, alkali oxalate, or ammonium oxalate solution to a zinc ion solution such as zinc chloride, zinc sulfate, or zinc nitrate to generate fine crystals of zinc B-acid, and then filter the solution. Separately, after drying, the zinc oxide is thermally decomposed to form zinc oxide (see Japanese Patent Application No. 56-90782@), and the particle size of the obtained zinc oxide is said to be about 0.03 μm.

熱分解法の第2の例は、亜鉛塩溶液に水酸化アルカリ又
は炭酸アルカリを添加し、それぞれ1りられる水酸化亜
鉛又はm基性炭酸亜鉛を濾別、乾燥後、加熱分解する方
法で、水酸化亜鉛の加熱分解によりjqられる酸化亜鉛
の粒径は0.1μmまでであり、塩基性炭酸亜鉛の加熱
分解による場合は0.07〜0.1μmが可能とされて
いる。
The second example of the thermal decomposition method is a method in which alkali hydroxide or alkali carbonate is added to a zinc salt solution, one zinc hydroxide or one m-based zinc carbonate is filtered, dried, and then thermally decomposed. The particle size of zinc oxide produced by thermal decomposition of zinc hydroxide is up to 0.1 μm, and in the case of thermal decomposition of basic zinc carbonate, a particle size of 0.07 to 0.1 μm is possible.

熱分解法の第3の例は、密閉容器内において、酸化亜鉛
の水スラリーとCO2ガスとを反応させて塩基性炭酸亜
鉛を生成し、この塩基性炭酸亜鉛を熱分解して酸化亜鉛
となす方法(特願昭59−111720号参照)で得ら
れる酸化亜鉛は比表面積が15II12/gでありこれ
から換算すると平均粒径は0.07μmである。
The third example of the pyrolysis method is to react a water slurry of zinc oxide with CO2 gas in a closed container to produce basic zinc carbonate, and then pyrolyze this basic zinc carbonate to form zinc oxide. Zinc oxide obtained by the method (see Japanese Patent Application No. 59-111720) has a specific surface area of 15II12/g, which gives an average particle diameter of 0.07 μm.

又、気相反応法の例としては、酸素を含有する雰囲気中
に金属亜鉛蒸気を噴出して亜鉛を酸化燃焼せしめた後、
直ちに生成した酸化亜鉛を急冷することによって針状亜
鉛を製造し、この針状亜鉛をベースに所望特性(粒径、
粒度分布、嵩密度、吸着特性等)の団塊状酸化亜鉛を1
する方法(特願昭55−23516号参照)が挙げられ
る。
In addition, as an example of a gas phase reaction method, after spouting metallic zinc vapor into an oxygen-containing atmosphere to oxidize and burn zinc,
Acicular zinc is produced by rapidly cooling the immediately generated zinc oxide, and desired properties (particle size,
particle size distribution, bulk density, adsorption properties, etc.)
(See Japanese Patent Application No. 55-23516).

[発明が解決しようとする問題点] 前述の熱分解法の第1および第2の例に43いては例え
ば亜鉛塩の濃度と添加する炭酸アルカリの濃度を稀薄化
することによって、生成する塩基性炭酸亜鉛粒子の肥大
化を抑制して0.1μmPi!度の微am化亜鉛を得る
ことができるが、反応条件の調整だけで微細化するには
限界があり、又いずれの方法も目的とする反応生成物(
塩基性炭酸亜鉛)から反応系で残留する亜鉛塩(例えば
塩化亜鉛、UA酸亜鉛等)並びに生成系のa1産物(例
えば塩化ナトリウム、芒硝等)を洗浄、除去するための
工程が避1ノられないため、生成物が微細であるが故に
この洗浄は容易には行えず、経済的なデメリットが大き
い。そして、洗浄が不十分な場合には当然酸化亜鉛中に
Na、S等が不純物として混入し、高純度の要求には応
えられないという問題がある。
[Problems to be Solved by the Invention] In the first and second examples of the pyrolysis method described above, for example, by diluting the concentration of zinc salt and the concentration of alkali carbonate to be added, the basicity produced can be reduced. Suppressing the enlargement of zinc carbonate particles to 0.1μmPi! Although it is possible to obtain finely divided zinc atomized, there is a limit to how finely atomized zinc can be obtained by simply adjusting the reaction conditions, and in both methods, the desired reaction product (
A process for washing and removing zinc salts (e.g., zinc chloride, zinc UA acid, etc.) remaining in the reaction system and a1 products (e.g., sodium chloride, Glauber's salt, etc.) of the production system from the basic zinc carbonate) is avoided. Since the products are so fine that they cannot be washed easily, this is a major economic disadvantage. If cleaning is insufficient, naturally Na, S, etc. will be mixed into the zinc oxide as impurities, resulting in a problem that high purity requirements cannot be met.

熱分解法の第3の例は不純物を含まない塩基製炭酸亜鉛
の製法を開示しており、それを熱分解した酸化亜鉛も不
純物を含まないものとすることは可能であるが、製造に
密閉容器を用いな【プればならない問題がある。
The third example of the pyrolysis method discloses a method for producing basic zinc carbonate that does not contain impurities, and although it is possible to make zinc oxide by pyrolyzing it free of impurities, it is possible to make zinc oxide free from impurities; There is a problem that requires the use of containers.

気相法の例では、本質的には針状酸化亜鉛の製造を目的
としており、超微粒の酸化亜鉛の製造の開示はない。
In the example of the gas phase method, the purpose is essentially to produce acicular zinc oxide, and there is no disclosure of production of ultrafine zinc oxide.

[問題点を解決するための手段] 本発明は、従来の上記問題点を解決し、高純度でしかも
超微細化された酸化亜鉛を製造することを目的とするも
ので、その要旨は、酸化亜鉛を含む水スラリーにCO2
ガスを反応させて炭酸亜鉛を生成し、次いで該炭酸亜鉛
を微細化した後、加熱分解することを特徴とする酸化亜
鉛の製造方法である。
[Means for Solving the Problems] The present invention aims to solve the above-mentioned conventional problems and to produce highly purified and ultra-fine zinc oxide. CO2 in water slurry containing zinc
This is a method for producing zinc oxide, which is characterized by reacting gas to produce zinc carbonate, then pulverizing the zinc carbonate, and then thermally decomposing it.

すなわち、本出願人は、さきに特に電気亜鉛メッキ用の
亜鉛供給源として有用な塩基性炭酸亜鉛の製造法として
特願昭59−57248号(特開昭60−200826
号公報参照)によって、不純物除去の工程を全く必要と
じず、純粋に高純度の製品を得る方法を開発したが、本
発明ではこの方法で得た塩基性炭酸亜鉛を加熱分解する
ことにより、得られる酸化亜鉛は塩基性炭酸亜鉛の高純
度がそのまま得られる。そして、上記先行発明において
得られる塩基性炭酸亜鉛の粒径は概ね1〜10μm1度
にまで結晶成長並びに二次凝集することから、これを直
接加熱分解しても、得られる酸化亜鉛を所望粒度にまで
微細化することは困難であると判断されたことから、本
発明では炭酸亜鉛を機械的粉砕の導入によって微粉砕し
、ついでこれを加熱することにより平均粒径0.05μ
m以下の超微粒化を達成することができた。
That is, the present applicant has previously disclosed a method for producing basic zinc carbonate which is particularly useful as a zinc supply source for electrogalvanizing.
(see Japanese Patent Publication No. 2003-11), a method was developed to obtain a highly pure product without any impurity removal process; however, in the present invention, the basic zinc carbonate obtained by this method is thermally decomposed. The resulting zinc oxide can be obtained as is with the high purity of basic zinc carbonate. Since the particle size of the basic zinc carbonate obtained in the above-mentioned prior invention is about 1 to 10 μm, crystal growth and secondary agglomeration occur, so even if it is directly thermally decomposed, the obtained zinc oxide can be reduced to the desired particle size. Since it was determined that it would be difficult to reduce the zinc carbonate to a fine particle size of 0.05 μm, in the present invention, zinc carbonate is pulverized by mechanical pulverization, and then heated to reduce the average particle size to 0.05 μm.
It was possible to achieve ultra-fine grain size of less than m.

加熱分解の温度は、塩基性炭酸亜鉛の分解温度である2
18℃以上を採ることとなるが、分解時間の短縮や、生
成酸化亜鉛に要求される種々の物性例えば粒子径、嵩比
重、発色、格子欠陥等を考慮して、250〜1000℃
の範囲で適宜選択される。特に好ましい範囲は分解時間
の短縮と高温加熱の場合におこる酸化亜鉛粒子の焼結に
よる肥大化防止等の見地から500〜700℃である。
The thermal decomposition temperature is the decomposition temperature of basic zinc carbonate2
The temperature should be 18°C or higher, but in consideration of shortening the decomposition time and various physical properties required of the produced zinc oxide, such as particle size, bulk specific gravity, color development, lattice defects, etc., the temperature should be set at 250 to 1000°C.
be selected as appropriate within the range. A particularly preferred range is 500 to 700° C. from the viewpoint of shortening the decomposition time and preventing the zinc oxide particles from becoming enlarged due to sintering during high-temperature heating.

加熱時の雰囲気は、大気あるいは酸素富化雰囲気のいず
れでもよいが、酸素富化雰囲気とすれば、反応工程や粉
砕工程で極微缶の有amが混入したとしても、この物質
を完全に分解するのに極めて効果的である。
The atmosphere during heating may be either air or an oxygen-enriched atmosphere, but if it is an oxygen-enriched atmosphere, even if very fine canned amium is mixed in during the reaction or crushing process, this substance will be completely decomposed. It is extremely effective.

なお、塩基竹炭M亜鉛の製造に用いられる酸化亜toは
、高純度亜鉛地金を原料として所謂フランス法により製
造されたWa化!l!鉛、あるいは高純度亜It) (
最純亜鉛)tJ造を目的とした精沼塔の塔Inにおいて
酸化燃焼して得た酸化亜鉛を用いるとよい。
In addition, the zinc oxide used in the production of basic bamboo charcoal M zinc is Wa! l! Lead or high purity Nitrous oxide) (
It is preferable to use zinc oxide obtained by oxidative combustion in the Seinuma tower In for the purpose of tJ construction (purest zinc).

また、酸化亜鉛を含む水スラリー11度は、100〜8
00(1/β、好ましくは150〜380G/J2の範
囲が良い。スラリー濃度が100g/J2未満だと製造
効率が低下し、800a/ J2を超えると均一な生成
物が1!′7られない。
In addition, the water slurry containing zinc oxide at 11 degrees is 100 to 8
00 (1/β, preferably in the range of 150 to 380 G/J2. If the slurry concentration is less than 100 g/J2, the production efficiency will decrease, and if it exceeds 800 a/J2, a uniform product will not be produced. .

水スラリーとCO2ガスとの反応は、スラリー中に浸漬
した散気管等の装aによりCOzガスを吹き込むことに
より行う。この場合の炭酸ガス源は、高tkmの圧縮炭
酸ガス、消浄な燃焼排ガス等が使用される。反応時間を
早くするために、又、スラリーの流動性を良くするため
にスラリー調製前の水はCO2飽和状態としておくこと
が好ましい。
The reaction between the water slurry and CO2 gas is carried out by blowing COz gas into the slurry using a device such as an aeration tube immersed in the slurry. In this case, the carbon dioxide source used is high tkm compressed carbon dioxide, purified combustion exhaust gas, or the like. In order to speed up the reaction time and to improve the fluidity of the slurry, it is preferable that the water be saturated with CO2 before slurry preparation.

反応温度は10〜10℃の範囲で設定される。10℃よ
り低いと反応速度は遅く、しかもスラリーが強粘性化し
、又、70℃を超す場合には熱補償の点やCOzm解団
の点からコスト上のデメリットが多い。より好ましい範
囲は30〜40℃である。CO2ガスの吹込み山は亜鉛
kg当り(乾ffi基準)0.5〜5j2/分で、反応
時間は60〜180分の範囲が適当である。
The reaction temperature is set in the range of 10 to 10°C. When the temperature is lower than 10°C, the reaction rate is slow and the slurry becomes highly viscous, and when the temperature exceeds 70°C, there are many disadvantages in terms of cost from the viewpoint of thermal compensation and COzm decomposition. A more preferable range is 30 to 40°C. The appropriate rate of injection of CO2 gas is 0.5 to 5j2/min per kg of zinc (dry ffi standard), and the appropriate reaction time is in the range of 60 to 180 minutes.

[実施例] つぎに実施例並びに比較例について述べる。[Example] Next, examples and comparative examples will be described.

実施例1 フランス法によって得た高純度酸化亜鉛を用いて150
G/ JのZn0粒水スラリーを反応容器に入れ、散気
管により容器中央下方部からCO2ガスを1i/分の流
コで吹込んだ。2時間反応せしめて高純lII塩基性炭
酸亜鉛を冑だ。
Example 1 Using high purity zinc oxide obtained by the French method,
A G/J Zn0 grain water slurry was placed in a reaction vessel, and CO2 gas was blown in at a rate of 1 i/min from the lower center of the vessel through an aeration tube. After 2 hours of reaction, remove the high purity lII basic zinc carbonate.

得られた塩基性炭M曲鉛を機械的粉砕によって容易に粉
砕できる程度まで粉砕した侵、300℃、SOO℃、7
00℃900℃の温度で加熱・分解した。加熱雰囲気は
大気とした。結果を表にまとめて示す。また、第1図は
500℃で30分間加熱分解した粒子構造を示すlli
徴鏡写真、第2図は900℃で30分間加熱分解した粒
子構造を示す顕@鏡77真を示す。
The obtained basic carbon M curved lead was crushed to the extent that it could be easily crushed by mechanical crushing, 300℃, SOO℃, 7
It was heated and decomposed at a temperature of 00°C and 900°C. The heating atmosphere was air. The results are summarized in a table. In addition, Figure 1 shows the particle structure after thermal decomposition at 500°C for 30 minutes.
The micrograph, FIG. 2, shows a micrograph showing the particle structure after thermal decomposition at 900° C. for 30 minutes.

表 ※ 脱炭素からp出した。table *P was extracted from decarbonization.

比較例1 市販の微粉末塩基性炭酸亜鉛(0,3μm以下)を、5
00℃で加熱分解した。得られた酸化亜鉛の粒径は0.
1〜0.03μmであり、微粒化は十分満足されている
が、不純元素である Naが1200(IEI鋤、Sが
aoopp−残存していた。又、酸化!IIi鉛の色は
、実施例1の500℃以上加熱したものよりも黄色が強
いものであった。
Comparative Example 1 Commercially available fine powder basic zinc carbonate (0.3 μm or less) was
Thermal decomposition was carried out at 00°C. The particle size of the obtained zinc oxide was 0.
The particle diameter was 1 to 0.03 μm, and the atomization was sufficiently satisfied, but the impurity element Na was 1200 (IEI plow, S was aoopp-).Also, the color of oxidized! IIi lead was different from that in the example. The yellow color was stronger than that of No. 1 heated to 500° C. or more.

比較例2 特願昭58−2291884にお1)る炭酸亜鉛を微粉
砕せずに700℃で30分加熱分解した。得られた酸化
亜鉛は0.1μm以下の粒子は少量あるものの0.1〜
1μm径がほとんどであった。
Comparative Example 2 Zinc carbonate described in 1) of Japanese Patent Application No. 58-2291884 was thermally decomposed at 700° C. for 30 minutes without being pulverized. The obtained zinc oxide has a small amount of particles of 0.1 μm or less, but
Most had a diameter of 1 μm.

比較例3 実施fIA7に13Lノる炭酸亜鉛を粗粉砕し、500
℃で加熱分解した。得られた酸化亜鉛の粒径は0.3〜
0.02μmというように均一性に欠けるものであった
。又、酸化亜鉛の色は実施例1と同程度であった。
Comparative Example 3 13L of zinc carbonate was roughly pulverized in Example fIA7, and 500
Thermal decomposition was carried out at ℃. The particle size of the obtained zinc oxide is 0.3~
It lacked uniformity as 0.02 μm. Moreover, the color of zinc oxide was comparable to that of Example 1.

]R明の効fi] 本発明によれば高純度でしかも図面に示す如く、0.0
2〜0,1.czm程度、特に0.05μm以下の平均
粒径をもつ超微細酸化亜鉛を安定して得ることが可能で
ある。
] R-light effect fi] According to the present invention, the purity is high and as shown in the drawing, 0.0
2-0,1. It is possible to stably obtain ultrafine zinc oxide having an average particle size of approximately czm, particularly 0.05 μm or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例における粒子構造を示
す顕微鏡写真である。
FIGS. 1 and 2 are micrographs showing the particle structure in Examples of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化亜鉛を含む水スラリーにCO_2ガスを反応
させて塩基性炭酸亜鉛(以下炭酸亜鉛と略記)を生成し
、次で該炭酸亜鉛を微細化した後、加熱分解することを
特徴とする酸化亜鉛の製造方法。
(1) A water slurry containing zinc oxide is reacted with CO_2 gas to produce basic zinc carbonate (hereinafter abbreviated as zinc carbonate), and then the zinc carbonate is pulverized and then thermally decomposed. Method for manufacturing zinc oxide.
(2)加熱温度が250〜1000℃である特許請求の
範囲第(1)項記載の酸化亜鉛の製造方法。
(2) The method for producing zinc oxide according to claim (1), wherein the heating temperature is 250 to 1000°C.
JP12253787A 1987-05-21 1987-05-21 Method for producing zinc oxide Expired - Lifetime JPH075308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12253787A JPH075308B2 (en) 1987-05-21 1987-05-21 Method for producing zinc oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12253787A JPH075308B2 (en) 1987-05-21 1987-05-21 Method for producing zinc oxide

Publications (2)

Publication Number Publication Date
JPS63288913A true JPS63288913A (en) 1988-11-25
JPH075308B2 JPH075308B2 (en) 1995-01-25

Family

ID=14838313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12253787A Expired - Lifetime JPH075308B2 (en) 1987-05-21 1987-05-21 Method for producing zinc oxide

Country Status (1)

Country Link
JP (1) JPH075308B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024359A1 (en) * 1994-03-11 1995-09-14 Pq Corporation Colloidal zinc oxide
JP2002201382A (en) * 2000-12-27 2002-07-19 Hakusui Tech Co Ltd Zinc oxide microparticle for ultraviolet screening
JP5850189B1 (en) * 2015-01-30 2016-02-03 住友大阪セメント株式会社 Zinc oxide powder, dispersion, paint, cosmetics
CN107304064A (en) * 2016-04-18 2017-10-31 中科翔(天津)科技有限公司 A kind of preparation method of large-specific surface area nano zinc oxide
KR20180044276A (en) 2015-08-28 2018-05-02 스미토모 오사카 세멘토 가부시키가이샤 Zinc oxide powder, dispersion, composition, and cosmetic
KR20190018635A (en) 2016-06-14 2019-02-25 스미토모 오사카 세멘토 가부시키가이샤 Zinc oxide powder, dispersion, cosmetic
CN113860356A (en) * 2021-09-30 2021-12-31 沈阳工业大学 Resource utilization-based nano zinc oxide production device and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024359A1 (en) * 1994-03-11 1995-09-14 Pq Corporation Colloidal zinc oxide
JP2002201382A (en) * 2000-12-27 2002-07-19 Hakusui Tech Co Ltd Zinc oxide microparticle for ultraviolet screening
JP5850189B1 (en) * 2015-01-30 2016-02-03 住友大阪セメント株式会社 Zinc oxide powder, dispersion, paint, cosmetics
US9403691B1 (en) 2015-01-30 2016-08-02 Sumitomo Osaka Cement Co., Ltd. Zinc oxide powder, dispersion, paint, and cosmetic material
EP3252011A4 (en) * 2015-01-30 2018-09-05 Sumitomo Osaka Cement Co., Ltd. Zinc oxide powder, dispersion, paint, cosmetic
KR20180044276A (en) 2015-08-28 2018-05-02 스미토모 오사카 세멘토 가부시키가이샤 Zinc oxide powder, dispersion, composition, and cosmetic
US11497695B2 (en) 2015-08-28 2022-11-15 Sumitomo Osaka Cement Co., Ltd. Zinc oxide powder, dispersion, composition, and cosmetic
CN107304064A (en) * 2016-04-18 2017-10-31 中科翔(天津)科技有限公司 A kind of preparation method of large-specific surface area nano zinc oxide
KR20190018635A (en) 2016-06-14 2019-02-25 스미토모 오사카 세멘토 가부시키가이샤 Zinc oxide powder, dispersion, cosmetic
US11364185B2 (en) 2016-06-14 2022-06-21 Sumitomo Osaka Cement Co., Ltd. Zinc oxide powder, dispersion, and cosmetics
CN113860356A (en) * 2021-09-30 2021-12-31 沈阳工业大学 Resource utilization-based nano zinc oxide production device and method
CN113860356B (en) * 2021-09-30 2023-10-31 沈阳工业大学 Device and method for producing nano zinc oxide based on resource utilization

Also Published As

Publication number Publication date
JPH075308B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
JP4340160B2 (en) Method for producing nano-sized and sub-micron sized lithium transition metal oxides
US6890510B2 (en) Process for making lithium titanate
DE3633309C2 (en) Composition based on zirconia and process for its manufacture
DE102005027246A1 (en) Process for producing an alpha alumina powder
Sato et al. Hydrothermal synthesis of fine perovskite PbTiO 3 powders with a simple mode of size distribution
JPS63288913A (en) Production of zinc oxide
JP2002201382A (en) Zinc oxide microparticle for ultraviolet screening
JPH10139430A (en) Production of lithium-titanium complex oxide
JPS58207938A (en) Manufacture of fine ceramic particle
CN114105184B (en) Method for preparing small-size zinc oxide from carbon dioxide
JPH05163022A (en) Spherical anatase titanium oxide and its production
JP2002201024A (en) Method for producing compound microparticle comprising zinc oxide as main component
JPH03141115A (en) Production of fine yttrium oxide powder
JPS63288914A (en) Production of globular zinc oxide
KR100420276B1 (en) Preparation of ZnO Powder by Pyrophoric Synthesis Method
JPH08148147A (en) Manufacture of positive electrode active material for secondary battery
JPS603010B2 (en) Manufacturing method of fine chromium oxide
CN113800561B (en) Industrial production method of bismuth oxide fiber
US3320025A (en) Process for the preparation of a titanate containing two alkali metals
JPH0431313A (en) Production of fine particle of alumina
RU2076069C1 (en) Process for preparing finely dispersive zirconium dioxide powder
JPH0448704A (en) Manufacture of barium ferrite magnetic powder
CN104326497A (en) Preparation method of nano aluminum oxide particle
JPH05286713A (en) Production of highly dispersible magnesium oxide and highly dispersible magnesium oxide
JP2003277802A (en) Rhodium powder