JP2002201382A - Zinc oxide microparticle for ultraviolet screening - Google Patents

Zinc oxide microparticle for ultraviolet screening

Info

Publication number
JP2002201382A
JP2002201382A JP2000398770A JP2000398770A JP2002201382A JP 2002201382 A JP2002201382 A JP 2002201382A JP 2000398770 A JP2000398770 A JP 2000398770A JP 2000398770 A JP2000398770 A JP 2000398770A JP 2002201382 A JP2002201382 A JP 2002201382A
Authority
JP
Japan
Prior art keywords
zinc oxide
particles
slurry
dispersibility
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000398770A
Other languages
Japanese (ja)
Other versions
JP4756738B2 (en
Inventor
Takao Tanaka
隆夫 田中
Takashi Nagai
貴 永井
Tatsuhiko Ikeda
達彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakusui Tech Co Ltd
Original Assignee
Hakusui Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakusui Tech Co Ltd filed Critical Hakusui Tech Co Ltd
Priority to JP2000398770A priority Critical patent/JP4756738B2/en
Publication of JP2002201382A publication Critical patent/JP2002201382A/en
Application granted granted Critical
Publication of JP4756738B2 publication Critical patent/JP4756738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide zinc oxide microparticles excellent in dispersibility and ultraviolet screening effect. SOLUTION: The zinc oxide microparticles for ultraviolet screening excellent in dispersibility has the following characteristics: the average primary particle size calculated based on specific surface area is <=0.03 μm, 0.1-20 mass%, based on zinc oxide, of at least one kind of Al or Si oxide or hydroxide is also contained inside the microparticles, and the bulk density is <=0.25 g/ml.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分散性に優れた紫
外線遮蔽用酸化亜鉛微粒子に係り、詳しくは分散性が顕
著に向上した酸化亜鉛微粒子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to zinc oxide fine particles for ultraviolet shielding excellent in dispersibility, and more particularly to zinc oxide fine particles having remarkably improved dispersibility.

【0002】[0002]

【従来の技術】酸化亜鉛は、従来より紫外線を遮蔽する
材料として知られていたが、近年オゾンホール拡大やオ
ゾン層破壊に伴う紫外線トラブルという環境問題がメデ
ア等で大きくとりあげられるようになり、また紫外線が
人体に及ぼす予想以上の悪影響が明らかになるととも
に、人体を有害な紫外線から保護するための最も代表的
な材料の一つとして期待され、精力的に研究が行われ、
かつ、広範囲の用途に用いられるようになっている。そ
して、このような人体(皮膚)への悪影響に対処するた
めのものとして、紫外線遮蔽剤として酸化亜鉛を配合し
た日焼け止め化粧品が注目されている。
2. Description of the Related Art Zinc oxide has been known as a material for shielding ultraviolet rays. However, in recent years, environmental problems such as an ozone hole expansion and an ultraviolet ray trouble caused by destruction of the ozone layer have been widely taken up by media and the like. The unexpected adverse effects of ultraviolet rays on the human body become apparent, and it is expected as one of the most representative materials for protecting the human body from harmful ultraviolet rays, and intensive research has been conducted,
In addition, it is used for a wide range of applications. In order to cope with such adverse effects on the human body (skin), sunscreen cosmetics containing zinc oxide as an ultraviolet shielding agent have attracted attention.

【0003】このように、近年、酸化亜鉛粒子を化粧品
に配合する用途が増加するにつれて、有害な紫外線の遮
蔽機能が優れていることはもちろん、同時に、配合され
た粒子が女性の肌を覆う創美製品である化粧品本来の自
然な化粧仕上がりの作用を妨害しないため、可視光線に
対しては、出来るだけ透明な材料であることが強く望ま
れるようになった。従って、そのために、酸化亜鉛をよ
り微細粒子化し、可視光線に対しては、実質的に透明に
することが必須となっている。
[0003] As described above, as the use of zinc oxide particles in cosmetics has increased in recent years, not only has the function of shielding harmful ultraviolet rays excellent, but at the same time, the compounded particles cover the skin of women. In order not to hinder the action of the natural cosmetic finish of cosmetics, which is a beauty product, it has been strongly desired that the material be as transparent as possible to visible light. Therefore, for that purpose, it is essential to make zinc oxide finer and to make it substantially transparent to visible light.

【0004】しかして、無機系化合物である酸化亜鉛系
紫外線遮蔽剤は、近紫外線をも吸収・散乱することか
ら、近紫外線を含む巾広い領域に渡って紫外線を遮蔽す
るという長所があり、また酸化亜鉛は、無機化合物であ
るので皮膚にアレルギーを引き起こしにくく、化粧品中
に多量に配合することが可能となる。従って、特に日焼
け止め化粧品に配合されて最大限に効果を発揮するもの
である。
[0004] However, the zinc oxide-based ultraviolet shielding agent, which is an inorganic compound, absorbs and scatters even near-ultraviolet rays, and thus has an advantage of shielding ultraviolet rays over a wide area including near-ultraviolet rays. Since zinc oxide is an inorganic compound, it does not easily cause allergy to the skin, and can be incorporated in a large amount in cosmetics. Therefore, it is especially effective in sunscreen cosmetics when it is blended.

【0005】そして酸化亜鉛は、その粒子径を0.03
μm以下の超微粒子に調整すれば、可視光線の波長より
ずっと小さくなるので、理論的には可視光線はほとんど
吸収されず、従って化粧品の透明感を阻害することは全
くないことになる。
[0005] Zinc oxide has a particle size of 0.03.
If adjusted to ultra-fine particles of μm or less, the wavelength becomes much smaller than the wavelength of visible light, so that theoretically, visible light is hardly absorbed, so that the transparency of cosmetics is not hindered at all.

【0006】このように微粒子化された酸化亜鉛は、紫
外線遮蔽領域の広さ、透明感、皮膚に対する安全性、紫
外線遮蔽効果の持続性などの点で、従来の紫外線遮蔽材
料、すなわち有機紫外線吸収剤や酸化チタンに比べて、
より優れた特徴を有するものであるといってよい。
[0006] The zinc oxide finely divided as described above is a conventional ultraviolet shielding material, that is, an organic ultraviolet absorbing material, in view of the area of the ultraviolet shielding region, transparency, safety to skin, and durability of the ultraviolet shielding effect. Agent and titanium oxide,
It may be said that it has more excellent characteristics.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
う優れた特徴を有する微粒子状酸化亜鉛にあっても、こ
れを紫外線遮蔽剤として用いた場合には、以下に述べる
問題点があることを本発明者らは見いだした。
However, even in the case of finely divided zinc oxide having such excellent characteristics, when it is used as an ultraviolet ray shielding agent, it has the following problems. Found them.

【0008】すなわち、酸化亜鉛粒子はもともと凝集力
が強いものであるが、上記のように微粒子化した場合
は、その比表面積が大きいことから、その凝集力も極め
て大きなものとなっている。そして、このような酸化亜
鉛微粒子を化粧料等に配合する場合には、通常他の有機
系の基剤と混合して用いるところ、上述したように、酸
化亜鉛微粒子は凝集力が強くそれ自身で凝集してしまう
ため、その粒子は、当該有機系基剤中に十分に分散しな
い。すなわち、このように凝集した酸化亜鉛粒子は、化
粧品本来の透明性を阻害するおそれがあった。
[0008] That is, zinc oxide particles originally have a strong cohesive force, but when they are made into fine particles as described above, the specific surface area is large, so that the cohesive force is extremely large. When such zinc oxide fine particles are blended in cosmetics or the like, they are usually used by being mixed with other organic bases. As described above, zinc oxide fine particles have strong cohesive force and are themselves. Due to aggregation, the particles are not sufficiently dispersed in the organic base. That is, the agglomerated zinc oxide particles may impair the original transparency of the cosmetic.

【0009】また、このような微粒子状酸化亜鉛を化粧
品に配合した場合、これらが強く凝集しているため化粧
料の本来有する微妙な滑らかさを低下させ、感触(肌触
り)の悪化を招くという大きな問題があった。
In addition, when such finely divided zinc oxide is incorporated into cosmetics, they are strongly agglomerated, so that the subtle smoothness inherent in the cosmetics is reduced, and the touch (feel) is deteriorated. There was a problem.

【0010】本発明は上記問題点を解決するためになさ
れたもので、その目的とするところは、良好な透明性を
有し、紫外線遮蔽効果が高く、しかも保存性がよく十分
な滑らかさを有する化粧料等を得るのに適した酸化亜鉛
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is an object of the present invention to provide good transparency, a high ultraviolet shielding effect, good storage stability, and sufficient smoothness. An object of the present invention is to provide zinc oxide suitable for obtaining a cosmetic or the like having the same.

【0011】[0011]

【課題を解決するための手段】すなわち、本発明に従え
ば、比表面積から計算された平均1次粒子径が0.03
μm以下である酸化亜鉛微粒子であって、当該粒子内部
にも、Al あるいはSiの酸化物若しくは水酸化物の
1種ないしは2種以上を、酸化亜鉛に対し質量比で0.
1〜20%含み、かつ、嵩密度が0.25g/ml以下
であることを特徴とする実質的に酸化亜鉛からなる、分
散性に優れた紫外線遮蔽用酸化亜鉛微粒子が提供され
る。
According to the present invention, the average primary particle diameter calculated from the specific surface area is 0.03.
zinc oxide fine particles having a particle size of not more than 0.1 μm, wherein one or two or more oxides or hydroxides of Al or Si are contained in the particles in a mass ratio of 0.1 to 2 with respect to zinc oxide.
The present invention provides zinc oxide fine particles for ultraviolet shielding excellent in dispersibility, comprising substantially 1 to 20% and having a bulk density of 0.25 g / ml or less.

【0012】[0012]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の酸化亜鉛微粒子は、比表面積から計算さ
れた平均1次粒子径が0.03μm以下に微粒子化され
ているものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The zinc oxide fine particles of the present invention are fine particles having an average primary particle diameter calculated from the specific surface area of not more than 0.03 μm.

【0013】ここで比表面積から計算された平均1次粒
子径とは、所謂BET法により比表面積を測定し、得ら
れた値を次式(1)により計算して得られた値である。 d=1.06/S (1) [式中d:平均1次粒子径(単位μm) 、S:比表面
積(単位 m2/g)]
Here, the average primary particle diameter calculated from the specific surface area is a value obtained by measuring the specific surface area by the so-called BET method and calculating the obtained value by the following equation (1). d = 1.06 / S (1) [where d: average primary particle diameter (unit: μm), S: specific surface area (unit: m 2 / g)]

【0014】酸化亜鉛粒子の平均1次粒子径が0.03
μmを越えた場合は、基本的に可視光線の透明性が阻害
され好ましくない。
The average primary particle diameter of the zinc oxide particles is 0.03.
If it exceeds μm, the transparency of visible light is basically impaired, which is not preferable.

【0015】本発明における酸化亜鉛粒子は、このよう
に微細粒子化されているとともに、当該粒子内部に、更
にAl あるいはSiの酸化物若しくは水酸化物の内、
1種ないしは2種を、酸化亜鉛に対し質量比で0.1〜
20%有していることを特徴とする。
[0015] The zinc oxide particles in the present invention are finely divided as described above, and the inside of the particles further contains an oxide or hydroxide of Al or Si.
One or two kinds are used in a mass ratio of 0.1 to
It is characterized by having 20%.

【0016】本発明におけるAlやSiの酸化物又は水
酸化物(以下、Alの酸化物等と称することがある。)
は、酸化亜鉛粒子の分散性を向上させる機能を有するも
のである。しかして、これらAlの酸化物等は、酸化亜
鉛粒子の表面だけではなく粒子内部にも導入されている
ことが重要であり、単に粒子表面に被着又は被覆されて
いるだけでは不十分である。その理由は、(i)酸化亜
鉛を使用するに当たっては撹拌機やニーダー等によりシ
ェア(剪断力)を印加して媒体に分散させるが、当該分
散作業においては、必然的に粒子にかなり強いシェアが
掛かるので、単に粒子表面を被覆しているだけのAlの
酸化物等は、容易に粒子から剥離してしまうからであ
る。(ii)また、シェアが掛かったときに凝集粒子や
融着粒子が割れる等により、新たな表面が露出し、この
新たな粒子表面は、活性が高く、またAlの酸化物等が
存在しないので、分散後に容易に再凝集を起こすことに
なる。以上のごとく、分散前の酸化亜鉛粒子表面だけを
Alの酸化物等で被覆したものでは、その分散効果が十
分に発揮できないのである。
In the present invention, an oxide or hydroxide of Al or Si (hereinafter sometimes referred to as an oxide of Al or the like).
Has a function of improving the dispersibility of zinc oxide particles. Therefore, it is important that these Al oxides and the like are introduced not only on the surface of the zinc oxide particles but also on the inside of the particles, and it is not sufficient to simply adhere or coat the surface of the particles. . The reason is that (i) when using zinc oxide, a shear (shearing force) is applied by a stirrer or a kneader to disperse the zinc oxide in the medium. This is because Al oxide or the like simply covering the particle surface easily peels off from the particle. (Ii) Further, when the shear is applied, the aggregated particles and the fused particles are cracked, so that a new surface is exposed, and the new particle surface has high activity and does not include Al oxide or the like. After redispersion, reagglomeration easily occurs. As described above, when only the surface of zinc oxide particles before dispersion is coated with Al oxide or the like, the dispersion effect cannot be sufficiently exhibited.

【0017】本発明においては、これに対し、Alの酸
化物等の分散性向上物質は、酸化亜鉛粒子内部にも導入
されているので、上記のような剥離の問題もなく、また
粒子が割れた場合にも、新たな露出面にAlの酸化物等
が存在し再凝集も防止され、常に安定的に分散したもの
が得られるのである。
In the present invention, on the other hand, the dispersibility improving substance such as an oxide of Al is also introduced into the zinc oxide particles, so that there is no problem of peeling as described above and the particles are broken. In such a case, Al oxide or the like is present on the newly exposed surface, re-aggregation is prevented, and a stable dispersion is always obtained.

【0018】本発明においては、Al等は、酸化物若し
くは水酸化物の形態でその1種又は2種以上が含有され
るが、その含有量は、Al又はSiの酸化物又は水酸化
物として酸化亜鉛に対し質量比で0.1〜20%、好ま
しくは0.1〜10%である。Alの酸化物等の含有量
があまり少なく0.1%未満では、その分散性向上効果
が充分に得られず、また添加量があまり過大で20%を
越えて添加しても、その効果がさらに大きくなることは
なく、逆に酸化亜鉛の有効量が少なくなるため酸化亜鉛
本来の紫外線遮蔽効果が低下することになり好ましくな
い。なお、この含有量は、AlとSiを併用する場合
は、その合計量として計算した値である。
In the present invention, one or more of Al and the like are contained in the form of an oxide or a hydroxide, and the content thereof is as an oxide or a hydroxide of Al or Si. The mass ratio is 0.1 to 20%, preferably 0.1 to 10%, based on zinc oxide. If the content of Al oxide and the like is too small and less than 0.1%, the effect of improving the dispersibility cannot be sufficiently obtained, and even if the addition amount is too large and exceeds 20%, the effect is not improved. On the contrary, since the effective amount of zinc oxide decreases, the inherent ultraviolet shielding effect of zinc oxide decreases, which is not preferable. In the case where Al and Si are used in combination, this content is a value calculated as the total amount thereof.

【0019】本発明の酸化亜鉛微粒子は、また、嵩密度
が0.25g/ml以下である。ここで嵩密度は、JI
S K5101に基づき測定された値であるが、この値
が0.25g/ml以下と、きわめて低い値であること
は、酸化亜鉛の真密度(5.6)を考慮すると、その空
間占有率がわずか4.4%以下と非常に小さいことを意
味する。すなわち、本発明の酸化亜鉛微細粒子は、ミク
ロのレベルで考察すると、空間を極めて疎な状態で占拠
していることを意味し、いわば空間中にバラバラの状態
で存在していると言えるのである。このため、本発明の
酸化亜鉛粒子は、きわめて分散し易い状態であることに
より特徴づけられるのである。
The zinc oxide fine particles of the present invention have a bulk density of 0.25 g / ml or less. Here, the bulk density is JI
It is a value measured based on SK5101, and this value is extremely low at 0.25 g / ml or less, considering that the true density of zinc oxide (5.6) is taken into consideration. It means a very small value of only 4.4% or less. That is, when considered at the micro level, the zinc oxide fine particles of the present invention mean that the space is occupied in a very sparse state, and it can be said that the zinc oxide fine particles exist in the space in a state of being dispersed. . For this reason, the zinc oxide particles of the present invention are characterized by being in a state of being very easily dispersed.

【0020】更に本発明の粒子は、実質的に酸化亜鉛で
あることにより特定される。実質的に酸化亜鉛であると
は、その粉末のX線回折による主たるピークが、酸化亜
鉛のものであればよいことを示し、酸化亜鉛の他に、合
成時に混入した不純物、原料に含まれる不純物等を含ん
でいてもよい。
Further, the particles of the present invention are specified by being substantially zinc oxide. The phrase “substantially zinc oxide” means that the main peak of the powder by X-ray diffraction should be that of zinc oxide. In addition to zinc oxide, impurities mixed during synthesis and impurities contained in the raw material Etc. may be included.

【0021】本発明の酸化亜鉛微粒子は、その分散性が
極めて優れたものであるが、分散性の評価方法として
は、次に示す測定方法が用いられる。
The zinc oxide fine particles of the present invention are extremely excellent in dispersibility, and the following measurement method is used as a method for evaluating dispersibility.

【0022】1.試料の酸化亜鉛1.5gを精秤し、1
0%PVA/0.2%ヘキサメタリン酸ナトリウム溶液
50gに加え、ホモジナイザー(日本精機製作所社製、
エースホモジナイザーAM−7型)で10分(×150
00rpm)分散し、酸化亜鉛粒子の分散液を得る。
1. 1.5 g of zinc oxide of the sample was precisely weighed,
In addition to 50 g of 0% PVA / 0.2% sodium hexametaphosphate solution, a homogenizer (Nippon Seiki Seisakusho,
Ace homogenizer AM-7 type) for 10 minutes (x150
00 rpm) to obtain a dispersion of zinc oxide particles.

【0023】2. オートアプリケーター(井元製作所社
製)上に50μmのアプリケーターをセットし、PET
フィルム(厚さ100μm)をセットする。適量の上記
酸化亜鉛粒子の分散液を、当該PETフィルム上にの
せ、オートアプリケーターのスイッチを入れ塗布を開始
する。送り速度は、目盛20に設定する。かくしてフィ
ルムの端まで分散液を塗布したら、スイッチを切る。
2. Set a 50 μm applicator on an auto applicator (manufactured by Imoto Seisakusho),
A film (thickness: 100 μm) is set. An appropriate amount of the dispersion of the zinc oxide particles is placed on the PET film, and the auto applicator is turned on to start coating. The feed speed is set on the scale 20. When the dispersion has been applied to the end of the film, the switch is turned off.

【0024】3. 塗膜を1日乾燥させた後、その厚さを
マイクロメーターで測定する。膜の厚さ(約5〜10μ
m)が揃っていて、一定な部分を切り出し、分光器(日
本分光社製、V−570 ST型)内の積分球の入射光
が入る部分に試験片を貼り付け、透過率を測定する。
3. After the coating film is dried for one day, its thickness is measured with a micrometer. Film thickness (about 5-10μ
m), a fixed portion is cut out, and a test piece is attached to a portion of the spectroscope (manufactured by JASCO Corporation, V-570 ST type) where the incident light enters, and the transmittance is measured.

【0025】以上のごとくして測定された透過率におい
ては、可視光透過率が高く、紫外光透過率が低いものほ
ど酸化亜鉛粒子が細かく分散されていることを示す。
In the transmittance measured as described above, the higher the visible light transmittance and the lower the ultraviolet light transmittance, the finer the zinc oxide particles are dispersed.

【0026】本発明の酸化亜鉛微粒子は、上記のごとく
して評価される粒子の分散性がきわめて良好である。こ
の分散性向上のメカニズムは、現在のところ完全には明
確ではないが、本発明者らは、一応以下のようであろう
と推察している。すなわち、酸化亜鉛粒子にAl ある
いはSiの酸化物若しくは水酸化物が含まれることによ
り、当該粒子表面が不活性となり、粒子同士の凝集性が
減少するとともに、媒体との親和性が向上するためでは
ないかと推察している。
The zinc oxide fine particles of the present invention have extremely good dispersibility of the particles evaluated as described above. Although the mechanism for improving the dispersibility is not completely clear at present, the present inventors presume that it will be as follows. That is, when the oxide or hydroxide of Al or Si is contained in the zinc oxide particles, the surface of the particles becomes inactive, the cohesion between the particles is reduced, and the affinity with the medium is improved. I guess.

【0027】本発明に係わる酸化亜鉛の製造方法として
は、特に限定するものではないが、例えば以下の方法が
採用される。すなわち、酸化亜鉛を含む水スラリーに二
酸化炭素ガスを吹込み、塩基性炭酸亜鉛を合成する際
に、水分散性のアルミニウム水酸化物、アルミニウム酸
化物若しくは水分散性のケイ素水酸化物、ケイ素酸化物
を添加し、得られた当該塩基性炭酸亜鉛スラリーを、流
動層乾燥、媒体流動層乾燥、気流乾燥及又は噴霧乾燥し
た後、加熱分解することにより酸化亜鉛を製造する方法
が好ましい。
Although the method for producing zinc oxide according to the present invention is not particularly limited, for example, the following method is employed. That is, when carbon dioxide gas is blown into a water slurry containing zinc oxide to synthesize basic zinc carbonate, water-dispersible aluminum hydroxide, aluminum oxide or water-dispersible silicon hydroxide, silicon oxide It is preferable to add a product and subject the obtained basic zinc carbonate slurry to fluidized bed drying, medium fluidized bed drying, flash drying or spray drying, and then thermally decompose to produce zinc oxide.

【0028】原料として用いられる酸化亜鉛としては、
所謂酸化亜鉛であればどのようなものであってもよく、
例えば、亜鉛を溶融・蒸発させ気相で酸化するフランス
法、亜鉛鉱石を仮焼・コークス還元・酸化するアメリカ
法、亜鉛塩溶液にソーダ灰を加えて塩基性炭酸亜鉛を沈
殿させ、乾燥・焼成する湿式法(加熱分解法)等のいず
れで製造したものでもよいが、高純度の酸化亜鉛微粒子
を得るためには、純度の高い酸化亜鉛を用いることが好
ましい。
As the zinc oxide used as a raw material,
Any kind of so-called zinc oxide may be used,
For example, the French method of melting and evaporating zinc and oxidizing it in the gas phase, the American method of calcining, coke-reducing and oxidizing zinc ore, and precipitating basic zinc carbonate by adding soda ash to a zinc salt solution, followed by drying and firing Although it may be manufactured by any of a wet method (thermal decomposition method) or the like, it is preferable to use zinc oxide with high purity in order to obtain high-purity zinc oxide fine particles.

【0029】この原料酸化亜鉛を懸濁させてスラリーと
する水としては、特に限定するものではなく、製品であ
る酸化亜鉛の要求純度に応じて鉄錆等の不純物粒子を除
いた上水道水、イオン交換した純水、又は蒸留水の何れ
を用いてもかまわない。また、導入する二酸化炭素ガス
は、純粋なガスとしてそのまま使用してもよいが、場合
によっては、空気や窒素等の希釈ガスにより適当な濃度
に希釈して使用することも可能である。
There is no particular limitation on the water in which the raw material zinc oxide is suspended to form a slurry, and tap water, ionic water, etc. from which impurity particles such as iron rust are removed in accordance with the required purity of the product zinc oxide. Either exchanged pure water or distilled water may be used. The carbon dioxide gas to be introduced may be used as it is as a pure gas, but in some cases, it may be used after being diluted to an appropriate concentration with a diluent gas such as air or nitrogen.

【0030】塩基性炭酸亜鉛生成反応を行うための装置
としては、特に限定するものではないが、例えば撹拌手
段、加熱手段、ガス導入・分散手段、及びAlの酸化物
等の導入手段を備え、酸化亜鉛粒子を沈殿させることな
く浮遊させてスラリー状態に保持し、この中へ二酸化炭
素ガス及びAlの酸化物等を導入して、Alの酸化物等
の粒子の存在下に酸化亜鉛粒子と二酸化炭素ガスと充分
接触せしめて反応を遂行しうる形式の撹拌槽型の反応装
置が好ましい。
The apparatus for carrying out the basic zinc carbonate formation reaction is not particularly limited, but includes, for example, a stirring means, a heating means, a gas introduction / dispersion means, and an introduction means for Al oxide and the like. The zinc oxide particles are suspended without being precipitated and kept in a slurry state, and a carbon dioxide gas and an Al oxide are introduced into the slurry, and the zinc oxide particles and the carbon dioxide are mixed in the presence of the Al oxide particles. It is preferable to use a stirred tank type reactor in which the reaction can be performed by sufficiently contacting with carbon gas.

【0031】原料酸化亜鉛のスラリー濃度としては、少
なくとも0.1〜20質量%、好ましくは0.1〜10
質量%、より好ましくは1〜5質量%の比較的薄い濃度
とすることが望ましい。スラリー濃度がこの範囲を超え
る場合は、大粒径の塩基性炭酸亜鉛が生成したり、凝集
粒子が生成しやすくなり、本発明で目的とする分散性の
良い微粒子とすることが困難になる。一方スラリー濃度
がこれよりあまり薄い場合は、以後の乾燥工程等におい
て除去すべき水の量が過大となり製造効率が低下しエネ
ルギー的にも好ましくない。
The slurry concentration of the raw material zinc oxide is at least 0.1 to 20% by mass, preferably 0.1 to 10% by mass.
It is desirable to have a relatively low concentration of 1% by mass, more preferably 1% to 5% by mass. When the slurry concentration exceeds this range, basic zinc carbonate having a large particle diameter is generated or aggregated particles are easily generated, and it is difficult to obtain fine particles having the desired dispersibility in the present invention. On the other hand, if the slurry concentration is much lower than this, the amount of water to be removed in the subsequent drying step or the like becomes excessively large, which lowers production efficiency and is not preferable in terms of energy.

【0032】二酸化炭素ガスの導入方法としては、スラ
リーとガスが効果的に接触しうるものであればいかなる
方法も用いられ、特に限定するものではないが、例えば
反応槽底部に多孔板や散気管のごときガス分散器(スパ
ージャ)を設置し、このスパージャを通じて二酸化炭素
ガスを液中に吹き込み、さらに好ましくは撹拌羽根によ
りこれを細分化し、二酸化炭素ガスを微小気泡群として
スラリー中全体に、分散化して導入する方法;反応槽と
して密閉容器を使用し、加圧した二酸化炭素ガスを導入
し、スラリー上部の自由表面からガスを吸収させる方法
等の手段が採用できる。後者の場合は、撹拌によりボル
テックスを形成し、当該スラリー液面の表面更新を強制
的に行いガス吸収を促進することがより好ましい。
As a method for introducing the carbon dioxide gas, any method can be used as long as the slurry and the gas can come into effective contact, and the method is not particularly limited. For example, a perforated plate or a diffuser tube may be provided at the bottom of the reaction tank. A gas disperser (sparger) is installed, and carbon dioxide gas is blown into the liquid through the sparger. More preferably, the gas is subdivided by a stirring blade, and the carbon dioxide gas is dispersed as a group of fine bubbles throughout the slurry. A method in which a closed vessel is used as a reaction vessel, a pressurized carbon dioxide gas is introduced, and a gas is absorbed from the free surface of the upper part of the slurry can be adopted. In the latter case, it is more preferable to form a vortex by stirring and forcibly renew the surface of the slurry liquid to promote gas absorption.

【0033】二酸化炭素を吹き込んで塩基性炭酸亜鉛を
生成させる際に、Al又はSiの酸化物若しくは水酸化
物の内、1種ないしは2種を、当該酸化亜鉛に対し質量
比で0.1〜20%、好ましくは0.1〜10%有する
ように、当該酸化物若しくは水酸化物の原料を添加し塩
基性炭酸亜鉛中に含有させる。原料として特に好ましい
例としては、コロイダルシリカ、コロイダルアルミナ等
の微細粒子ゾルが挙げられ、これらを、滴下装置のごと
き導入手段により反応液中に導入する。なお、その他、
二酸化炭素ガスを吹込む事によりAl、Siの酸化物若
しくは水酸化物を生じるものであればいかなる化合物を
用いても良い。これらのコロイダルシリカ等は、二酸化
炭素ガスの供給速度に合わせて、滴下等の手段でほぼ連
続的に導入することが好ましい。かくして、塩基性炭酸
亜鉛の粒子が生成・成長する近傍には、Alの酸化物等
の微細ゾル粒子が常に存在するので、当該粒子成長は、
Alの酸化物等の微細粒子を取り込むように行われ、か
くして形成される塩基性炭酸亜鉛粒子内部にはAlの酸
化物等が存在することになると考えられる。
When basic carbonic acid is formed by blowing carbon dioxide, one or two of oxides or hydroxides of Al or Si are added to the zinc oxide in a mass ratio of 0.1 to The raw material of the oxide or hydroxide is added so as to have a content of 20%, preferably 0.1 to 10%, and is contained in the basic zinc carbonate. Particularly preferred examples of the raw material include fine particle sols such as colloidal silica and colloidal alumina, which are introduced into the reaction solution by an introduction means such as a dropping device. In addition,
Any compound that generates oxides or hydroxides of Al and Si by blowing carbon dioxide gas may be used. It is preferable that these colloidal silicas and the like are introduced almost continuously by means such as dropping in accordance with the supply speed of the carbon dioxide gas. Thus, fine sol particles such as oxides of Al are always present in the vicinity where the particles of basic zinc carbonate are generated and grown.
It is considered that fine particles such as oxides of Al are taken in, and thus the oxides of Al and the like are present inside the basic zinc carbonate particles thus formed.

【0034】撹拌手段としては、通常の撹拌機、例えば
櫂型撹拌機、プロペラ型撹拌機、タービン型撹拌機等の
いずれもが好適に使用される。
As the stirring means, any of ordinary stirrers, for example, paddle-type stirrers, propeller-type stirrers, turbine-type stirrers and the like are suitably used.

【0035】本発明の塩基性炭酸亜鉛生成反応は、実際
には種々の方式によって実施することができるが、例え
ば、反応槽にまず酸化亜鉛スラリーを仕込んでおき、こ
れに二酸化炭素ガスを連続的に供給して塩基性炭酸亜鉛
スラリーを生成させる半連続法(半回分法);酸化亜鉛
スラリーと二酸化炭素ガスの両者を連続的に反応槽に供
給して塩基性炭酸亜鉛スラリーを生成させ、当該生成し
た塩基性炭酸亜鉛スラリーを連続的に反応槽から溢流さ
せる等して抜き出す連続法等の方法が好ましく採用され
る。
The basic zinc carbonate forming reaction of the present invention can be carried out by various methods in practice. For example, first, a zinc oxide slurry is charged into a reaction tank, and carbon dioxide gas is continuously added to the slurry. Semi-continuous method (semi-batch method) in which the basic zinc carbonate slurry is produced by supplying the zinc oxide slurry and the carbon dioxide gas to the reaction vessel continuously to produce the basic zinc carbonate slurry. A method such as a continuous method in which the generated basic zinc carbonate slurry is continuously overflowed from the reaction tank and withdrawn is preferably employed.

【0036】塩基性炭酸亜鉛生成反応の反応温度として
は、特に限定するものではないが、10〜80℃、好ま
しくは20〜60℃である。反応自体は、温度が高い程
高速で進行するが、二酸化炭素ガスの水に対する溶解度
は、温度が高くなると減少し、液中のガス濃度は低下す
る。従って、反応温度は、上記した温度範囲より低くて
も、 高くても、総括的な反応速度が遅くなり好ましく
ない。また、反応時間(連続法の場合は、反応槽におけ
る平均滞留時間)は、反応温度、導入される二酸化炭素
濃度等により変わりうるが、通常10分〜10時間、好
ましくは30分〜5時間程度である。なお、温度保持の
ため、反応器は、加熱手段や保温手段及び温度制御手段
を備えることも好ましい。
The reaction temperature for the basic zinc carbonate forming reaction is not particularly limited, but is 10 to 80 ° C., preferably 20 to 60 ° C. Although the reaction itself proceeds at a higher speed as the temperature is higher, the solubility of carbon dioxide gas in water decreases as the temperature increases, and the gas concentration in the liquid decreases. Therefore, whether the reaction temperature is lower or higher than the above-mentioned temperature range, the overall reaction rate is undesirably slow. The reaction time (in the case of the continuous method, the average residence time in the reaction vessel) can vary depending on the reaction temperature, the concentration of carbon dioxide introduced, and the like, but is usually about 10 minutes to 10 hours, preferably about 30 minutes to 5 hours. It is. In order to maintain the temperature, it is preferable that the reactor is provided with a heating means, a heat keeping means and a temperature control means.

【0037】本発明においては、以上の塩基性炭酸亜鉛
生成反応により得られた塩基性炭酸亜鉛を含むスラリー
を流動層乾燥、媒体流動層乾燥、気流乾燥及又は噴霧乾
燥等により乾燥し、水分を除去して乾燥粉末とする。
In the present invention, the slurry containing the basic zinc carbonate obtained by the above-described basic zinc carbonate formation reaction is dried by fluidized bed drying, medium fluidized bed drying, flash drying, spray drying, or the like to remove water. Remove to dry powder.

【0038】この場合、塩基性炭酸亜鉛を含むスラリー
のスラリー濃度は、かなり低いので、これをそのまま乾
燥するのは熱エネルギー経済上望ましくない。従って、
好ましくは、予め当該スラリーを濃縮、特に機械的手段
により濃縮することが望ましい。
In this case, since the slurry concentration of the slurry containing the basic zinc carbonate is considerably low, it is not desirable to dry the slurry as it is in terms of heat energy economy. Therefore,
Preferably, it is desirable to concentrate the slurry in advance, especially by mechanical means.

【0039】スラリーの濃縮度については、当該濃縮ス
ラリーが流動性を保持し、流動層乾燥器等に微粒化して
供給・処理される範囲であれば特に制限はないが、一般
的にはスラリー濃度として20〜50質量%、好ましく
は20〜45質量%、さらに好ましくは25〜40質量
%の範囲であることが取扱い上及び経済性の点から望ま
しい。
The degree of concentration of the slurry is not particularly limited as long as the concentrated slurry retains fluidity and is supplied and treated after being atomized into a fluidized bed dryer or the like. It is preferably from 20 to 50% by mass, preferably from 20 to 45% by mass, more preferably from 25 to 40% by mass from the viewpoint of handling and economy.

【0040】濃縮のための機械的手段としては、特に限
定するものではないが、シックナー等を用いる沈殿濃
縮、遠心沈降機を用いる遠心沈降、液体サイクロンを用
いる遠心分級等が好ましく使用され、所望の濃縮度や処
理量等に応じて最適な装置を採用することができる。
The mechanical means for concentration is not particularly limited, but is preferably a precipitation concentration using a thickener, a centrifugal sedimentation using a centrifugal sedimenter, a centrifugal classification using a liquid cyclone, or the like. An optimal device can be adopted according to the concentration, the processing amount, and the like.

【0041】本発明においては、塩基性炭酸亜鉛スラリ
ーは、以上のごとく、好ましくは予め濃縮され、流動層
乾燥器、媒体流動層乾燥器、気流乾燥器及又は噴霧乾燥
器等のごとき乾燥装置に供給され乾燥される。供給され
たスラリーは、かかる乾燥装置内で、微細粒子を含む液
滴となり、これが乾燥用の熱風により流動層を形成し、
浮遊しながら乾燥されるか(流動層乾燥、媒体流動層乾
燥)、又は熱風により搬送されながら極めて短時間で乾
燥され(気流乾燥及又は噴霧乾燥)、塩基性炭酸亜鉛の
乾燥粉末が得られる。
In the present invention, the basic zinc carbonate slurry is preferably concentrated in advance, as described above, and is then supplied to a drying apparatus such as a fluidized bed dryer, a medium fluidized bed dryer, a flash dryer or a spray dryer. Provided and dried. The supplied slurry becomes droplets containing fine particles in such a drying device, and this forms a fluidized bed with hot air for drying.
Drying while floating (fluidized bed drying, fluidized bed medium drying) or drying in a very short time while being carried by hot air (flash drying or spray drying) gives a dry powder of basic zinc carbonate.

【0042】乾燥装置としては、最も分散された塩基性
炭酸亜鉛の乾燥微粒子が得られる点で噴霧乾燥器が特に
好ましい。噴霧乾燥器を使用する場合の噴霧機として
は、回転円板、二流体ノズル、加圧ノズル等が適宜採用
でき、また乾燥用熱風温度は、入口で200〜300
℃、出口で100〜150℃程度にすることが好まし
い。
As the drying device, a spray dryer is particularly preferred in that the most dispersed basic zinc carbonate fine particles can be obtained. When a spray dryer is used, a rotating disk, a two-fluid nozzle, a pressurizing nozzle, or the like can be appropriately used as a sprayer, and the temperature of hot air for drying is 200 to 300 at the inlet.
C., preferably at about 100 to 150 C. at the outlet.

【0043】最後に当該乾燥された塩基性炭酸亜鉛を加
熱分解(焼成)し酸化亜鉛とする。加熱分解温度は、塩
基性炭酸亜鉛を分散性の良い微粒子状の酸化亜鉛に分解
する温度で、200〜1000℃、好ましくは200〜
500℃、さらに好ましくは250〜350℃の温度が
望ましい。これよりあまり温度が低いと分解が不十分に
なり、またこれよりあまり温度が高すぎると凝集や焼結
により粒子が成長しすぎることなり、何れも分散性が悪
くなるため好ましくない。加熱分解時間は、処理量、加
熱温度、加熱炉の型等によっても異なりうるが通常30
分〜20時間、好ましくは1〜10時間程度である。
Finally, the dried basic zinc carbonate is thermally decomposed (calcined) to obtain zinc oxide. The heat decomposition temperature is a temperature at which basic zinc carbonate is decomposed into finely divided zinc oxide having good dispersibility, and is 200 to 1000 ° C, preferably 200 to 1000 ° C.
A temperature of 500 ° C, more preferably 250-350 ° C, is desirable. If the temperature is too low, the decomposition will be insufficient, and if the temperature is too high, the particles will grow too much due to aggregation or sintering, and both are unfavorable because the dispersibility deteriorates. The thermal decomposition time may vary depending on the treatment amount, heating temperature, type of heating furnace, etc.
The time is from about minutes to 20 hours, preferably about 1 to 10 hours.

【0044】加熱分解は、空気等の酸化性雰囲気下で、
塩基性炭酸亜鉛粒子を上記温度に加熱しうる炉により行
われる。加熱炉としては、特に限定するものではなく、
例えば箱形炉、回転炉(ロータリーキルン)、移動層
炉、流動層炉、電気炉、ガス加熱炉、赤外線加熱炉等が
好適に用いられる。
The thermal decomposition is performed in an oxidizing atmosphere such as air.
This is performed in a furnace capable of heating the basic zinc carbonate particles to the above-mentioned temperature. The heating furnace is not particularly limited,
For example, a box furnace, a rotary furnace (rotary kiln), a moving bed furnace, a fluidized bed furnace, an electric furnace, a gas heating furnace, an infrared heating furnace, and the like are preferably used.

【0045】加熱分解後の酸化亜鉛粒微粒子は、分散性
に優れており、そのまま本発明の化粧品等の紫外線遮蔽
用に使用することができる。なお、所望により、ボール
ミル、ロッドミル、アトリションミル、ジェットミル、
ミクロンミル等の微粉砕機により更に粉砕処理してから
使用することもできる。これらの微粉砕機は、配合する
化粧品等や塗料などに応じて適宜選択される。
The heat-decomposed zinc oxide fine particles have excellent dispersibility and can be used as they are for ultraviolet shielding of cosmetics and the like of the present invention. In addition, if desired, a ball mill, a rod mill, an attrition mill, a jet mill,
It can be used after being further pulverized by a fine pulverizer such as a micron mill. These pulverizers are appropriately selected according to the cosmetics and the like to be blended and the paint.

【0046】[0046]

【実施例】以下、実施例により本発明を説明する。ただ
し、これらは単なる実施の態様の一例であり、本発明の
技術的範囲がこれらによりなんら限定されるものではな
い。
The present invention will be described below with reference to examples. However, these are merely examples of the embodiments, and the technical scope of the present invention is not limited by these.

【0047】(実施例1) (1)フランス法によって得たJIS K1410 1
種酸化亜鉛と、イオン交換水を用いて62.5g/Lの
酸化亜鉛スラリーを調製した。このスラリーを、内容積
10Lの、底部に散気管を装備し、撹拌機、スラリー供
給手段及び保温機構のついた反応容器に5.6L仕込
み、温度を30℃に保ち撹拌下に、5L/分で二酸化炭
素ガスを吹込んだ。このガスを吹込む間コロイダルシリ
カ溶液(濃度12.5g-SiO2/L)1.4Lを2時
間かけて連続して滴下供給した。2時間後に吹き込みを
終了し、生成物をXRD分析して塩基性炭酸亜鉛が生成
していることを確認した。
Example 1 (1) JIS K1410 1 obtained by French method
A 62.5 g / L zinc oxide slurry was prepared using seed zinc oxide and ion-exchanged water. 5.6 L of this slurry was charged into a reaction vessel equipped with an air diffuser at the bottom having an internal volume of 10 L and equipped with a stirrer, a slurry supply means and a heat retaining mechanism, and kept at a temperature of 30 ° C. with stirring at 5 L / min. Injected carbon dioxide gas. While blowing this gas, 1.4 L of a colloidal silica solution (concentration: 12.5 g-SiO 2 / L) was continuously supplied dropwise over 2 hours. After 2 hours, the blowing was terminated, and the product was analyzed by XRD to confirm that basic zinc carbonate had been formed.

【0048】(2)このスラリーを2時間静置した後、
上澄液を捨て、スラリー濃度20%の塩基性炭酸亜鉛ス
ラリーを得た。上澄液を分析してシリカ分のないことを
確認した。すなわち供給したシリカ分は、すべて塩基性
炭酸亜鉛中に導入されたことが確認された。このスラリ
ーを入口ガス温度250℃、出口ガス温度130℃に調
整されたスプレードライヤーにフィードし、塩基性炭酸
亜鉛粒子を得た。この粒子の粒子径は約100μmであ
った。
(2) After allowing this slurry to stand for 2 hours,
The supernatant was discarded to obtain a basic zinc carbonate slurry having a slurry concentration of 20%. The supernatant was analyzed to confirm that there was no silica content. That is, it was confirmed that all the supplied silica was introduced into the basic zinc carbonate. This slurry was fed to a spray dryer adjusted to an inlet gas temperature of 250 ° C. and an outlet gas temperature of 130 ° C. to obtain basic zinc carbonate particles. The particle size of the particles was about 100 μm.

【0049】(3)この粒子を250℃に加熱した箱型
炉に装入し5時間加熱分解し、酸化亜鉛微細粒子を得
た。
(3) The particles were placed in a box furnace heated to 250 ° C. and thermally decomposed for 5 hours to obtain zinc oxide fine particles.

【0050】得られた酸化亜鉛の比表面積をBET法に
よって測定し、50m2/gの値を得た。この比表面積
から計算される粒子径は0.02μmである。また、酸
化亜鉛中のシリカ分を分析し4.8%のシリカ分を含む
ことを確認した。JIS K5101に基づいて測定し
た嵩密度は、0.20g/mlであった。
The specific surface area of the obtained zinc oxide was measured by the BET method, and a value of 50 m 2 / g was obtained. The particle size calculated from this specific surface area is 0.02 μm. Further, the silica content in the zinc oxide was analyzed, and it was confirmed that the zinc oxide contained 4.8% of the silica content. The bulk density measured based on JIS K5101 was 0.20 g / ml.

【0051】次にこの得られた酸化亜鉛微細粒子の分散
性を評価するために、上述の分散性評価試験を行ない、
透過率を測定した。結果を表1に示す。表から明らかな
ように、本発明の酸化亜鉛は、可視光透過率、紫外線遮
蔽能が高く分散性に優れていることが分かる。
Next, in order to evaluate the dispersibility of the obtained zinc oxide fine particles, the above-described dispersibility evaluation test was performed.
The transmittance was measured. Table 1 shows the results. As is clear from the table, it can be seen that the zinc oxide of the present invention has high visible light transmittance and ultraviolet shielding ability, and is excellent in dispersibility.

【0052】(比較例1) (1)フランス法によって得たJIS K1401 1種
酸化亜鉛、イオン交換水を用いて50g/Lの酸化亜鉛
スラリーを準備した。このスラリーを、内容積10Lの
撹拌機と底部に散気管を装備した反応容器に7L仕込
み、撹拌下5L/分で二酸化炭素ガスを吹込んだ。2時
間後に吹き込みを止め、生成物をXRD分析して塩基性
炭酸亜鉛が生成していることを確認した。
Comparative Example 1 (1) A 50 g / L zinc oxide slurry was prepared using JIS K1401 zinc oxide obtained by the French method and ion-exchanged water. 7 L of this slurry was charged into a reaction vessel equipped with a stirrer having an internal volume of 10 L and a diffuser tube at the bottom, and carbon dioxide gas was blown at 5 L / min with stirring. After 2 hours, blowing was stopped, and the product was subjected to XRD analysis to confirm that basic zinc carbonate had been formed.

【0053】(2)このスラリーを2時間静置した後、
上澄液を除き、スラリー濃度20%の塩基性炭酸亜鉛ス
ラリーを得た。このスラリーを入口ガス温度250℃、
出口ガス温度130℃に調整されたスプレードライヤー
にフィードし、塩基性炭酸亜鉛粒子を得た。この粒子の
粒子径は、約110μmであった。
(2) After allowing this slurry to stand for 2 hours,
The supernatant was removed to obtain a basic zinc carbonate slurry having a slurry concentration of 20%. This slurry is heated at an inlet gas temperature of 250 ° C.
The mixture was fed to a spray dryer adjusted to an outlet gas temperature of 130 ° C. to obtain basic zinc carbonate particles. The particle size of the particles was about 110 μm.

【0054】(3)この粒子を250℃に加熱した箱型
炉に装入し5時間加熱分解し、酸化亜鉛微細粒子を得
た。
(3) The particles were placed in a box furnace heated to 250 ° C. and thermally decomposed for 5 hours to obtain zinc oxide fine particles.

【0055】得られた酸化亜鉛の比表面積をBET法に
よって測定し47m2/gの値を得た。この比表面積か
ら計算される粒子径は0.02μmである。JIS K
5101に基づいて測定した嵩密度は0.30g/ml
であった。次にこの得られた酸化亜鉛微細粒子の分散性
を測定するために、上述の分散性評価試験を行ない透過
率を測定した。結果を下表1に示す。表から明らかなよ
うに、従来の方法を用いて製造した酸化亜鉛は、Alや
Siの酸化物等を含有せず、また嵩密度も高いため実施
例1に比べ可視光透過率は高いが、紫外線遮蔽能が低
く、分散性に劣ることが分かる。
The specific surface area of the obtained zinc oxide was measured by the BET method to obtain a value of 47 m 2 / g. The particle size calculated from this specific surface area is 0.02 μm. JIS K
The bulk density measured based on 5101 is 0.30 g / ml
Met. Next, in order to measure the dispersibility of the obtained zinc oxide fine particles, the above-described dispersibility evaluation test was performed, and the transmittance was measured. The results are shown in Table 1 below. As is clear from the table, the zinc oxide manufactured using the conventional method does not contain oxides of Al and Si, etc., and has a high bulk light density, and thus has a higher visible light transmittance than that of Example 1. It can be seen that the ultraviolet shielding ability is low and the dispersibility is poor.

【0056】(比較例2)比較例1で得られた酸化亜鉛
を用い、シリカ被覆量が5質量%となる計算量のケイ酸
ナトリウム水溶液に加え、この溶液を強く撹拌してスラ
リー状態にした後塩酸を徐々に加えてpH7まで下げケ
イ素酸化物を析出させた。この液を1晩静置後濾過洗
浄、乾燥して表面をケイ素酸化物で被覆した酸化亜鉛粉
末を得た。この酸化亜鉛粉末の分散性評価試験を行い、
透過率を測定した。結果を下表1に示す。表から分かる
ように酸化亜鉛の表面のみをシリカで被覆したものは、
実施例1に比べ可視光透過率は高いが、紫外線遮蔽能が
低く、分散性に劣ることが分かる。
(Comparative Example 2) The zinc oxide obtained in Comparative Example 1 was added to a calculated amount of an aqueous solution of sodium silicate at which the silica coating amount was 5% by mass, and this solution was vigorously stirred to form a slurry. Thereafter, hydrochloric acid was gradually added to lower the pH to 7, thereby depositing silicon oxide. The solution was allowed to stand overnight, filtered, washed and dried to obtain a zinc oxide powder whose surface was coated with silicon oxide. Perform a dispersibility evaluation test of this zinc oxide powder,
The transmittance was measured. The results are shown in Table 1 below. As can be seen from the table, only the surface of zinc oxide coated with silica,
It can be seen that the visible light transmittance is higher than that of Example 1, but the ultraviolet ray shielding ability is low and the dispersibility is poor.

【0057】(実施例2) (1)フランス法によって得たJIS K1410 3種
酸化亜鉛、実施例1で得られた上澄液及び純水を用いて
50g/Lの酸化亜鉛スラリーを調製した。このスラリ
ーを内容積10Lの、底部に散気管を装備し、撹拌機、
スラリー供給手段及び保温機構のついた反応容器に5.
6L仕込み、温度を40℃に保ち撹拌下10L/分で二
酸化炭素ガスを吹込んだ。このガスを吹込む間コロイダ
ルアルミナ溶液(濃度12.5g-Al23/L) 1.
4Lを2時間かけて連続して供給した。2時間後に吹き
込みを終了し生成物をXRD分析して塩基性炭酸亜鉛が
生成している事を確認した。
Example 2 (1) A 50 g / L zinc oxide slurry was prepared using JIS K1410 three kinds of zinc oxide obtained by the French method, the supernatant obtained in Example 1, and pure water. This slurry was equipped with an air diffuser at the bottom of an inner volume of 10 L, a stirrer,
4. In a reaction vessel equipped with a slurry supply means and a heat retaining mechanism,
6 L, the temperature was kept at 40 ° C., and carbon dioxide gas was blown at 10 L / min with stirring. Colloidal alumina solution (concentration: 12.5 g-Al 2 O 3 / L) while blowing this gas
4 L were continuously supplied over 2 hours. After 2 hours, the blowing was terminated and the product was analyzed by XRD to confirm that basic zinc carbonate had been formed.

【0058】(2)このスラリーを2時間静置した後、
上澄液を捨て、スラリー濃度27%の塩基性炭酸亜鉛ス
ラリーを得た。このスラリーを入口ガス温度250℃、
出口ガス温度130℃に調整されたスプレードライヤー
にフィードし、塩基性炭酸亜鉛粒子を得た。この粒子の
粒子径は約400μmであった。
(2) After allowing this slurry to stand for 2 hours,
The supernatant was discarded to obtain a basic zinc carbonate slurry having a slurry concentration of 27%. This slurry is heated at an inlet gas temperature of 250 ° C.
The mixture was fed to a spray dryer adjusted to an outlet gas temperature of 130 ° C. to obtain basic zinc carbonate particles. The particle diameter of the particles was about 400 μm.

【0059】(3)当該粒子を300℃に加熱したレト
ルト炉(レトルトは10rpmで回転させた)に装入し
5時間加熱分解し、酸化亜鉛微細粒子を得た。得られた
酸化亜鉛の比表面積をBET法によって測定し43m2
/gの値を得た。この比表面積から計算される粒子径は
0.02μmである。また、酸化亜鉛中のアルミナ分を
分析し0.9%のアルミナを含むことを確認した。JI
S K5105に基づいて測定した嵩密度は0.3g/
mlであった。
(3) The particles were charged into a retort furnace heated to 300 ° C. (the retort was rotated at 10 rpm) and thermally decomposed for 5 hours to obtain fine zinc oxide particles. The specific surface area of the obtained zinc oxide was measured by the BET method to be 43 m 2
/ G. The particle size calculated from this specific surface area is 0.02 μm. The alumina content in zinc oxide was analyzed, and it was confirmed that the zinc oxide contained 0.9% alumina. JI
The bulk density measured based on SK5105 is 0.3 g /
ml.

【0060】次にこの得られた酸化亜鉛微細粒子の分散
性を評価するために上述の分散性評価試験を行ない透過
率を測定した。結果を下表1に示す。表から明らかなよ
うに本発明の酸化亜鉛は、可視光透過率、紫外線遮蔽能
が高く分散性に優れていることが分かる。
Next, in order to evaluate the dispersibility of the obtained zinc oxide fine particles, the above-mentioned dispersibility evaluation test was performed, and the transmittance was measured. The results are shown in Table 1 below. As is clear from the table, it can be seen that the zinc oxide of the present invention has high visible light transmittance and ultraviolet shielding ability, and is excellent in dispersibility.

【0061】(実施例3) (1)フランス法によって得たJIS K1410 1種
酸化亜鉛、イオン交換水を用いて62.5g/Lの酸化
亜鉛スラリーを調製した。このスラリーを内容積10L
の底部に散気管を装備し、撹拌機、スラリー供給手段及
び保温機構のついた反応容器に5.6L仕込み、温度を
30℃に保ち撹拌下5L/分で二酸化炭素ガスを吹込ん
だ。このガスを吹込む間コロイダルシリカ溶液(濃度2
5g-SiO2/L)1.4Lを2時間かけて連続して供
給した。2時間後に吹き込みを終了し生成物をXRD分
析して塩基性炭酸亜鉛が生成していることを確認した。
Example 3 (1) A zinc oxide slurry of 62.5 g / L was prepared using JIS K1410 one kind zinc oxide obtained by the French method and ion-exchanged water. This slurry has an internal volume of 10 L
5.6 L was charged into a reaction vessel equipped with a stirrer, a slurry supply means and a heat retaining mechanism, and the temperature was kept at 30 ° C., and carbon dioxide gas was blown at 5 L / min with stirring. While injecting this gas, a colloidal silica solution (concentration 2
(5 g-SiO 2 / L) was continuously supplied over 2 hours. After 2 hours, blowing was completed and the product was analyzed by XRD to confirm that basic zinc carbonate had been formed.

【0062】(2)このスラリーを2時間静置した後、
上澄液を捨て、スラリー濃度20%の塩基性炭酸亜鉛ス
ラリーを得た。上澄液を分析してシリカ分のないことを
確認した。このスラリーを入口ガス温度250℃、出口
ガス温度130℃に調整されたスプレードライヤーにフ
ィードし、塩基性炭酸亜鉛粒子を得た。この粒子の粒子
径は約100μmであった。
(2) After allowing this slurry to stand for 2 hours,
The supernatant was discarded to obtain a basic zinc carbonate slurry having a slurry concentration of 20%. The supernatant was analyzed to confirm that there was no silica content. This slurry was fed to a spray dryer adjusted to an inlet gas temperature of 250 ° C. and an outlet gas temperature of 130 ° C. to obtain basic zinc carbonate particles. The particle size of the particles was about 100 μm.

【0063】(3)この粒子を250℃に加熱した箱型
炉に装入し5時間加熱分解し、酸化亜鉛微細粒子を得
た。得られた酸化亜鉛の比表面積をBET法によって測
定し55m2/gの値を得た。この比表面積から計算さ
れる粒子径は0.02μmである。また、酸化亜鉛中の
シリカ分を分析し9%のシリカ分を含むことを確認し
た。JIS K5105に基づいて測定した嵩密度は
0.20g/mlであった。
(3) The particles were placed in a box furnace heated to 250 ° C. and thermally decomposed for 5 hours to obtain zinc oxide fine particles. The specific surface area of the obtained zinc oxide was measured by the BET method to obtain a value of 55 m 2 / g. The particle size calculated from this specific surface area is 0.02 μm. Further, the silica content in the zinc oxide was analyzed, and it was confirmed that the zinc oxide contained 9% of the silica content. The bulk density measured based on JIS K5105 was 0.20 g / ml.

【0064】次にこの得られた酸化亜鉛微細粒子の分散
性を測るために上述の分散性評価試験を行ない透過率を
測定した。結果を下表1に示す。表から明らかなように
本発明の酸化亜鉛は、可視光透過率、紫外線遮蔽能が高
く分散性に優れていることがわかる。
Next, in order to measure the dispersibility of the obtained zinc oxide fine particles, the above-described dispersibility evaluation test was performed, and the transmittance was measured. The results are shown in Table 1 below. As is clear from the table, it can be seen that the zinc oxide of the present invention has high visible light transmittance and ultraviolet shielding ability and is excellent in dispersibility.

【0065】[0065]

【表1】 [Table 1]

【0066】[0066]

【発明の効果】表から明らかなように本発明の酸化亜鉛
微粒子は、可視光透過率、紫外線遮蔽能が高く分散性に
優れており、分散性に優れた紫外線遮蔽用の酸化亜鉛微
粒子であることがわかる。従って化粧品や塗料などの紫
外線遮蔽と同時に透明性が必要な各種用途に好適に用い
られる。
As is clear from the table, the zinc oxide fine particles of the present invention are high in visible light transmittance and ultraviolet ray shielding ability and excellent in dispersibility, and are excellent in dispersibility and are ultraviolet ray shielding zinc oxide fine particles. You can see that. Therefore, it is suitably used for various uses that require transparency at the same time as ultraviolet shielding such as cosmetics and paints.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 達彦 福岡県飯塚市大字横田669番地 ハクスイ テック株式会社内 Fターム(参考) 4C083 AB211 CC19 EE01 EE06 EE07 EE17 FF01 4G047 AA04 AA05 AB02 AC02 AD04 4J037 AA11 CA08 CA12 CB23 DD01 DD05 EE15 EE35 EE43 FF02 FF15  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tatsuhiko Ikeda 669, Yokota, Oizuka, Iizuka-shi, Fukuoka F-term (reference) 4C083 AB211 CC19 EE01 EE06 EE07 EE17 FF01 4G047 AA04 AA05 AB02 AC02 AD04 4J037 AA11 CA08 CA12 CB23 DD01 DD05 EE15 EE35 EE43 FF02 FF15

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 比表面積から計算された平均1次粒子径
が0.03μm以下である酸化亜鉛微粒子であって、当
該粒子内部にも、Al あるいはSiの酸化物若しくは
水酸化物の1種ないしは2種以上を、酸化亜鉛に対し質
量比で0.1〜20%含み、かつ、嵩密度が0.25g
/ml以下であることを特徴とする実質的に酸化亜鉛か
らなる、分散性に優れた紫外線遮蔽用酸化亜鉛微粒子。
1. A zinc oxide fine particle having an average primary particle diameter calculated from a specific surface area of not more than 0.03 μm, wherein one or more of oxides or hydroxides of Al or Si are also present inside the particle. Two or more kinds are contained in a mass ratio of 0.1 to 20% with respect to zinc oxide, and the bulk density is 0.25 g.
/ Ultraviolet ray shielding zinc oxide fine particles having excellent dispersibility, comprising substantially zinc oxide.
JP2000398770A 2000-12-27 2000-12-27 Zinc oxide fine particles for UV shielding Expired - Fee Related JP4756738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398770A JP4756738B2 (en) 2000-12-27 2000-12-27 Zinc oxide fine particles for UV shielding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398770A JP4756738B2 (en) 2000-12-27 2000-12-27 Zinc oxide fine particles for UV shielding

Publications (2)

Publication Number Publication Date
JP2002201382A true JP2002201382A (en) 2002-07-19
JP4756738B2 JP4756738B2 (en) 2011-08-24

Family

ID=18863667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398770A Expired - Fee Related JP4756738B2 (en) 2000-12-27 2000-12-27 Zinc oxide fine particles for UV shielding

Country Status (1)

Country Link
JP (1) JP4756738B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201024A (en) * 2000-12-27 2002-07-16 Hakusui Tech Co Ltd Method for producing compound microparticle comprising zinc oxide as main component
WO2004058645A1 (en) * 2002-12-25 2004-07-15 Cf High Tech Co., Ltd. Electroconductive zinc oxide powder and method for production thereof, and electroconductive composition
JP2007084354A (en) * 2005-09-20 2007-04-05 Ube Ind Ltd Spherical ceramic particulate and method for producing the same
CN1328169C (en) * 2002-12-25 2007-07-25 中粉高科技株式会社 Electroconductive zinc oxide powder and method for production thereof, and electroconductive composition
WO2007145285A1 (en) * 2006-06-16 2007-12-21 Nippon Shokubai Co., Ltd. Polymer-coated metal oxide microparticle and application thereof
US7449235B2 (en) 2003-04-01 2008-11-11 Hitachi Maxell, Ltd. Composite indium oxide particle which contains tin (Sn) and zinc (Zn), method for producing same, conductive coating material, conductive coating film, and conductive sheet
JP2009076449A (en) * 2007-08-30 2009-04-09 Tdk Corp Transparent conductor
JP2013237950A (en) * 2012-05-16 2013-11-28 Tadashi Inoue Fiber product having ultraviolet-shielding property and method for producing the fiber product
US9403691B1 (en) 2015-01-30 2016-08-02 Sumitomo Osaka Cement Co., Ltd. Zinc oxide powder, dispersion, paint, and cosmetic material
JP2016199437A (en) * 2015-04-13 2016-12-01 住友大阪セメント株式会社 Zinc oxide powder, dispersion liquid, paint, and cosmetics
KR20180044276A (en) 2015-08-28 2018-05-02 스미토모 오사카 세멘토 가부시키가이샤 Zinc oxide powder, dispersion, composition, and cosmetic
KR20190018635A (en) 2016-06-14 2019-02-25 스미토모 오사카 세멘토 가부시키가이샤 Zinc oxide powder, dispersion, cosmetic
WO2023087056A1 (en) * 2021-11-16 2023-05-25 Advance ZincTek Limited Zinc oxide and aluminium oxide containing materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255620A (en) * 1984-05-30 1985-12-17 Honjiyou Chem Kk Production of basic zinc carbonate and fine powder of zinc oxide
JPS63288913A (en) * 1987-05-21 1988-11-25 Nikko Aen Kk Production of zinc oxide
JPH08253317A (en) * 1994-12-13 1996-10-01 Nippon Shokubai Co Ltd Zinc oxide-based fine particle, its production and use
JP2002201024A (en) * 2000-12-27 2002-07-16 Hakusui Tech Co Ltd Method for producing compound microparticle comprising zinc oxide as main component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255620A (en) * 1984-05-30 1985-12-17 Honjiyou Chem Kk Production of basic zinc carbonate and fine powder of zinc oxide
JPS63288913A (en) * 1987-05-21 1988-11-25 Nikko Aen Kk Production of zinc oxide
JPH08253317A (en) * 1994-12-13 1996-10-01 Nippon Shokubai Co Ltd Zinc oxide-based fine particle, its production and use
JP2002201024A (en) * 2000-12-27 2002-07-16 Hakusui Tech Co Ltd Method for producing compound microparticle comprising zinc oxide as main component

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201024A (en) * 2000-12-27 2002-07-16 Hakusui Tech Co Ltd Method for producing compound microparticle comprising zinc oxide as main component
WO2004058645A1 (en) * 2002-12-25 2004-07-15 Cf High Tech Co., Ltd. Electroconductive zinc oxide powder and method for production thereof, and electroconductive composition
CN1328169C (en) * 2002-12-25 2007-07-25 中粉高科技株式会社 Electroconductive zinc oxide powder and method for production thereof, and electroconductive composition
US7378152B2 (en) 2002-12-25 2008-05-27 Cf High Tech Co., Ltd. Electroconductive zinc oxide powder and method for production thereof, and electroconducitve composition
KR100906009B1 (en) 2002-12-25 2009-07-06 하구수이 텍크 가부시기가이샤 Electroconductive zinc oxide powder and method for production thereof, and electroconductive composition
US7449235B2 (en) 2003-04-01 2008-11-11 Hitachi Maxell, Ltd. Composite indium oxide particle which contains tin (Sn) and zinc (Zn), method for producing same, conductive coating material, conductive coating film, and conductive sheet
JP2007084354A (en) * 2005-09-20 2007-04-05 Ube Ind Ltd Spherical ceramic particulate and method for producing the same
WO2007145285A1 (en) * 2006-06-16 2007-12-21 Nippon Shokubai Co., Ltd. Polymer-coated metal oxide microparticle and application thereof
JP5241492B2 (en) * 2006-06-16 2013-07-17 株式会社日本触媒 Polymer-coated metal oxide fine particles and their applications
JP2009076449A (en) * 2007-08-30 2009-04-09 Tdk Corp Transparent conductor
JP2013237950A (en) * 2012-05-16 2013-11-28 Tadashi Inoue Fiber product having ultraviolet-shielding property and method for producing the fiber product
US9403691B1 (en) 2015-01-30 2016-08-02 Sumitomo Osaka Cement Co., Ltd. Zinc oxide powder, dispersion, paint, and cosmetic material
WO2016121139A1 (en) * 2015-01-30 2016-08-04 住友大阪セメント株式会社 Zinc oxide powder, dispersion, paint, cosmetic
CN107207275A (en) * 2015-01-30 2017-09-26 住友大阪水泥股份有限公司 Zinc oxide powder, dispersion liquid, coating and cosmetic preparation
EP3252011A4 (en) * 2015-01-30 2018-09-05 Sumitomo Osaka Cement Co., Ltd. Zinc oxide powder, dispersion, paint, cosmetic
KR101904015B1 (en) 2015-01-30 2018-10-04 스미토모 오사카 세멘토 가부시키가이샤 Zinc oxide powder, dispersion, paint, cosmetic
JP2016199437A (en) * 2015-04-13 2016-12-01 住友大阪セメント株式会社 Zinc oxide powder, dispersion liquid, paint, and cosmetics
KR20180044276A (en) 2015-08-28 2018-05-02 스미토모 오사카 세멘토 가부시키가이샤 Zinc oxide powder, dispersion, composition, and cosmetic
US11497695B2 (en) 2015-08-28 2022-11-15 Sumitomo Osaka Cement Co., Ltd. Zinc oxide powder, dispersion, composition, and cosmetic
KR20190018635A (en) 2016-06-14 2019-02-25 스미토모 오사카 세멘토 가부시키가이샤 Zinc oxide powder, dispersion, cosmetic
US11364185B2 (en) 2016-06-14 2022-06-21 Sumitomo Osaka Cement Co., Ltd. Zinc oxide powder, dispersion, and cosmetics
WO2023087056A1 (en) * 2021-11-16 2023-05-25 Advance ZincTek Limited Zinc oxide and aluminium oxide containing materials

Also Published As

Publication number Publication date
JP4756738B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP5412109B2 (en) Nanoparticles comprising aluminum oxide and oxides of elements of first and second main groups of periodic table of elements and method for producing the same
US7993445B2 (en) Nanoparticles of alumina and oxides of elements of main groups I and II of the periodic table, and their preparation
JP3611303B2 (en) Hollow fine powder, flaky titanium oxide fine powder obtained by pulverizing hollow fine powder, and method for producing them
JP4063464B2 (en) Scale-like silica particles, curable composition, cured product comprising the same, and method for producing the same
Tsuzuki et al. Synthesis of CaCO3 nanoparticles by mechanochemical processing
US6080232A (en) Spherical color pigments, process for their production and use thereof
KR100526916B1 (en) An aqueous dispersion, and processes for preparing and using the same
JP2002201382A (en) Zinc oxide microparticle for ultraviolet screening
TW201202144A (en) Method for producing spherical alumina powder
JPWO2004041427A1 (en) Inorganic fine particles, inorganic raw material powders and methods for producing them
Japić et al. The impact of nano-milling on porous ZnO prepared from layered zinc hydroxide nitrate and zinc hydroxide carbonate
CN104690295B (en) The method for preparing monodisperse superfine particle
WO2000046152A1 (en) Ultra-fine particles of zinc oxide, method for preparing the same and cosmetic comprising the same
Voon et al. Synthesis and preparation of metal oxide powders
Tsuzuki et al. UV-shielding ceramic nanoparticles synthesised by mechanochemical processing
JP4569597B2 (en) Zinc oxide production method and zinc oxide
JP4063421B2 (en) Silica-metal oxide fine particle composite and method for producing silica aggregate particles used therefor
JP2002201024A (en) Method for producing compound microparticle comprising zinc oxide as main component
JP5173245B2 (en) Method for producing surface-coated zinc oxide
JP2011116569A (en) Composite powder and granular body by aggregation and pulverization of nanoparticles, and method and apparatus for producing the same
JP6023554B2 (en) Method for producing scaly silica particles
JP2001220136A (en) Method for manufacturing zing oxide fine grain
JP4256133B2 (en) Method for producing acicular titanium dioxide fine particles
JP3525677B2 (en) Filler for IC substrate and resin composition for IC encapsulation
JP2001342021A (en) Method of preparing zinc oxide fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees