JP4256133B2 - Method for producing acicular titanium dioxide fine particles - Google Patents

Method for producing acicular titanium dioxide fine particles Download PDF

Info

Publication number
JP4256133B2
JP4256133B2 JP2002283864A JP2002283864A JP4256133B2 JP 4256133 B2 JP4256133 B2 JP 4256133B2 JP 2002283864 A JP2002283864 A JP 2002283864A JP 2002283864 A JP2002283864 A JP 2002283864A JP 4256133 B2 JP4256133 B2 JP 4256133B2
Authority
JP
Japan
Prior art keywords
titanium dioxide
fine particles
dioxide fine
reaction product
acicular titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002283864A
Other languages
Japanese (ja)
Other versions
JP2004115342A (en
Inventor
薫 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2002283864A priority Critical patent/JP4256133B2/en
Publication of JP2004115342A publication Critical patent/JP2004115342A/en
Application granted granted Critical
Publication of JP4256133B2 publication Critical patent/JP4256133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は針状二酸化チタン微粒子及びその製造方法に関し、特に、透明性の紫外線遮蔽剤として有用な針状二酸化チタン微粒子及びそれを製造する方法に関する。また、その針状二酸化チタン微粒子を配合した日焼け止め化粧料、紫外線遮蔽用塗料に関する。
【0002】
【従来の技術】
針状二酸化チタン微粒子は、平均長軸径が平均短軸径より大きいものであり、一般的に紡錘状、棒状などとも呼ばれているものである。このような針状二酸化チタン微粒子は、球状などの非針状形状を有する通常の二酸化チタン微粒子と同じ用途に用いられる以外に、その粒子形状特性を利用して、紫外線遮蔽剤、充填剤、添加剤、磁気記録媒体の下層材、触媒担体や、導電性材料、抗菌性材料などの機能性材料を表面に付着する基体粒子などとしても有用である。特に、針状二酸化チタン微粒子は透明性が高く、紫外線遮蔽能、特に皮膚への影響が最も大きいと言われるB領域(波長が290〜320nm)の紫外線(UVB)の遮蔽能が非常に優れており、紫外線遮蔽剤として日焼け止め化粧料等への利用が進んでいる。
【0003】
針状二酸化チタン微粒子の製造方法としては、特開平5−186221号公報、特公平6−102545号公報等に、含水二酸化チタンを水酸化ナトリウムで処理した後、加熱・塩酸処理する方法が開示されている。この方法では、非常に微細な粒子が得られ難く、透明性やUVB遮蔽能が不十分であった。
【0004】
【発明が解決しようとする課題】
本発明は以上に述べた従来技術の問題点を解決し、優れた透明性とUVB遮蔽能を有する針状二酸化チタン微粒子及びその製造方法を提供するものである。更に、本発明は、高い透明性とUVB遮蔽能を有する日焼け止め化粧料、紫外線遮蔽用塗料を提供するものである。
【0005】
【課題を解決するための手段】
本発明者は鋭意研究を重ねた結果、含水酸化チタンを塩基性ナトリウム化合物で処理した後、加熱・塩酸処理する針状二酸化チタン微粒子の製造方法において、前記塩酸処理を三塩化チタンの存在下で行えば、長軸径が比較的大きく、結晶子径の小さい微細な二酸化チタン微粒子が得られること、この二酸化チタン微粒子は分散性に優れているので、これを実際に化粧料や塗料に配合しても高い透明性、UVB遮蔽能が発揮できることなどを見出し、本発明を完成した。
【0006】
すなわち、本発明は、
(1)三塩化チタンの存在下、含水酸化チタンと塩基性ナトリウム化合物との反応生成物を塩酸と反応させることを特徴とする針状二酸化チタン微粒子の製造方法、である。
【0007】
【発明の実施の形態】
二酸化チタン微粒子を構成する結晶子を小さく、即ち微細化すると、理論上透明性とUVB遮蔽能は向上するが、同時に表面エネルギーが大きくなり分散性が低下するので、実際に化粧料や塗料等に配合して用いると、高い透明性やUVB遮蔽能が得られなかった。しかし、二酸化チタン微粒子を構成する結晶子を十分に微細にし、しかも、その結晶子が集合して形成された二酸化チタン微粒子を針状形状にすることによって、表面エネルギーを低下させることができ、二酸化チタン微粒子が本来持っている透明性やUVB遮蔽能を引き出すことができると考えられる。すなわち、本発明の二酸化チタン微粒子は、0.01〜0.15μmの範囲の平均長軸径を有する針状二酸化チタン微粒子であり、その結晶子の平均径は40〜175Åの範囲である。ここでは、平均長軸径が平均短軸径より大きい粒子を針状と言い、一般的に紡錘状、棒状などと呼ばれているものも包含する。
【0008】
本発明における平均長軸径は電子顕微鏡法により求めた一次粒子の累積50%粒子径で、平均結晶子径は二酸化チタンの(110)面のX線回折ピークより、後記のScherrerの公式(式1)を用いて算出したものである。平均長軸径が0.01μmより小さいと、表面エネルギーが大きく所望の分散性が得られず、0.15μmより大きいと、平均結晶子径が前記範囲にあっても透明性やUVB遮蔽能が低下してしまう。また、平均結晶子径が175Åより大きいと、所望の透明性やUVB遮蔽能が得られず、40Åより小さいと、平均長軸径が前記範囲にあっても、表面エネルギーが大きくなり過ぎ分散性が低くなる。平均長軸径の好ましい範囲は0.05〜0.15μmであり、平均結晶子径の好ましい範囲は40〜150Åであり、更に好ましい範囲は50〜130Åである。
【0009】
比表面積は表面被覆を行うと、被覆種や被覆量によって大きく異なってくるが、例えば後述の表面被覆を行っていない針状二酸化チタン自体では、150〜250m/gの範囲にあるのが好ましい。本発明の針状二酸化チタン微粒子は、本発明の目的を損なわない範囲で一部に非晶質のものを含んでいても良いが、実質的に結晶構造を有している。結晶構造には制限は無いが、特に後述の製造法で得られたものは、ルチル型を主体としている。
【0010】
本発明の針状二酸化チタン微粒子には、無機化合物及び有機化合物から選ばれる少なくとも1種で粒子表面が被覆されていても良い。被覆量は目的に応じて適宜設定することができ、例えば針状二酸化チタン微粒子のTiO換算に対してそれぞれ0.1〜50重量%の範囲の量を被覆するのが好ましく、0.1〜30重量%の範囲がより好ましい。
【0011】
分散性や耐候性等を向上させるためには、無機化合物を被覆するのが好ましく、アルミニウム、ケイ素、ジルコニウム、亜鉛、チタニウム、スズ、アンチモン等から選ばれる少なくとも1種の化合物、例えば、それらの元素の酸化物または含水酸化物を被覆するのがより好ましい。また、有機系バインダーとの親和性を高めたり、流動性を高めたりする等の目的で粒子の表面、または前記の無機化合物被覆を行った粒子の表面に、少なくとも1種の有機化合物により被覆しても良い。
【0012】
有機化合物としては例えばステアリン酸、カルボン酸等の高級脂肪酸、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン等のシリコーン系化合物、トリメチロールエタン、トリメチロールプロパン等の多価アルコール類、トリエチルアミン等のアルカノールアミン類、シランカップリング剤、チタネートカップリング剤等のカップリング剤などが挙げられる。
【0013】
次に、本発明は針状二酸化チタン微粒子の製造方法であって、三塩化チタンの存在下、含水酸化チタンと塩基性ナトリウム化合物との反応生成物を塩酸と反応させる方法である。
【0014】
本方法における反応機構は必ずしも明確ではないが、含水酸化チタンと塩基性ナトリウムとの反応によりチタン酸ナトリウムが生成し、そして、チタン酸ナトリウムと塩酸との反応によりチタン酸ナトリウムからナトリウムが脱離すると考えられ、その過程で、針状二酸化チタン微粒子が、特にルチル型のものが生成すると推測される。三塩化チタンにはその際に結晶子の成長を抑制する作用があるのではないかと考えられる。
【0015】
本発明で用いる含水酸化チタンは四塩化チタン、硫酸チタニル等の加水分解等、公知の方法により得られたものを用いることができる。塩基性ナトリウム化合物としては水酸化ナトリウム、炭酸ナトリウム、シュウ酸ナトリウム等を用いることができる。
【0016】
含水酸化チタンと塩基性ナトリウム化合物との反応は、含水酸化チタンと塩基性ナトリウム化合物とを混合することにより行われる。含水酸化チタンを予め有機溶媒等の分散媒に、好ましくは水に分散させた懸濁液に、塩基性ナトリウム化合物またはその溶液を添加するか、あるいは、塩基性ナトリウム化合物の溶液に、含水酸化チタンまたはその分散液を添加すると、均一に反応し易いので好ましい。この反応は、好ましくは80〜100℃の範囲で、更に好ましくは90〜100℃の範囲で行う。反応温度が80〜100℃の範囲であれば、含水酸化チタンと塩基性ナトリウム化合物との反応が短時間で進行しやすく、オートクレーブ等の耐圧反応器を必要としないため、工業的に有利である。含水酸化チタン中に含まれるチタン分のTiO換算量1モルに対し、1モル以上の塩基性ナトリウム化合物と反応させると、微細な結晶子を有する反応生成物が得られ易く、好ましくは5モル以上、更に好ましくは5〜8モルで反応させる。反応生成物が得られた後、連続的に塩酸と反応する工程に供しても良いが、反応生成物を一旦濾過・洗浄してから、前記工程に供すると、粒子径や粒子形状の均一な針状二酸化チタン微粒子が得られ易いので好ましい。
【0017】
次いで、三塩化チタンの存在下、反応生成物を塩酸と反応させるには、反応生成物を予め有機溶媒等の分散媒に、好ましくは水に分散させた懸濁液に、三塩化チタンを添加した後塩酸を添加するか、両者を同時に添加するか、あるいは、両者を混合して添加すると、均一に反応し易いので好ましい。反応温度は60〜100℃の範囲が好ましく、85〜100℃の範囲が更に好ましい。温度が60〜100℃の範囲であれば、微細な結晶子を有する針状二酸化チタン微粒子が得られ易く、また、オートクレーブ等の耐圧反応器を必要としないため、工業的に有利である。反応温度の調整は三塩化チタン及び塩酸を添加する前に行っても、添加した後に行っても、添加しながら行っても良い。
【0018】
三塩化チタンは、反応生成物に含まれるチタン分のTiO換算量に対し、TiO換算で0.1〜50重量%に相当する量を用いるのが好ましく、0.1〜20重量%に相当する量を用いるのがより好ましい。用いる三塩化チタンの量が0.1〜50重量%であれば、微細な結晶子を有する針状二酸化チタン微粒子が得られ易い。
【0019】
用いた三塩化チタンは、得られた針状二酸化チタン微粒子を濾過・洗浄、乾燥する過程などで空気酸化され、最終的に非晶質の二酸化チタンまたは含水二酸化チタンとして、おそらくは一部が粒子の内部で、且つ結晶格子の外部に存在し、一部が粒子の表面に被覆層として被着されるものと推測される。三塩化チタンに替えて、例えば二塩化チタンのように、反応中に三塩化チタンを生成させる化合物を用いることもできる。
【0020】
用いる塩酸の量は、反応生成物中に含まれるチタン分のTiO換算量で1モルに対し、0.1〜2モルの範囲にするのが好ましく、0.4〜1.5モルの範囲が更に好ましい。反応時のpHが3以下であると、非針状粒子が生成し難いので好ましく、1以下が更に好ましい。pHが2〜3になるまで塩酸を添加した後、更に塩酸を添加すると、粒度分布や粒子形状の整ったものが、より得られ易くなるので好ましい。本発明では三塩化チタンも酸性化合物であるので、三塩化チタン及び塩酸を前記範囲で用いた場合、特にpHを調整する必要は無い。
【0021】
前記のように針状二酸化チタン微粒子を合成した後、必要に応じて公知の方法により無機化合物や有機化合物を被覆することができる。アルミニウム、ケイ素、ジルコニウム、亜鉛、チタニウム、スズ、アンチモン等の酸化物または含水酸化物を表面に被覆する場合は、例えば得られた針状二酸化チタン微粒子の水性懸濁液中に、これらの成分を含む水溶性化合物を所定量添加し、塩基性あるいは酸性化合物を用いて中和する。
【0022】
有機化合物の被覆を行う場合は、例えば粉砕工程で粉砕機中に有機物を添加し、粉砕させながら被覆処理したり、あるいは乾燥後または粉砕後に高速ミキサー等を用いて有機化合物と混合しながら被覆処理する等、いわゆる乾式処理により行うことができる。また被覆する有機化合物が、水性懸濁液中で二酸化チタンと強固に結合するものであれば、湿式処理を用いることができる。そのような有機化合物としてステアリン酸ソーダ等の高級脂肪酸塩や、シランカップリング剤の加水分解物等が挙げられ、針状二酸化チタン微粒子の懸濁液にこれらを添加、中和して、被覆させることができる。
【0023】
以上の方法により得られた針状二酸化チタン微粒子あるいは被覆処理した針状二酸化チタン微粒子は、通常行われる手法で濾別、洗浄、乾燥しても良く、必要に応じて、得られた乾燥物をジェットミル等の流体エネルギーミルや、ハンマーミル等の衝撃粉砕機等の粉砕機で粉砕しても良い。
【0024】
本発明の日焼け止め化粧料及び紫外線遮蔽塗料は、以上に述べた針状二酸化チタン微粒子を配合したものである。日焼け止め化粧料は、その他に通常化粧料に用いられるバインダー、溶剤、着色剤、界面活性剤、香料、保湿剤等の添加剤を含んでいても良い。紫外線遮蔽塗料は、例えばアクリル、アルキド、メラミン、ポリエステル、ウレタン等の樹脂に、前記の針状二酸化チタン微粒子をディスパー、サンドミルを用いる等の公知の方法で分散したもので、分散剤、レベリング剤、硬化剤等の添加剤を適宜配合できる。日焼け止め化粧料及び紫外線遮蔽塗料中の針状二酸化チタン微粒子の配合量は適宜設定することができる。これらは非常に透明性が高いので素肌や、プラスチックス、木材等の有機系基材の本来の外観を損なわずに、紫外線の影響を効果的に防ぐことができる。
【0025】
本発明の針状二酸化チタン微粒子は、前記の日焼け止め化粧料や紫外線遮蔽塗料以外にも様々な用途に用いることができる。例えば、透明なプラスチックス・フィルムに配合し、基材に貼付すれば、紫外線遮蔽塗料と同様の効果が得られる。プラスチックス、圧縮ボード、紙等の基材を成形する際に、紫外線遮蔽フィラーとして直接配合しても良い。更には、トナー、シリコーンゴム等の添加剤、磁気記録材料の下層材、触媒担体、導電材料の基体粒子などとして用いることができる。
【0026】
【実施例】
以下に実施例を挙げて本発明を更に詳細に説明するが、これらは本発明を限定するものではない。
【0027】
実施例1
1.反応生成物の合成
TiOとして100g/リットルの含水酸化チタンの水性懸濁液2000ミリリットルに、48%水酸化ナトリウム水溶液1400gを撹拌しながら添加し、95℃で120分間加熱処理した後、濾過・洗浄し、反応生成物の洗浄ケーキを得た。含水酸化チタンに含まれるチタン分のTiO換算量1モルに対し、6.72モルの塩基性ナトリウム化合物を用いた。
【0028】
2.針状二酸化チタン微粒子の合成
洗浄ケーキを水に再分散させ、反応生成物をTiOとして70g/リットルの水性懸濁液とした。この懸濁液1400ミリリットルに、反応生成物中のTiOに対し、TiOとして5重量%に相当する三塩化チタンの水溶液と、35%塩酸40ミリリットルとを同時に20分で添加し撹拌したところ、懸濁液のpHは3であった。引き続き、懸濁液を60℃に昇温して30分間撹拌し、更に35%塩酸61ミリリットルを添加したところ、pHは1以下になった。塩酸の合計使用量は、反応生成物中に含まれるチタン分のTiO換算量で1モルに対し、0.8モルであった。その後、温度を95℃に保ちながら60分間熟成し、ルチル型の針状二酸化チタン微粒子のスラリーを得た。スラリーを一部分取し、洗浄、濾別、乾燥後、サンプルミルで粉砕して、本発明の針状二酸化チタン微粒子(試料a)を得た。
【0029】
3.表面被覆処理
前記のスラリーを80℃に加温して、200g/リットルの水酸化ナトリウム水溶液でpHが8になるように中和した。次に、Alとして300g/リットルのアルミン酸ナトリウムを53.3ミリリットルと20%硫酸とを、スラリーのpHが8〜9に保持しながら同時に20分間で添加し、10分間撹拌した後、20%硫酸でpHを5.5になるように30分間かけて中和した。次いで、ステアリン酸ナトリウムをTiOに対して20重量%添加し、30分間撹拌した後、20%硫酸でpHが6になるように40分間かけて中和し、60分間熟成した。その後、洗浄、濾別、乾燥し、ハンマーミルを用いて粉砕して、TiOに対してアルミニウム含水酸化物10重量%とステアリン酸15重量%とで被覆された針状二酸化チタン微粒子(試料A)を得た。
【0030】
比較例1
三塩化チタンを用いなかったこと以外は、実施例1と同様にしてルチル型針状二酸化チタン微粒子(試料b)、及び、そのアルミニウム含水酸化物とステアリン酸との表面処理品(試料B)を得た。
【0031】
評価1
実施例1及び比較例1で得られた針状二酸化チタン微粒子(試料a、b、A、B)の長軸及び短軸の平均一次粒子径を、電子顕微鏡写真法により測定した。また、比表面積を、比表面積測定装置(島津製作所製、フローソーブII 2300型)を用いてBET法により測定した。
【0032】
評価2
実施例1及び比較例1で得られた針状二酸化チタン微粒子(試料a、b、A、B)の平均結晶子径を(110)面のX線回折ピークから下式を用いて算出した。
式1:DHKL=K*λ/βcosθ
HKL:平均結晶子径(Å)
λ :X線の波長
β :回折ピークの半価幅
θ :Bragg's角
K :定数
【0033】
平均長軸径及び平均短軸径、平均結晶子径、比表面積の測定結果を表1に示す。この結果から、本発明の針状二酸化チタン微粒子は、0.01〜0.15μmの平均長軸径と40〜175Åの平均結晶子径とを有することが分かった。また、電子顕微鏡観察の結果、凝集粒子がほとんど無いこと、X線回折の結果、実質的にルチル型結晶が得られることが分かった。
【0034】
【表1】

Figure 0004256133
【0035】
評価3
実施例1及び比較例1で得られた針状二酸化チタン微粒子(試料A、B)を以下に記す方法で化粧料を想定したペーストとした。このペーストをドクターブレードを用いて透明なトリアセテート・フィルム上に膜厚が約25μmになるように塗布した後、30分間風乾した。この塗膜の波長が300nmにおける光の透過率T300及び550nmにおける光の透過率T550を、積分球を装着した分光光度計(島津製作所製、UV−VIS UV−2200A型)を用いて測定し、下式に従ってA300/A550を算出した。
式:A300/A550=log(100/T300)/log(100/T550
【0036】
Figure 0004256133
【0037】
(ペーストの調製方法)
前記処方を225ccの蓋付ガラス瓶に仕込み、密閉してからペイントコンディショナー(レッドデビル社(米)製、クイックミル)を用いて分散させた。
【0038】
評価4
実施例1及び比較例1で得られた表面被覆を行った針状二酸化チタン微粒子(試料A、B)を以下に記す方法で塗料とした。この塗料を2ミル・アプリケーターを用いて透明のトリアセテート・フィルム上に塗布し、30分間放置後、140℃で2分間焼付けた。焼付後の塗膜の厚さは約9μmであった。この塗膜のT550、T300を評価3と同様の方法により測定し、A300/A550値を算出した。
【0039】
(塗料化処方)
[処方A]
試料 5.4g
アクリル樹脂
(大日本インキ化学製、アクリディック47−712) 6.4g
混合溶剤(トルエン/酢酸ブチル=1/1) 14.7g
ガラスビーズ 45.0g
[処方B]
処方Aにより調製した成分 26.5g
アクリル樹脂
(大日本インキ化学製、アクリディック47−712) 41.6g
メラミン樹脂
(大日本インキ化学製、スーパーべッカミンL−117) 10.0g
混合溶剤(トルエン/酢酸ブチル=1/1) 5.0g
【0040】
(塗料の調製方法)
処方Aを225ccの蓋付ガラス瓶に仕込み、密閉してからペイントコンディショナー(レッドデビル社(米)製、クイックミル)を用いて分散させた後、得られた成分を抜き出し、処方Bにて残りの成分と混合した。
【0041】
ペーストによる透過率の測定結果を表2に、塗料による透過率の測定結果を表3に示す。本発明の針状二酸化チタン微粒子は化粧料にしても塗料にしてもA300/A550値が高い、すなわち透明感が高く紫外線遮蔽能が優れていることが分かる。
【0042】
【表2】
Figure 0004256133
【0043】
【表3】
Figure 0004256133
【0044】
【発明の効果】
本発明は、0.01〜0.15μmの範囲の平均長軸径と40〜175Åの範囲の平均結晶子径とを有することを特徴とする針状二酸化チタン微粒子である。この針状二酸化チタン微粒子は、分散性に優れ、透明性とUVB遮蔽能が高く、皮膚や基材の外観を損なわずに、紫外線からの高い保護効果を示すため、日焼け止め化粧料や紫外線遮蔽塗料に有用である。また、トナー、シリコーンゴム等の添加剤、磁気記録媒体の下層材、触媒担体、また、導電性材料等の基体粒子などとしても用いることもできる。更に本発明は、三塩化チタンの存在下で、含水酸化チタンと塩基性ナトリウム化合物との反応生成物を塩酸と反応することにより微細な結晶子を有する針状二酸化チタン微粒子を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to acicular titanium dioxide fine particles and a method for producing the same, and more particularly to acicular titanium dioxide fine particles useful as a transparent ultraviolet shielding agent and a method for producing the same. The present invention also relates to sunscreen cosmetics and ultraviolet shielding paints containing the acicular titanium dioxide fine particles.
[0002]
[Prior art]
The acicular titanium dioxide fine particles have an average major axis diameter larger than the average minor axis diameter, and are generally called spindle-shaped or rod-shaped. Such acicular titanium dioxide fine particles are used in the same applications as ordinary titanium dioxide fine particles having a non-acicular shape such as a spherical shape. It is also useful as an agent, a lower layer material of a magnetic recording medium, a catalyst carrier, and base particles for attaching a functional material such as a conductive material or an antibacterial material to the surface. In particular, acicular titanium dioxide fine particles are highly transparent and have an excellent ultraviolet shielding ability, particularly an ultraviolet (UVB) shielding ability in the B region (wavelength of 290 to 320 nm), which is said to have the greatest effect on the skin. As a UV screening agent, it is increasingly used for sunscreen cosmetics.
[0003]
As a method for producing acicular titanium dioxide fine particles, JP-A-5-186221, JP-B-6-102545 and the like disclose a method in which hydrous titanium dioxide is treated with sodium hydroxide, followed by heating and hydrochloric acid treatment. ing. According to this method, it is difficult to obtain very fine particles, and transparency and UVB shielding ability are insufficient.
[0004]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art and provides acicular titanium dioxide fine particles having excellent transparency and UVB shielding ability and a method for producing the same. Furthermore, the present invention provides sunscreen cosmetics and ultraviolet shielding paints having high transparency and UVB shielding ability.
[0005]
[Means for Solving the Problems]
As a result of extensive research, the present inventor has processed the hydrochloric acid treatment in the presence of titanium trichloride in a method for producing acicular titanium dioxide fine particles, in which hydrous titanium oxide is treated with a basic sodium compound and then heated and treated with hydrochloric acid. If done, fine titanium dioxide fine particles with a relatively large major axis diameter and a small crystallite diameter can be obtained, and the titanium dioxide fine particles are excellent in dispersibility. However, the present inventors have found that high transparency and UVB shielding ability can be exhibited.
[0006]
That is, the present invention
(1 ) A method for producing acicular titanium dioxide fine particles, wherein a reaction product of hydrous titanium oxide and a basic sodium compound is reacted with hydrochloric acid in the presence of titanium trichloride.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
When the crystallites constituting the titanium dioxide fine particles are made small, that is, finer, the transparency and UVB shielding ability are theoretically improved, but at the same time the surface energy is increased and the dispersibility is lowered. When blended and used, high transparency and UVB shielding ability were not obtained. However, by making the crystallites constituting the titanium dioxide fine particles sufficiently fine and making the titanium dioxide fine particles formed by the aggregation of the crystallites into a needle shape, the surface energy can be reduced, It is considered that the transparency and UVB shielding ability inherent to titanium fine particles can be brought out. That is, the titanium dioxide fine particles of the present invention are acicular titanium dioxide fine particles having an average major axis diameter in the range of 0.01 to 0.15 μm, and the average diameter of the crystallites is in the range of 40 to 175 mm. Here, particles having an average major axis diameter larger than the average minor axis diameter are referred to as needles, and those generally called spindles, rods and the like are also included.
[0008]
In the present invention, the average major axis diameter is the cumulative primary particle diameter of 50% obtained by electron microscopy, and the average crystallite diameter is the Scherrer formula (formula below) from the X-ray diffraction peak of the (110) plane of titanium dioxide. 1). When the average major axis diameter is smaller than 0.01 μm, the surface energy is large and desired dispersibility cannot be obtained. When the average major axis diameter is larger than 0.15 μm, transparency and UVB shielding ability are obtained even if the average crystallite diameter is within the above range. It will decline. If the average crystallite diameter is larger than 175 mm, the desired transparency and UVB shielding ability cannot be obtained. If the average crystallite diameter is smaller than 40 mm, the surface energy becomes too large even if the average major axis diameter is in the above range. Becomes lower. A preferable range of the average major axis diameter is 0.05 to 0.15 μm, a preferable range of the average crystallite diameter is 40 to 150 mm, and a more preferable range is 50 to 130 mm.
[0009]
When the surface coating is performed, the specific surface area greatly varies depending on the coating type and the coating amount. For example, acicular titanium dioxide itself not subjected to the surface coating described below is preferably in the range of 150 to 250 m 2 / g. . The acicular titanium dioxide fine particles of the present invention may have some amorphous particles within the range not impairing the object of the present invention, but have a substantially crystalline structure. Although there is no restriction | limiting in crystal structure, The thing obtained by the below-mentioned manufacturing method especially has a rutile type as a main body.
[0010]
The acicular titanium dioxide fine particles of the present invention may have a particle surface coated with at least one selected from inorganic compounds and organic compounds. The coating amount can be appropriately set according to the purpose. For example, it is preferable to coat an amount in the range of 0.1 to 50% by weight with respect to the TiO 2 equivalent of the acicular titanium dioxide fine particles. A range of 30% by weight is more preferred.
[0011]
In order to improve dispersibility, weather resistance, etc., it is preferable to coat an inorganic compound, and at least one compound selected from aluminum, silicon, zirconium, zinc, titanium, tin, antimony, etc., for example, those elements More preferably, the oxide or hydrated oxide is coated. In addition, the surface of the particle or the surface of the particle coated with the inorganic compound is coated with at least one organic compound for the purpose of increasing the affinity with the organic binder or increasing the fluidity. May be.
[0012]
Examples of organic compounds include higher fatty acids such as stearic acid and carboxylic acid, silicone compounds such as dimethylpolysiloxane and methylhydrogenpolysiloxane, polyhydric alcohols such as trimethylolethane and trimethylolpropane, and alkanolamines such as triethylamine. , Coupling agents such as silane coupling agents and titanate coupling agents.
[0013]
Next, the present invention is a method for producing acicular titanium dioxide fine particles, in which a reaction product of hydrous titanium oxide and a basic sodium compound is reacted with hydrochloric acid in the presence of titanium trichloride.
[0014]
Although the reaction mechanism in this method is not necessarily clear, sodium titanate is produced by the reaction between hydrous titanium oxide and basic sodium, and sodium is released from sodium titanate by the reaction between sodium titanate and hydrochloric acid. It is conceivable that, in the process, acicular titanium dioxide fine particles, in particular, rutile-type particles are generated. Titanium trichloride is considered to have an action of suppressing the growth of crystallites at that time.
[0015]
As the hydrous titanium oxide used in the present invention, those obtained by a known method such as hydrolysis of titanium tetrachloride, titanyl sulfate and the like can be used. As the basic sodium compound, sodium hydroxide, sodium carbonate, sodium oxalate and the like can be used.
[0016]
The reaction between the hydrous titanium oxide and the basic sodium compound is carried out by mixing the hydrous titanium oxide and the basic sodium compound. A basic sodium compound or a solution thereof is added to a suspension in which a hydrous titanium oxide is previously dispersed in a dispersion medium such as an organic solvent, preferably in water, or a hydrous titanium oxide is added to a basic sodium compound solution. Alternatively, it is preferable to add the dispersion because it easily reacts uniformly. This reaction is preferably performed in the range of 80 to 100 ° C, more preferably in the range of 90 to 100 ° C. If the reaction temperature is in the range of 80 to 100 ° C., the reaction between the hydrous titanium oxide and the basic sodium compound is likely to proceed in a short time, and a pressure resistant reactor such as an autoclave is not required, which is industrially advantageous. . When 1 mol or more of basic sodium compound is reacted with respect to 1 mol of TiO 2 equivalent of titanium contained in hydrous titanium oxide, a reaction product having fine crystallites can be easily obtained, preferably 5 mol. More preferably, the reaction is carried out at 5 to 8 mol. After the reaction product is obtained, it may be subjected to a step of continuously reacting with hydrochloric acid, but once the reaction product is filtered and washed, it is subjected to the above step to obtain a uniform particle diameter and particle shape. Since acicular titanium dioxide fine particles are easily obtained, it is preferable.
[0017]
Next, in order to react the reaction product with hydrochloric acid in the presence of titanium trichloride, titanium trichloride is added to a suspension in which the reaction product is previously dispersed in a dispersion medium such as an organic solvent, preferably in water. After that, it is preferable to add hydrochloric acid, to add both at the same time, or to add both in a mixed manner because they can easily react uniformly. The reaction temperature is preferably in the range of 60 to 100 ° C, more preferably in the range of 85 to 100 ° C. If the temperature is in the range of 60 to 100 ° C., acicular titanium dioxide fine particles having fine crystallites are easily obtained, and a pressure resistant reactor such as an autoclave is not required, which is industrially advantageous. The reaction temperature may be adjusted before or after adding titanium trichloride and hydrochloric acid.
[0018]
Titanium trichloride is preferably used in an amount corresponding to 0.1 to 50% by weight in terms of TiO 2 with respect to the amount of TiO 2 in terms of titanium contained in the reaction product. More preferably, the corresponding amount is used. If the amount of titanium trichloride used is 0.1 to 50% by weight, acicular titanium dioxide fine particles having fine crystallites are easily obtained.
[0019]
The used titanium trichloride is oxidized by air in the process of filtering, washing and drying the obtained acicular titanium dioxide fine particles, and finally, as amorphous titanium dioxide or hydrous titanium dioxide, it is probably partly particulate. It is presumed that it exists inside and outside the crystal lattice, and a part thereof is deposited on the surface of the particle as a coating layer. Instead of titanium trichloride, a compound that generates titanium trichloride during the reaction, such as titanium dichloride, can also be used.
[0020]
The amount of hydrochloric acid to be used is preferably in the range of 0.1 to 2 mol, and in the range of 0.4 to 1.5 mol, with respect to 1 mol in terms of TiO 2 equivalent of titanium contained in the reaction product. Is more preferable. When the pH during the reaction is 3 or less, non-needle particles are less likely to be produced, and preferably 1 or less. It is preferable to add hydrochloric acid after the addition of hydrochloric acid until the pH is 2 to 3, and then to further improve the particle size distribution and particle shape. In the present invention, titanium trichloride is also an acidic compound. Therefore, when titanium trichloride and hydrochloric acid are used within the above ranges, it is not necessary to adjust the pH.
[0021]
After synthesizing the acicular titanium dioxide fine particles as described above, an inorganic compound or an organic compound can be coated by a known method if necessary. When coating the surface with oxides or hydrous oxides such as aluminum, silicon, zirconium, zinc, titanium, tin, antimony, etc., for example, these components are added to the obtained aqueous suspension of acicular titanium dioxide fine particles. A predetermined amount of a water-soluble compound is added and neutralized using a basic or acidic compound.
[0022]
When coating with an organic compound, for example, an organic substance is added to the pulverizer in the pulverization step, and coating is performed while pulverizing, or after drying or pulverization, the organic compound is mixed with the organic compound using a high-speed mixer or the like. It can carry out by what is called dry processing. Moreover, if the organic compound to coat | cover is a thing couple | bonded firmly with titanium dioxide in aqueous suspension, a wet process can be used. Examples of such organic compounds include higher fatty acid salts such as sodium stearate and hydrolysates of silane coupling agents. These are added to a suspension of acicular titanium dioxide fine particles, neutralized, and coated. be able to.
[0023]
The acicular titanium dioxide fine particles obtained by the above method or the coated acicular titanium dioxide fine particles may be filtered, washed and dried by a usual method. You may grind | pulverize by pulverizers, such as fluid energy mills, such as a jet mill, and impact crushers, such as a hammer mill.
[0024]
The sunscreen cosmetic and the ultraviolet shielding paint of the present invention are those containing the acicular titanium dioxide fine particles described above. In addition, the sunscreen cosmetics may contain additives such as binders, solvents, colorants, surfactants, fragrances, moisturizers and the like that are usually used in cosmetics. The ultraviolet shielding paint is a dispersion of the acicular titanium dioxide fine particles in a resin such as acrylic, alkyd, melamine, polyester, urethane, etc., by a known method such as using a disper or a sand mill. Additives such as curing agents can be blended as appropriate. The blending amount of the acicular titanium dioxide fine particles in the sunscreen cosmetic and the ultraviolet shielding coating can be appropriately set. Since these are very transparent, the influence of ultraviolet rays can be effectively prevented without impairing the original appearance of the bare skin, organic base materials such as plastics and wood.
[0025]
The acicular titanium dioxide fine particles of the present invention can be used for various applications other than the sunscreen cosmetics and ultraviolet shielding paints. For example, if blended into a transparent plastic film and affixed to a substrate, the same effect as an ultraviolet shielding paint can be obtained. When molding a substrate such as plastics, compression board, paper, etc., it may be blended directly as an ultraviolet shielding filler. Further, it can be used as an additive such as toner and silicone rubber, a lower layer material of a magnetic recording material, a catalyst carrier, and a base particle of a conductive material.
[0026]
【Example】
EXAMPLES The present invention will be described in more detail with reference to examples below, but these do not limit the present invention.
[0027]
Example 1
1. Synthesis of reaction product As an aqueous suspension of hydrous titanium oxide of 100 g / liter as TiO 2 , 1400 g of a 48% aqueous sodium hydroxide solution was added with stirring, heat-treated at 95 ° C. for 120 minutes, filtered, Washing gave a reaction product washed cake. 6.72 mol of basic sodium compound was used for 1 mol of TiO 2 equivalent of titanium contained in hydrous titanium oxide.
[0028]
2. The synthetic washed cake of acicular titanium dioxide fine particles was redispersed in water, and the reaction product was made into TiO 2 to form an aqueous suspension of 70 g / liter. An aqueous solution of titanium trichloride corresponding to 5% by weight as TiO 2 and 40 ml of 35% hydrochloric acid were simultaneously added to 1400 ml of this suspension in 20 minutes with respect to TiO 2 in the reaction product and stirred. The pH of the suspension was 3. Subsequently, the suspension was heated to 60 ° C. and stirred for 30 minutes, and when 61 ml of 35% hydrochloric acid was further added, the pH became 1 or less. The total amount of hydrochloric acid used was 0.8 mol with respect to 1 mol in terms of TiO 2 equivalent of titanium contained in the reaction product. Thereafter, the mixture was aged for 60 minutes while maintaining the temperature at 95 ° C. to obtain a slurry of rutile needle-like titanium dioxide fine particles. A portion of the slurry was taken, washed, filtered, dried, and pulverized with a sample mill to obtain acicular titanium dioxide fine particles (sample a) of the present invention.
[0029]
3. Surface coating treatment The slurry was heated to 80 ° C., and neutralized with a 200 g / liter sodium hydroxide aqueous solution to a pH of 8. Next, as Al 2 O 3 , 53.3 milliliters of 300 g / liter sodium aluminate and 20% sulfuric acid were added simultaneously for 20 minutes while maintaining the pH of the slurry at 8 to 9, and stirred for 10 minutes. The solution was neutralized with 20% sulfuric acid over 30 minutes so that the pH was 5.5. Next, 20% by weight of sodium stearate was added to TiO 2 , stirred for 30 minutes, neutralized with 20% sulfuric acid so that the pH became 6 and aged for 60 minutes. Thereafter, washing, filtration, drying, pulverization using a hammer mill, and acicular titanium dioxide fine particles coated with 10 wt% aluminum hydroxide and 15 wt% stearic acid with respect to TiO 2 (Sample A) )
[0030]
Comparative Example 1
Except that titanium trichloride was not used, rutile needle-like titanium dioxide fine particles (sample b) and a surface treated product of the aluminum hydrous oxide and stearic acid (sample B) were obtained in the same manner as in Example 1. Obtained.
[0031]
Evaluation 1
The average primary particle diameters of the major axis and minor axis of the acicular titanium dioxide fine particles (samples a, b, A, B) obtained in Example 1 and Comparative Example 1 were measured by an electron micrograph. Moreover, the specific surface area was measured by the BET method using a specific surface area measuring apparatus (manufactured by Shimadzu Corporation, Flowsorb II 2300 type).
[0032]
Evaluation 2
The average crystallite diameter of the acicular titanium dioxide fine particles (samples a, b, A, and B) obtained in Example 1 and Comparative Example 1 was calculated from the X-ray diffraction peak of the (110) plane using the following formula.
Formula 1: D HKL = K * λ / βcos θ
D HKL : Average crystallite diameter (Å)
λ: wavelength of X-ray β: half width of diffraction peak θ: Bragg's angle K: constant
Table 1 shows the measurement results of average major axis diameter, average minor axis diameter, average crystallite diameter, and specific surface area. From this result, it was found that the acicular titanium dioxide fine particles of the present invention had an average major axis diameter of 0.01 to 0.15 μm and an average crystallite diameter of 40 to 175 mm. Further, as a result of observation with an electron microscope, it was found that there were almost no aggregated particles, and as a result of X-ray diffraction, a rutile crystal was substantially obtained.
[0034]
[Table 1]
Figure 0004256133
[0035]
Evaluation 3
The acicular titanium dioxide fine particles (samples A and B) obtained in Example 1 and Comparative Example 1 were prepared as pastes assuming cosmetics by the method described below. This paste was applied on a transparent triacetate film with a doctor blade so that the film thickness was about 25 μm, and then air-dried for 30 minutes. The light transmittance T 300 at a wavelength of 300 nm and the light transmittance T 550 at 550 nm were measured using a spectrophotometer (manufactured by Shimadzu Corporation, UV-VIS UV-2200A type) equipped with an integrating sphere. Then, A 300 / A 550 was calculated according to the following formula.
Formula: A300 / A550 = log (100 / T300 ) / log (100 / T550 )
[0036]
Figure 0004256133
[0037]
(Paste preparation method)
The formulation was charged into a 225 cc glass bottle with a lid, sealed, and then dispersed using a paint conditioner (manufactured by Red Devil (USA), Quick Mill).
[0038]
Evaluation 4
The acicular titanium dioxide fine particles (samples A and B) subjected to the surface coating obtained in Example 1 and Comparative Example 1 were used as paints by the method described below. This paint was applied onto a transparent triacetate film using a 2 mil applicator, allowed to stand for 30 minutes, and baked at 140 ° C. for 2 minutes. The thickness of the coating film after baking was about 9 μm. T 550 and T 300 of this coating film were measured by the same method as in Evaluation 3, and the A 300 / A 550 value was calculated.
[0039]
(Paint formulation)
[Prescription A]
5.4 g of sample
Acrylic resin (manufactured by Dainippon Ink & Chemicals, Acrydic 47-712) 6.4g
Mixed solvent (toluene / butyl acetate = 1/1) 14.7g
Glass beads 45.0g
[Prescription B]
Ingredient 26.5 g prepared according to formulation A
Acrylic resin (Dainippon Ink Chemical Co., Ltd., Acrydic 47-712) 41.6g
Melamine resin (Dainippon Ink Chemical Co., Ltd., Super Becamine L-117) 10.0g
Mixed solvent (toluene / butyl acetate = 1/1) 5.0 g
[0040]
(Paint preparation method)
Formula A was charged into a glass bottle with a lid of 225 cc, sealed, and dispersed using a paint conditioner (manufactured by Red Devil (USA), Quick Mill). Mixed with ingredients.
[0041]
Table 2 shows the measurement results of the transmittance with the paste, and Table 3 shows the measurement results of the transmittance with the paint. It can be seen that the acicular titanium dioxide fine particles of the present invention have a high A 300 / A 550 value, that is, a high transparency and an excellent ultraviolet shielding ability, whether it is a cosmetic or a paint.
[0042]
[Table 2]
Figure 0004256133
[0043]
[Table 3]
Figure 0004256133
[0044]
【The invention's effect】
The present invention is acicular titanium dioxide fine particles having an average major axis diameter in the range of 0.01 to 0.15 μm and an average crystallite diameter in the range of 40 to 175 mm. These acicular titanium dioxide fine particles have excellent dispersibility, high transparency and UVB shielding ability, and show high protection effects from ultraviolet rays without impairing the appearance of the skin and the base material. Useful for paints. It can also be used as an additive such as toner and silicone rubber, a lower layer material of a magnetic recording medium, a catalyst carrier, and base particles such as a conductive material. Furthermore, the present invention can produce acicular titanium dioxide fine particles having fine crystallites by reacting a reaction product of hydrous titanium oxide with a basic sodium compound with hydrochloric acid in the presence of titanium trichloride. .

Claims (8)

三塩化チタンの存在下、含水酸化チタンと塩基性ナトリウム化合物との反応生成物を塩酸と反応させることを特徴とする針状二酸化チタン微粒子の製造方法。A method for producing acicular titanium dioxide fine particles, wherein a reaction product of hydrous titanium oxide and a basic sodium compound is reacted with hydrochloric acid in the presence of titanium trichloride. 反応生成物に含まれるチタン分のTiO換算量に対し、三塩化チタンをTiO換算で0.1〜50重量%の範囲存在させることを特徴とする請求項記載の針状二酸化チタン微粒子の製造方法。To TiO 2 equivalent amount of the titanium component contained in the reaction product, a three-acicular titanium dioxide particles of claim 1, wherein the titanium chloride is characterized by the presence 0.1 to 50 wt% in terms of TiO 2 Manufacturing method. 反応生成物と塩酸との反応を60〜100℃の範囲の温度下で行うことを特徴とする請求項記載の針状二酸化チタン微粒子の製造方法。Method for producing acicular titanium dioxide particles according to claim 1, characterized in that the reaction of the reaction product with hydrochloric acid at a temperature in the range of 60 to 100 [° C.. 反応生成物と塩酸との反応を3以下のpH域で行うことを特徴とする請求項記載の針状二酸化チタン微粒子の製造方法。Method for producing acicular titanium dioxide particles according to claim 1, characterized in that the reaction of the reaction product with hydrochloric acid 3 in the following pH ranges. 反応生成物に含まれるチタン分のTiO換算量1モルに対し、0.1〜2モルの範囲の量の塩酸を用いることを特徴とする請求項記載の針状二酸化チタン微粒子の製造方法。To TiO 2 in terms of 1 mole of titanium component contained in the reaction product, the method of producing acicular titanium dioxide particles of claim 1, wherein the use of an amount of 0.1 to 2 mol of hydrochloric acid . 含水酸化チタンと塩基性ナトリウム化合物とを80〜100℃の範囲の温度下で反応させて反応生成物を得ることを特徴とする請求項記載の針状二酸化チタン微粒子の製造方法。Manufacturing method according to claim 1, wherein the acicular titanium dioxide particles characterized by obtaining a reaction product by reacting at a temperature in the range and hydrous titanium oxide and a basic sodium compound of 80 to 100 ° C.. 含水酸化チタンに含まれるチタン分のTiO換算量1モルに対し、1モル以上の塩基性ナトリウム化合物を用いることを特徴とする請求項記載の針状二酸化チタン微粒子の製造方法。To TiO 2 in terms of 1 mole of titanium component contained in the hydrous titanium oxide, method for producing acicular titanium dioxide particles according to claim 1, characterized by using 1 mole or more basic sodium compounds. 含水酸化チタンと塩基性ナトリウム化合物とを反応して得られた反応生成物を一旦濾別・洗浄した後、塩酸と反応させることを特徴とする請求項記載の針状二酸化チタン微粒子の製造方法。After once filtered, washed reaction product obtained by reacting a titanium oxide hydrate and basic sodium compound, method of manufacture according to claim 1, wherein the acicular titanium dioxide particles which comprises reacting with hydrochloric acid .
JP2002283864A 2002-09-27 2002-09-27 Method for producing acicular titanium dioxide fine particles Expired - Fee Related JP4256133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283864A JP4256133B2 (en) 2002-09-27 2002-09-27 Method for producing acicular titanium dioxide fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283864A JP4256133B2 (en) 2002-09-27 2002-09-27 Method for producing acicular titanium dioxide fine particles

Publications (2)

Publication Number Publication Date
JP2004115342A JP2004115342A (en) 2004-04-15
JP4256133B2 true JP4256133B2 (en) 2009-04-22

Family

ID=32277610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283864A Expired - Fee Related JP4256133B2 (en) 2002-09-27 2002-09-27 Method for producing acicular titanium dioxide fine particles

Country Status (1)

Country Link
JP (1) JP4256133B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036999B2 (en) * 2004-12-27 2012-09-26 ポーラ化成工業株式会社 Composition and method for producing the same
KR100977349B1 (en) 2005-09-30 2010-08-20 사까이가가꾸고오교가부시끼가이샤 Process for producing fine particle of rutile-form titanium oxide
AU2011218713B2 (en) * 2005-11-15 2013-11-21 Pola Chemical Industries Inc. Organic inorganic composite powder, method of producing the same, and composition containing the powder
WO2007057997A1 (en) * 2005-11-15 2007-05-24 Pola Chemical Industries Inc. Organic inorganic composite powder, process for producing the same and composition containing the powder
JP5519705B2 (en) * 2009-02-06 2014-06-11 ザ プロクター アンド ギャンブル カンパニー Capsule containing disintegrating water
WO2010090988A2 (en) * 2009-02-06 2010-08-12 The Procter & Gamble Company Collapsible water-containing capsules
TWI637031B (en) * 2012-07-13 2018-10-01 石原產業股份有限公司 Method of preparing coated inorganic particles
JP2015059291A (en) * 2013-09-20 2015-03-30 王子ホールディングス株式会社 Decorative laminate original paper
JP5780285B2 (en) * 2013-11-14 2015-09-16 日清紡ホールディングス株式会社 Ultraviolet scattering agent and its use

Also Published As

Publication number Publication date
JP2004115342A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US5776239A (en) Hydrothermal process for making ultafine metal oxide powders
US5973175A (en) Hydrothermal process for making ultrafine metal oxide powders
JP4018770B2 (en) Fan-shaped titanium oxide, method for producing fan-shaped or plate-shaped titanium oxide, and use thereof
JP2010006629A (en) Titanium dioxide fine particle and method for producing the same
KR100678806B1 (en) Pigment in thin flakes and a method for manufacturing the same
CA2155957C (en) Ultrafine iron-containing rutile titanium oxide and process for producing the same
ES2357990T3 (en) IMPROVED PROCESS FOR THE MANUFACTURE OF TITANIUM DIOXIDE PIGMENTS TREATED WITH CIRCONIA.
JP3925886B2 (en) Spherical titanium dioxide aggregate formed from small spherical particles of titanium dioxide and method for producing the same
JPH09272815A (en) Composite metal oxide fine particle and production of the same
JPH1072210A (en) Coated sio2 particles
EP1726625A1 (en) Lower-energy process for preparing passivated inorganic nanoparticles
KR20020060230A (en) Metal oxide/silica composite and cosmetic comprising the same
EP0803550A2 (en) Coated SiO2 particles
JPH1081517A (en) Superfine titanium oxide and its production
JP4256133B2 (en) Method for producing acicular titanium dioxide fine particles
JP4153066B2 (en) Method for producing strongly cohesive titanium oxide
US5837050A (en) Ultrafine iron-containing rutile titanium oxide and process for producing the same
JP4201880B2 (en) Butterfly-like rutile titanium oxide, method for producing the same, and use thereof
JP3422832B2 (en) Dendritic or starfish-shaped fine titanium dioxide and method for producing the same
JP4256134B2 (en) Method for producing iron-containing acicular titanium dioxide fine particles
JP2717904B2 (en) Iron-containing ultrafine rutile titanium dioxide and method for producing the same
JPH02194065A (en) Minute titanium dioxide composition
JP3732265B2 (en) Spindle-shaped fine particle titanium dioxide and method for producing the same
JP2852482B2 (en) Iron-containing titanium dioxide and method for producing the same
JP4195254B2 (en) Rutile type titanium dioxide fine particles and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4256133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees