JP2010006629A - Titanium dioxide fine particle and method for producing the same - Google Patents

Titanium dioxide fine particle and method for producing the same Download PDF

Info

Publication number
JP2010006629A
JP2010006629A JP2008166427A JP2008166427A JP2010006629A JP 2010006629 A JP2010006629 A JP 2010006629A JP 2008166427 A JP2008166427 A JP 2008166427A JP 2008166427 A JP2008166427 A JP 2008166427A JP 2010006629 A JP2010006629 A JP 2010006629A
Authority
JP
Japan
Prior art keywords
titanium dioxide
fine particles
dioxide fine
silica
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008166427A
Other languages
Japanese (ja)
Inventor
Masanori Iida
正紀 飯田
Reiko Takamido
玲子 高御堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2008166427A priority Critical patent/JP2010006629A/en
Publication of JP2010006629A publication Critical patent/JP2010006629A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide titanium dioxide fine particles of which the catalytic activity is controlled while retaining excellent transparency and ultraviolet screening ability, and a production method which prevents difficulty in handling work and lowering of production efficiency due to the thixotropic viscosity of a cake and powdering of a dry substance. <P>SOLUTION: Coatings of high density silica and porous silica are formed on the surfaces of titanium dioxide fine particles having an average particle diameter of ≤100 nm. Specifically, aqueous slurry of titanium dioxide fine particles having an average particle diameter of ≤100 nm is adjusted to pH ≥8 at 70°C, a silicate is added and the aqueous slurry is neutralized with an acid to form high density silica. A silicate and an acid are then added while keeping the aqueous slurry at pH 1-4 to form porous silica. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、二酸化チタン微粒子及びその製造方法に関する。   The present invention relates to titanium dioxide fine particles and a method for producing the same.

二酸化チタン微粒子は、その微細な粒子形状を利用して、紫外線遮蔽剤、充填剤、添加剤、磁気記録媒体の下層材、触媒担体や、導電性材料、抗菌性材料などの機能性材料を表面に付着する基体粒子などとしても有用である。特に、二酸化チタン微粒子は透明性が高く、紫外線遮蔽能、特に皮膚への影響が最も大きいと言われるB領域(波長が290〜320nm)の紫外線(UVB)の遮蔽能に優れており、紫外線遮蔽剤として日焼け止め化粧料や塗膜、プラスチック成形物等に配合して用いられている。しかしながら、二酸化チタン微粒子は、触媒活性、光活性・酸化活性が高く、化粧料等の成分である油剤や樹脂、プラスチック等を変質し易いために、二酸化チタン微粒子の表面にシリカを被覆して触媒活性を抑制している(特許文献1、2を参照)。このようにシリカ被覆した二酸化チタン微粒子は、ジベンゾイルメタン系UVA紫外線吸収剤と反応しないので、化粧料において、ジベンゾイルメタン系UVA紫外線吸収剤との併用が可能となり、それによりUVA(波長が320〜380nmの紫外線A領域)、UVBの紫外線遮蔽効果を格段に高めることができる。
シリカを被覆するには、二酸化チタン微粒子をテトラエトキシシランとともにエタノール中に分散し、テトラエトキシシランを加水分解する方法(特許文献1段落0009)、二酸化チタン微粒子の水性スラリーに、ケイ酸ナトリウムなどの水溶性ケイ酸アルカリ金属塩を加え、酸で中和する方法(特許文献2)が知られている。
Titanium dioxide fine particles use the fine particle shape to surface functional materials such as UV shielding agents, fillers, additives, underlayer materials for magnetic recording media, catalyst carriers, conductive materials, and antibacterial materials. It is also useful as substrate particles that adhere to the surface. In particular, titanium dioxide fine particles are highly transparent and have an excellent ultraviolet shielding ability, particularly an ultraviolet shielding ability (UVB) in the B region (wavelength of 290 to 320 nm), which is said to have the greatest effect on the skin. It is used as an agent in sunscreen cosmetics, paint films, plastic moldings and the like. However, titanium dioxide fine particles have high catalytic activity, photoactivity / oxidation activity, and are easy to alter oils, resins, plastics, etc., which are components of cosmetics, etc., so the surface of titanium dioxide fine particles is coated with silica. The activity is suppressed (see Patent Documents 1 and 2). The silica-coated titanium dioxide fine particles do not react with the dibenzoylmethane-based UVA ultraviolet absorber, so that it can be used in combination with the dibenzoylmethane-based UVA ultraviolet absorber. UV-ultraviolet shielding effect of UVB can be remarkably enhanced.
To coat silica, a method of dispersing titanium dioxide fine particles in ethanol together with tetraethoxysilane and hydrolyzing tetraethoxysilane (Patent Document 1, paragraph 0009), an aqueous slurry of titanium dioxide fine particles, sodium silicate or the like A method of adding a water-soluble alkali metal silicate and neutralizing with an acid (Patent Document 2) is known.

一方、二酸化チタン微粒子に対して、平均粒子径が0.1μm(100nm)〜1.0μm程度の大きい粒子径を有する二酸化チタン顔料においてもシリカ被覆が行われている。例えば特許文献3には、エマルション塗料系における優れた高顔料濃度の二酸化チタン顔料水性分散体や優れた光沢性を有する塗膜性能を得るために、更には、シリカ被覆処理工程で惹起し易い処理スラリーやケーキのチキソトロピック粘性による取扱い作業の困難性や生産効率の低下などを実質的に回避するために、二酸化チタン顔料粒子表面に、高密度シリカの第一被覆層と多孔質シリカの第二被覆層とを形成することを記載している。具体的には、二酸化チタン顔料の水性スラリーを80℃以上でpH9以上に調整し、次いでケイ酸塩を添加し、しかる後酸で緩徐に中和し、この高密度シリカの第一被覆層を有する二酸化チタン顔料の水性スラリーのpHを1〜4に保持しながら、ケイ酸塩溶液と酸もしくはアルカリを添加して、多孔質シリカを被覆している。   On the other hand, silica coating is also applied to a titanium dioxide pigment having a large particle diameter of about 0.1 μm (100 nm) to 1.0 μm with respect to the titanium dioxide fine particles. For example, in Patent Document 3, in order to obtain an excellent high pigment concentration titanium dioxide pigment aqueous dispersion in an emulsion paint system and a coating performance having excellent gloss, a treatment that is easily caused in a silica coating treatment step is further disclosed. In order to substantially avoid the difficulty in handling due to the thixotropic viscosity of the slurry or cake and the reduction in production efficiency, the first coating layer of high-density silica and the second coating of porous silica are applied to the titanium dioxide pigment particle surface. And forming a coating layer. Specifically, the aqueous slurry of titanium dioxide pigment is adjusted to pH 9 or higher at 80 ° C. or higher, silicate is then added, and then neutralized slowly with acid. While maintaining the pH of the aqueous slurry of titanium dioxide pigment having 1 to 4, a silicate solution and an acid or alkali are added to cover the porous silica.

特開平11−217322号公報Japanese Patent Laid-Open No. 11-217322 特公昭61−49250号公報Japanese Patent Publication No. 61-49250 特開平10−130527号公報JP-A-10-130527

特許文献1、2では、二酸化チタン微粒子の表面にシリカが被覆され、二酸化チタン微粒子の触媒活性の抑制が図られているものの、触媒活性抑制の更なる改善が望まれている。また、触媒活性抑制のために多量のシリカ被覆を行うと二酸化チタンの含有比率が低下し、紫外線遮蔽能が低下する点が問題となっている。更に、特許文献1、2の方法でシリカ被覆を行うと、処理スラリーやケーキのチキソトロピック粘性による取扱い作業の困難性や生産効率の低下が起こる。一方、特許文献3は、二酸化チタン顔料に関する高濃度化、高光沢性を得るためのシリカ被覆の改良であり、また、二酸化チタン顔料の取扱い作業性の改善であって、触媒活性が極めて高く、シリカ被覆に伴いチキソトロピック粘性が極めて高くなる微細な二酸化チタン微粒子については言及していない。   In Patent Documents 1 and 2, silica is coated on the surface of the titanium dioxide fine particles to suppress the catalytic activity of the titanium dioxide fine particles, but further improvement of the catalytic activity suppression is desired. In addition, when a large amount of silica is coated to suppress the catalyst activity, the content ratio of titanium dioxide is lowered, and the ultraviolet shielding ability is lowered. Furthermore, when silica coating is performed by the methods of Patent Documents 1 and 2, difficulty in handling work due to thixotropic viscosity of the treated slurry and cake, and reduction in production efficiency occur. On the other hand, Patent Document 3 is an improvement in silica coating for obtaining a high concentration and high gloss on a titanium dioxide pigment, and an improvement in handling workability of the titanium dioxide pigment, which has a very high catalytic activity, No mention is made of fine titanium dioxide fine particles whose thixotropic viscosity becomes extremely high with silica coating.

本発明者らは、二酸化チタン微粒子の優れた透明性、紫外線遮蔽能を保持しながら、触媒活性を十分に抑制することができる工業的に有利なシリカ被覆方法を検討した結果、二酸化チタン顔料で行われる高密度シリカ被覆では、二酸化チタン微粒子の触媒活性の抑制には効果があるものの、ケーキのチキソトロピック粘性や乾燥物の粉化による取扱い作業の困難性や生産効率の低下が起こること、また、二酸化チタン顔料で行われる多孔質シリカ被覆では、触媒活性の抑制が十分でなく、溶媒等への分散性が低下し紫外線遮蔽能も十分でないこと、そこで、二酸化チタン微粒子の表面に高密度シリカ被覆と多孔質シリカ被覆を形成すると、所望のものが得られること見出し、本発明を完成した。   The inventors of the present invention have studied an industrially advantageous silica coating method capable of sufficiently suppressing the catalytic activity while maintaining the excellent transparency and ultraviolet shielding ability of the titanium dioxide fine particles. Although the high-density silica coating performed is effective in suppressing the catalytic activity of the titanium dioxide fine particles, there are difficulties in handling work due to the thixotropic viscosity of the cake and powdering of the dried product, and a reduction in production efficiency. In the case of porous silica coating performed with a titanium dioxide pigment, the catalyst activity is not sufficiently suppressed, the dispersibility in a solvent or the like is lowered, and the ultraviolet shielding ability is not sufficient. The formation of the coating and porous silica coating found that the desired one was obtained and the present invention was completed.

すなわち、本発明は、平均粒子径が100nm以下の二酸化チタン微粒子の表面に、高密度シリカと多孔質シリカの被覆を有することを特徴とする二酸化チタン微粒子であり、また、平均粒子径が100nm以下の二酸化チタン微粒子の水性スラリーを70℃以上でpH8以上に調整し、次いでケイ酸塩を添加し、しかる後酸で中和して、高密度シリカを形成させ、次いで、水性スラリーのpHを1〜4に保持しながら、ケイ酸塩と酸とを添加して、多孔質シリカを形成することを特徴とする二酸化チタン微粒子の製造方法である。   That is, the present invention is titanium dioxide fine particles characterized by having a coating of high-density silica and porous silica on the surface of titanium dioxide fine particles having an average particle size of 100 nm or less, and the average particle size is 100 nm or less. The titanium dioxide fine particle aqueous slurry was adjusted to pH 8 or higher at 70 ° C. or higher, then silicate was added, and then neutralized with acid to form high density silica, and then the pH of the aqueous slurry was adjusted to 1. A method for producing fine titanium dioxide particles, characterized in that porous silica is formed by adding silicate and acid while maintaining at ˜4.

本発明の二酸化チタン微粒子は、多孔質シリカ被覆の欠点であった溶媒等への分散性を改善することができ、優れた透明性と紫外線遮蔽能を有する。しかも、二酸化チタン微粒子の触媒活性を十分に抑制することができる。このため、紫外線遮蔽剤に有用であり、また、分散液、化粧料、日焼け止め化粧料、医薬品、外用品、紫外線遮蔽材、光学部材、透明部材、塗料、プラスチック組成物等の種々の用途に用いることができる。
また、本発明の二酸化チタン微粒子の製造方法は、二酸化チタン微粒子におけるシリカ被覆処理工程で惹起し易い処理スラリーやケーキのチキソトロピック粘性による取扱い作業の困難性や生産効率の低下などを実質的に回避することができるため、工業的に有利である。
The titanium dioxide fine particles of the present invention can improve dispersibility in a solvent or the like, which has been a drawback of porous silica coating, and have excellent transparency and ultraviolet shielding ability. In addition, the catalytic activity of the titanium dioxide fine particles can be sufficiently suppressed. For this reason, it is useful for ultraviolet screening agents, and for various uses such as dispersions, cosmetics, sunscreen cosmetics, pharmaceuticals, external products, ultraviolet screening materials, optical members, transparent members, paints, plastic compositions, etc. Can be used.
In addition, the titanium dioxide fine particle production method of the present invention substantially avoids the difficulty of handling due to the thixotropic viscosity of the processing slurry and cake that are likely to occur in the silica coating process of the titanium dioxide fine particles and the reduction in production efficiency. This is industrially advantageous.

本発明の二酸化チタン微粒子は、平均粒子径が100nm以下の微細な二酸化チタンであり、透明性、紫外線遮蔽能の観点からより微細なものが好ましく、1〜70nmの範囲が好ましく、5〜50nmの範囲がより好ましい。この平均粒子径は、二酸化チタン微粒子自体の窒素吸着法(BET法)による比表面積a(m/g)を用いて、下記式により求める。
式:d=6/(ρ・a)
ただし、dは平均粒子径(μm)、ρは二酸化チタンの比重である。
このため、二酸化チタン微粒子自体の比表面積が80〜160m/gの範囲がより好ましく、80〜120m/gの範囲が更に好ましい。二酸化チタン微粒子の粒子形状はどのような形状でもよいが、針状、紡錘状、棒状などと呼ばれているものが好ましい。二酸化チタン微粒子は、本発明の目的を損なわない範囲で一部に非晶質のものを含んでいてもよいが、実質的に結晶構造を有しているのが好ましい。結晶構造には制限は無いが、硫酸チタニルを加水分解したものはアナタース型を主体としており、四塩化チタンを加水分解した後、アルカリ処理・塩酸処理を行ったものはルチル型を主体としている。
The titanium dioxide fine particles of the present invention are fine titanium dioxide having an average particle diameter of 100 nm or less, and more preferable from the viewpoint of transparency and ultraviolet shielding ability, preferably in the range of 1 to 70 nm, and 5 to 50 nm. A range is more preferred. This average particle diameter is obtained by the following formula using the specific surface area a (m 2 / g) of the titanium dioxide fine particles themselves by the nitrogen adsorption method (BET method).
Formula: d = 6 / (ρ · a)
However, d is an average particle diameter (micrometer) and (rho) is specific gravity of titanium dioxide.
Therefore, more preferably in a range of specific surface area 80~160m 2 / g of titanium dioxide fine particles per se, and more preferably in the range of 80 to 120 2 / g. The particle shape of the titanium dioxide fine particles may be any shape, but what is called a needle shape, a spindle shape, a rod shape, or the like is preferable. The titanium dioxide fine particles may partially include amorphous particles within a range not impairing the object of the present invention, but preferably have a substantially crystalline structure. Although there is no restriction on the crystal structure, those obtained by hydrolyzing titanyl sulfate are mainly anatase type, and those obtained by hydrolyzing titanium tetrachloride and then subjected to alkali treatment / hydrochloric acid treatment are mainly rutile type.

二酸化チタン微粒子表面に、高密度シリカと多孔質シリカの被覆を有する。シリカ被覆処理の際のpH範囲に応じて、被覆されるシリカが多孔質となったり、非多孔質(高密度)となったりする。高密度シリカと多孔質シリカの被覆の順番はいずれでもよいが、高密度シリカであると緻密な被覆を形成し易いため、二酸化チタン微粒子の表面に高密度シリカの第一被覆層を存在させ、その上に多孔質シリカの第二被覆層を存在させるのが好ましい。シリカ被覆量は適宜設定することができるが、高密度シリカと多孔質シリカの合量で表して二酸化チタンの重量に対してSiOとして30〜100重量%であるのが好ましく、35〜80重量%がより好ましい。また、高密度シリカの第一被覆層は二酸化チタンの重量に対してSiOとして5〜50重量%が好ましく、10〜50重量%がより好ましく、15〜40重量%が更に好ましい。一方、多孔質シリカの第二被覆層は二酸化チタンの重量に対してSiOとして5〜50重量%が好ましく、10〜50重量%がより好ましく、15〜40重量%が更に好ましい。シリカ被覆量が前記範囲より少な過ぎると触媒活性の抑制等の所望の効果が得られず、また、多過ぎると経済的に有利でないばかりか紫外線遮蔽能が損なわれたりする。シリカ被覆は電子顕微鏡で観察することができ、その量は蛍光X線分析、ICP発光分析等の通常の方法で測定することができる。 The surface of the titanium dioxide fine particles has a coating of high-density silica and porous silica. Depending on the pH range during the silica coating treatment, the silica to be coated becomes porous or non-porous (high density). The order of the coating of the high-density silica and the porous silica may be any, but since it is easy to form a dense coating if the high-density silica, the first coating layer of high-density silica is present on the surface of the titanium dioxide fine particles, It is preferred to have a second coating layer of porous silica thereon. The silica coating amount can be appropriately set, and is preferably 30 to 100% by weight as SiO 2 with respect to the weight of titanium dioxide expressed by the total amount of high-density silica and porous silica. % Is more preferable. Further, the first coating layer of high-density silica is preferably 5 to 50% by weight, more preferably 10 to 50% by weight, and still more preferably 15 to 40% by weight as SiO 2 with respect to the weight of titanium dioxide. On the other hand, the second coating layer of porous silica is preferably 5 to 50% by weight, more preferably 10 to 50% by weight, and still more preferably 15 to 40% by weight as SiO 2 with respect to the weight of titanium dioxide. If the silica coating amount is less than the above range, a desired effect such as suppression of the catalyst activity cannot be obtained, and if it is too much, not only is not economically advantageous, but also the ultraviolet shielding ability is impaired. The silica coating can be observed with an electron microscope, and the amount can be measured by a usual method such as fluorescent X-ray analysis or ICP emission analysis.

本発明の二酸化チタン微粒子を化粧料や塗料等の各種の用途に用いる場合には、それらの分野で使用される種々の無機系処理剤、例えば酸化亜鉛、酸化ジルコニウム、水酸化アルミニウム等の無機物を二酸化チタン微粒子の表面に被覆してもよく、高密度シリカ、多孔質シリカの間に被覆してもよく、更には、高密度シリカ、多孔質シリカの被覆の後に更に被覆してもよい。また、高密度シリカ、多孔質シリカの被覆の後に有機系処理剤、例えばカルボン酸、ポリオール、アミン、シロキサン、シランカップリング剤等の有機物の少なくとも一種を更に被覆してもよい。これらの場合、化粧料、塗料への分散性及び塗膜の耐久性を一層向上させ得ることもある。無機系処理剤、有機系処理剤の量は適宜設定することができる。   When the titanium dioxide fine particles of the present invention are used for various applications such as cosmetics and paints, various inorganic treatment agents used in those fields, for example, inorganic substances such as zinc oxide, zirconium oxide, and aluminum hydroxide are used. The surface of the titanium dioxide fine particles may be coated, may be coated between high-density silica and porous silica, or may be further coated after coating with high-density silica and porous silica. Further, after coating with high-density silica or porous silica, an organic treatment agent such as carboxylic acid, polyol, amine, siloxane, or silane coupling agent may be further coated. In these cases, the dispersibility in cosmetics and paints and the durability of the coating film may be further improved. The amount of the inorganic treatment agent and the organic treatment agent can be appropriately set.

次に、二酸化チタン微粒子にシリカ被覆を行うには、平均粒子径が100nm以下の二酸化チタン微粒子の水性スラリーを70℃以上でpH8以上に調整し、次いでケイ酸塩を添加し、しかる後酸で中和して、高密度シリカを形成させ、次いで、水性スラリーのpHを1〜4に保持しながら、ケイ酸塩と酸とを添加して、多孔質シリカを形成する。シリカ被覆量が二酸化チタン微粒子の表面を覆うほどであれば被覆層となり、上記の方法では高密度シリカは二酸化チタン微粒子の表面から見て第一被覆層となり、多孔質シリカは第二被覆層となる。   Next, in order to perform silica coating on titanium dioxide fine particles, an aqueous slurry of titanium dioxide fine particles having an average particle diameter of 100 nm or less is adjusted to a pH of 8 or more at 70 ° C. or more, and then silicate is added. Neutralize to form high density silica, then add silicate and acid to form porous silica while maintaining aqueous slurry pH at 1-4. If the silica coating amount covers the surface of the titanium dioxide fine particles, it becomes a coating layer. In the above method, the high-density silica becomes the first coating layer as viewed from the surface of the titanium dioxide fine particles, and the porous silica becomes the second coating layer. Become.

まず、二酸化チタン微粒子の水性スラリーにアルカリ化合物例えば水酸化ナトリウム、水酸化カリウム、アンモニアなどによりpHを8以上、好ましくは8〜10に調整した後、加温して70℃以上、好ましくは70〜105℃とする。次いで、二酸化チタン微粒子の水性スラリーに対してケイ酸塩を添加する。ケイ酸塩としては、ケイ酸ナトリウム、ケイ酸カリウムなどの種々のケイ酸塩を使用することができる。高密度シリカの被覆量は、二酸化チタンの重量に対してSiOとして5〜50重量%が好ましく、10〜50重量%がより好ましく、15〜40重量%が更に好ましい。ケイ酸塩の添加は、通常15分間以上かけて行うのが好ましく、30分間以上がより好ましい。次いで、ケイ酸塩の添加終了後必要に応じて更に充分に撹拌し混合した後、スラリーの温度を好ましくは80℃以上、より好ましくは90℃以上に維持しながら、酸で中和する。ここで使用する酸としては、硫酸、塩酸、硝酸、リン酸、酢酸などが挙げられ、これらによりスラリーのpHを好ましくは7.5以下、より好ましくは7以下に調整する。 First, after adjusting pH to 8 or more, preferably 8 to 10 with an alkali compound such as sodium hydroxide, potassium hydroxide, ammonia or the like, in an aqueous slurry of titanium dioxide fine particles, it is heated to 70 ° C. or more, preferably 70 to Set to 105 ° C. Next, silicate is added to the aqueous slurry of titanium dioxide fine particles. As the silicate, various silicates such as sodium silicate and potassium silicate can be used. The coating amount of the high-density silica is preferably 5 to 50% by weight as SiO 2 with respect to the weight of titanium dioxide, more preferably 10 to 50% by weight, and still more preferably 15 to 40% by weight. The addition of silicate is usually preferably performed over 15 minutes or more, more preferably 30 minutes or more. Next, after the addition of silicate is completed, the mixture is further sufficiently stirred and mixed as necessary, and then neutralized with an acid while maintaining the temperature of the slurry preferably at 80 ° C. or higher, more preferably 90 ° C. or higher. Examples of the acid used here include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, and acetic acid. The pH of the slurry is preferably adjusted to 7.5 or less, more preferably 7 or less.

次に、前記の水性スラリーに、例えば硫酸、塩酸、硝酸、リン酸、酢酸などの酸を添加してpHを1〜4、好ましくは1.5〜3に調整する。スラリー温度は50〜70℃に調整するのが好ましい。次に、スラリーpHを前記範囲に保持しながら、ケイ酸塩と酸とを添加して多孔質シリカの被覆を形成する。ケイ酸塩としては、ケイ酸ナトリウム、ケイ酸カリウムなどの種々のケイ酸塩を使用することができる。多孔質シリカの被覆量は、二酸化チタンの重量に対してSiOとして5〜50重量%が好ましく、10〜50重量%がより好ましく、15〜40重量%が更に好ましい。ケイ酸塩の添加は、通常15分間以上かけて行うのが好ましく、30分間以上がより好ましい。ケイ酸塩の添加終了後必要に応じて、アルカリ化合物を添加し、スラリーのpHを6〜9程度に調整した後、濾過、洗浄、乾燥し、粉砕処理する。この粉砕は通常、ジェットミルやマイクロナイザーなどの気流粉砕機、ローラーミル、パルペライザーなどで行うことができる。また、前記の乾燥あるいは粉砕処理したものを必要に応じて、焼成してもよく、焼成温度は300〜900℃程度が適当である。 Next, an acid such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid or acetic acid is added to the aqueous slurry to adjust the pH to 1 to 4, preferably 1.5 to 3. The slurry temperature is preferably adjusted to 50 to 70 ° C. Next, while maintaining the slurry pH within the above range, a silicate and an acid are added to form a porous silica coating. As the silicate, various silicates such as sodium silicate and potassium silicate can be used. The coating amount of the porous silica is preferably 5 to 50% by weight as SiO 2 with respect to the weight of titanium dioxide, more preferably 10 to 50% by weight, and still more preferably 15 to 40% by weight. The addition of silicate is usually preferably performed over 15 minutes or more, more preferably 30 minutes or more. After completion of the addition of silicate, an alkali compound is added as necessary, and the pH of the slurry is adjusted to about 6 to 9, followed by filtration, washing, drying, and pulverization. This pulverization can usually be performed by an airflow pulverizer such as a jet mill or a micronizer, a roller mill, a pulverizer, or the like. The dried or pulverized product may be fired as necessary, and the firing temperature is suitably about 300 to 900 ° C.

シリカ被覆した二酸化チタン微粒子は、必要に応じて種々の無機物や有機物を更に表面処理することもできる。無機物としては例えば水酸化アルミニウム、有機物としてはステアリン酸、その塩を好適に用いることができる。具体的には、前記の多孔質シリカ処理後のスラリーを水酸化ナトリウムで中和した後70℃以上の温度に加熱し、次に、アルミニウム化合物を添加し、被覆する。次に、ステアリン酸及び/又はその塩を添加し、次に、スラリーのpHを7〜9に調整した後、濾過し洗浄し、乾燥する。水酸化アルミニウムの被覆量は適宜設定することができるが、1〜10重量%程度が好ましい。ステアリン酸の塩は、ナトリウム、カリウム、アンモニウム等の塩が好適に用いられる。ステアリン酸及び/又はその塩の添加量は適宜設定することができるが、1〜30重量%が好ましい。   The silica-coated titanium dioxide fine particles can be further surface-treated with various inorganic substances and organic substances as necessary. For example, aluminum hydroxide can be suitably used as the inorganic substance, and stearic acid or a salt thereof can be suitably used as the organic substance. Specifically, the slurry after the porous silica treatment is neutralized with sodium hydroxide and then heated to a temperature of 70 ° C. or higher, and then an aluminum compound is added and coated. Next, stearic acid and / or a salt thereof is added, and then the pH of the slurry is adjusted to 7 to 9, followed by filtration, washing and drying. The coating amount of aluminum hydroxide can be appropriately set, but is preferably about 1 to 10% by weight. As the salt of stearic acid, a salt of sodium, potassium, ammonium or the like is preferably used. The addition amount of stearic acid and / or a salt thereof can be appropriately set, but is preferably 1 to 30% by weight.

本発明の二酸化チタン微粒子は、優れた紫外線遮蔽能を有することから、紫外線遮蔽剤として用いることができる。具体的には分散液、化粧料、日焼け止め化粧料、医薬品、外用品、塗料、プラスチック組成物等に配合したり、ガラス、セラミック、プラスチック、シート、フィルム等の物品の表面に二酸化チタン微粒子を配置したりして紫外線遮蔽材として用いられる。また、本発明の二酸化チタン微粒子は、優れた透明性を有することから、光学部材、透明部材に配合して用いることができる。具体的には、塗料、プラスチック組成物等に二酸化チタン微粒子を配合したり、ガラス、セラミック、プラスチック、シート、フィルム等の物品の表面に二酸化チタン微粒子を配置したりして光学部材、透明部材として用いられる。   Since the titanium dioxide fine particles of the present invention have an excellent ultraviolet shielding ability, they can be used as an ultraviolet shielding agent. Specifically, it is blended in dispersions, cosmetics, sunscreen cosmetics, pharmaceuticals, external products, paints, plastic compositions, etc., and titanium dioxide fine particles are applied to the surface of articles such as glass, ceramics, plastics, sheets and films. Or used as an ultraviolet shielding material. Moreover, since the titanium dioxide fine particles of the present invention have excellent transparency, they can be used in combination with optical members and transparent members. Specifically, titanium dioxide fine particles are blended into paints, plastic compositions, etc., or titanium dioxide fine particles are arranged on the surface of articles such as glass, ceramics, plastics, sheets, films, etc. as optical members and transparent members Used.

本発明の二酸化チタン微粒子を含有した分散液は、水、アルコール類、油剤等の溶媒に分散させたものであり、種々の用途に用いることができる。溶媒として300〜600nmの領域で光学的に透明な油剤を用いると透明性の高い分散液が得られるため好ましい。二酸化チタン微粒子の含有量は適宜設定することができる。また、本発明の二酸化チタン微粒子を含有した化粧料、日焼け止め化粧料、医薬品、外用品は、その他に通常化粧料等に用いられる油性成分、保湿剤、界面活性剤、顔料、香料、防腐剤、水、アルコール類、増粘剤等と配合し、ローション状、クリーム状、ペースト状、スティック状、乳液状など、各種の形態で用いることができる。化粧料等の二酸化チタン微粒子の配合量は適宜設定することができる。これらは非常に透明性が高いので素肌の本来の外観を損なわずに、紫外線の影響を効果的に防ぐことができる。   The dispersion containing the titanium dioxide fine particles of the present invention is dispersed in a solvent such as water, alcohols or oils, and can be used for various applications. It is preferable to use an oily agent that is optically transparent in the region of 300 to 600 nm as the solvent because a highly transparent dispersion can be obtained. The content of the titanium dioxide fine particles can be appropriately set. In addition, cosmetics, sunscreen cosmetics, pharmaceuticals, and external products containing the titanium dioxide fine particles of the present invention are oily components, moisturizers, surfactants, pigments, fragrances, preservatives that are usually used in cosmetics, etc. It can be blended with water, alcohols, thickeners, etc. and used in various forms such as lotion, cream, paste, stick, and emulsion. The compounding quantity of titanium dioxide microparticles | fine-particles, such as cosmetics, can be set suitably. Since these are very transparent, the influence of ultraviolet rays can be effectively prevented without impairing the original appearance of the bare skin.

また、本発明の二酸化チタン微粒子を含有した塗料は、例えばポリビニルアルコール樹脂、塩ビ−酢ビ樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、ポリエステル樹脂、エチレン酢酸ビニル共重合体、アクリル−スチレン共重合体、繊維素樹脂、フェノール樹脂、アミノ樹脂などに配合され、水または溶媒中で分散される。分散にはディスパー、サンドミル等の公知の方法を用いることができ、分散剤、レベリング剤、硬化剤等の添加剤を適宜配合できる。塗料の二酸化チタン微粒子の配合量は適宜設定することができる。これらは非常に透明性が高いのでプラスチック、木材等の有機系基材の本来の外観を損なわずに、紫外線の影響を効果的に防ぐことができる。   The paint containing the titanium dioxide fine particles of the present invention is, for example, polyvinyl alcohol resin, vinyl chloride-vinyl acetate resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, polyester resin, ethylene vinyl acetate copolymer, acrylic-styrene. It is blended in a copolymer, a fiber resin, a phenol resin, an amino resin, etc., and dispersed in water or a solvent. For dispersion, a known method such as a disper or a sand mill can be used, and additives such as a dispersant, a leveling agent, and a curing agent can be appropriately blended. The compounding quantity of the titanium dioxide fine particle of a coating material can be set suitably. Since these are very transparent, the influence of ultraviolet rays can be effectively prevented without impairing the original appearance of organic base materials such as plastic and wood.

プラスチック組成物として利用する場合には、例えば塩化ビニル樹脂、ABS樹脂、ポリエチレン、ポリプロピレン、塩化ビニリデン、ポリスチレン、ポリカーボネート、ナイロン、EVA樹脂、ポリアセタール樹脂、ポリアミド樹脂、フェノール樹脂、メラミン樹脂、アクリル樹脂、ポリエステル樹脂、ユリア樹脂、シリコーン樹脂、フッ素樹脂などの合成樹脂に配合して、紫外線遮蔽等に用いることができる。プラスチック組成物の二酸化チタン微粒子の配合量は適宜設定することができる。また、例えば透明なプラスチック・フィルムに配合し、基材に貼付すれば、塗料と同様の効果が得られる。   When used as a plastic composition, for example, vinyl chloride resin, ABS resin, polyethylene, polypropylene, vinylidene chloride, polystyrene, polycarbonate, nylon, EVA resin, polyacetal resin, polyamide resin, phenol resin, melamine resin, acrylic resin, polyester It can mix | blend with synthetic resins, such as resin, a urea resin, a silicone resin, and a fluororesin, and can be used for an ultraviolet-ray shielding etc. The compounding quantity of the titanium dioxide fine particles of a plastic composition can be set suitably. Also, for example, if blended in a transparent plastic film and affixed to a substrate, the same effect as a paint can be obtained.

本発明の二酸化チタン微粒子を含有した塗料、分散剤をガラス、セラミック、プラスチック、シート、フィルム等の物品の表面に塗布して二酸化チタン微粒子を配置し、紫外線遮蔽材、光学部材、透明部材として用いることができる。また、プラスチック、圧縮ボード、紙等の基材を成形する際に、フィラーとして直接配合してもよい。更には、トナー、シリコーンゴム等の添加剤、磁気記録材料の下層材、触媒担体、導電材料の基体粒子などとして用いることができる。   The paint and dispersant containing the titanium dioxide fine particles of the present invention are applied to the surface of an article such as glass, ceramic, plastic, sheet, film, etc., and the titanium dioxide fine particles are arranged to be used as an ultraviolet shielding material, an optical member, or a transparent member. be able to. Further, when molding a substrate such as plastic, compression board, paper, etc., it may be blended directly as a filler. Further, it can be used as an additive such as toner and silicone rubber, a lower layer material of a magnetic recording material, a catalyst carrier, and a base particle of a conductive material.

以下に実施例、比較例を挙げて本発明を更に詳細に説明するが、これらは本発明を限定するものではない。   EXAMPLES The present invention will be described in more detail with reference to examples and comparative examples below, but these do not limit the present invention.

実施例1
四塩化チタンを加水分解した後、アルカリ処理・塩酸処理を行って得られた二酸化チタン微粒子(平均粒子径15nm、比表面積100m/g)を水性スラリーとし、水酸化ナトリウム水溶液を添加して、スラリーpHを8〜9とした後、75℃に昇温し該温度を保持しながら300g/Lケイ酸ナトリウム水溶液を添加し、その後30分間撹拌し混合した。次いで90℃に昇温した後硫酸水溶液を20分間添加して、pHが7となるまで中和した。
次に、水性スラリーを70℃に冷却した後、硫酸を添加してpHを2に調整した。次いで撹拌下に、水性スラリーのpHを2に保持しながら、300g/Lケイ酸ナトリウム水溶液を、硫酸と共に添加した。次いで、水酸化ナトリウム水溶液を添加して、pHが7となるまで中和し、その後30分間撹拌混合した。
次に、水性スラリーを濾過、水洗、乾燥、粉砕して高密度シリカの第一被覆層と多孔質シリカの第二被覆層とを有する本発明の二酸化チタン微粒子(試料A)を得た。
試料Aの高密度シリカの被覆量は、二酸化チタンに対して25重量%であり、多孔質シリカの被覆量は二酸化チタンに対して25重量%であった(シリカ被覆合量50重量%)。
Example 1
After hydrolyzing titanium tetrachloride, titanium dioxide fine particles (average particle diameter 15 nm, specific surface area 100 m 2 / g) obtained by alkali treatment / hydrochloric acid treatment were used as an aqueous slurry, and an aqueous sodium hydroxide solution was added. After the slurry pH was adjusted to 8-9, the temperature was raised to 75 ° C. and a 300 g / L sodium silicate aqueous solution was added while maintaining the temperature, and then the mixture was stirred for 30 minutes and mixed. Subsequently, after heating up to 90 degreeC, the sulfuric acid aqueous solution was added for 20 minutes, and it neutralized until pH became seven.
Next, after the aqueous slurry was cooled to 70 ° C., sulfuric acid was added to adjust the pH to 2. Subsequently, 300 g / L aqueous sodium silicate solution was added together with sulfuric acid while stirring, while maintaining the pH of the aqueous slurry at 2. Next, an aqueous sodium hydroxide solution was added to neutralize the pH to 7, and then the mixture was stirred and mixed for 30 minutes.
Next, the aqueous slurry was filtered, washed with water, dried and pulverized to obtain titanium dioxide fine particles of the present invention (sample A) having a first coating layer of high-density silica and a second coating layer of porous silica.
The coating amount of the high-density silica of Sample A was 25% by weight with respect to titanium dioxide, and the coating amount of porous silica was 25% by weight with respect to titanium dioxide (silica coating total amount 50% by weight).

実施例2
実施例1と同じ操作を行って、高密度シリカの被覆量が20重量%であり、多孔質シリカの被覆量が20重量%である本発明の二酸化チタン微粒子(試料B)を得た(シリカ被覆合量40重量%)。
Example 2
The same operation as in Example 1 was performed to obtain titanium dioxide fine particles (sample B) of the present invention having a high-density silica coating amount of 20% by weight and a porous silica coating amount of 20% by weight (silica). Covering amount 40% by weight).

実施例3
実施例1と同じ操作を行って、高密度シリカの被覆量が25重量%であり、多孔質シリカの被覆量が35重量%である本発明の二酸化チタン微粒子(試料C)を得た(シリカ被覆合量60重量%)。
Example 3
The same operation as in Example 1 was performed to obtain titanium dioxide fine particles (sample C) of the present invention having a high-density silica coating amount of 25% by weight and a porous silica coating amount of 35% by weight (silica). (Coating total amount 60% by weight).

比較例1
四塩化チタンを加水分解した後、アルカリ処理・塩酸処理を行って得られた二酸化チタン微粒子(平均粒子径15nm、比表面積100m/g)を水性スラリーとし、水酸化ナトリウム水溶液を添加して、スラリーpHを8〜9とした後、75℃に昇温し該温度を保持しながら300g/Lケイ酸ナトリウム水溶液を添加し、その後30分間撹拌し混合した。次いで90℃に昇温した後硫酸水溶液を60分間添加して、pHが7となるまで中和した。
次に、水性スラリーを濾過、水洗、乾燥、粉砕して高密度シリカの被覆層を有する二酸化チタン微粒子(試料D)を得た。
試料Dの高密度シリカの被覆量は、二酸化チタンに対して50重量%であり、多孔質シリカの被覆は行っていない(シリカ被覆量50重量%)。
Comparative Example 1
After hydrolyzing titanium tetrachloride, titanium dioxide fine particles (average particle diameter 15 nm, specific surface area 100 m 2 / g) obtained by alkali treatment / hydrochloric acid treatment were used as an aqueous slurry, and an aqueous sodium hydroxide solution was added. After the slurry pH was adjusted to 8-9, the temperature was raised to 75 ° C. and a 300 g / L sodium silicate aqueous solution was added while maintaining the temperature, and then the mixture was stirred for 30 minutes and mixed. Subsequently, after heating up to 90 degreeC, the sulfuric acid aqueous solution was added for 60 minutes, and it neutralized until pH became seven.
Next, the aqueous slurry was filtered, washed with water, dried and pulverized to obtain titanium dioxide fine particles (sample D) having a coating layer of high-density silica.
The coating amount of the high-density silica of Sample D is 50% by weight with respect to titanium dioxide, and the porous silica is not coated (silica coating amount 50% by weight).

比較例2
四塩化チタンを加水分解した後、アルカリ処理・塩酸処理を行って得られた二酸化チタン微粒子(平均粒子径15nm、比表面積100m/g)を水性スラリーとし、70℃に加温した後、硫酸を添加してpHを2に調整した。次いで撹拌下に、水性スラリーのpHを2に保持しながら、300g/Lケイ酸ナトリウム水溶液を、硫酸と共に添加した。次いで、水酸化ナトリウム水溶液を添加して、pHが7となるまで中和した。
次に、水性スラリーを濾過、水洗、乾燥、粉砕して多孔質シリカの被覆層を有する二酸化チタン微粒子(試料E)を得た。
試料Eの高密度シリカの被覆は行っておらず、多孔質シリカの被覆量は二酸化チタンに対して50重量%であった(シリカ被覆量50重量%)。
Comparative Example 2
After hydrolyzing titanium tetrachloride, titanium dioxide fine particles (average particle diameter 15 nm, specific surface area 100 m 2 / g) obtained by alkali treatment / hydrochloric acid treatment were used as an aqueous slurry, heated to 70 ° C., and then sulfuric acid. Was added to adjust the pH to 2. Subsequently, 300 g / L aqueous sodium silicate solution was added together with sulfuric acid while stirring, while maintaining the pH of the aqueous slurry at 2. Next, an aqueous sodium hydroxide solution was added to neutralize the pH to 7.
Next, the aqueous slurry was filtered, washed with water, dried and pulverized to obtain titanium dioxide fine particles (sample E) having a porous silica coating layer.
Sample E was not coated with high-density silica, and the coating amount of porous silica was 50% by weight with respect to titanium dioxide (silica coating amount of 50% by weight).

1.濾過ケーキのチキソトロピック粘性評価と乾燥物の性状評価
実施例、比較例において、シリカ被覆後の濾過ケーキのチキソトロピック粘性と乾燥物の性状を下記のように相対的に評価した。
<チキソトロピック性評価>
手のひらに少量のケーキをとり、手のひらを揺らす又はケーキを揉んで評価した。
「○」:揺すっても揉んでも固形の状態を保つ。
「△」:揺する程度では固形状を保つが、強く揉んでいると液状化してくる。
「×」:揺するだけで液状化する。
<乾燥物の性状評価>
乾燥物を手に取り、握って評価した。
「○」:手で持ち上げた時に塊状を保つが、握ることで潰れる。
「△」:手で持ち上げた時に塊状を保ち、強い力で握らないと潰れない。
「×」:手で持ち上げようとすると、粉化して塊状を保たない。
1. Evaluation of thixotropic viscosity of filter cake and evaluation of properties of dried product In Examples and Comparative Examples, the thixotropic viscosity of filter cake after silica coating and the properties of the dried product were relatively evaluated as follows.
<Thixotropic evaluation>
A small amount of cake was taken in the palm of the hand, and the palm was shaken or the cake was rubbed for evaluation.
“O”: Maintains a solid state even when shaken or swallowed.
“△”: The solid state is maintained as long as it is shaken.
“×”: liquefies only by shaking.
<Evaluation of properties of dried product>
The dried product was picked up and grasped for evaluation.
“○”: keeps a lump when lifted by hand, but collapses when gripped.
“△”: Keeps a lump when lifted by hand, and does not collapse unless gripped with a strong force.
“X”: When trying to lift by hand, it does not powder and keeps a lump.

この評価の結果を表1に示す。実施例の試料はいずれもチキソトロピック粘性が低く、また、乾燥物の取扱い性も良好であった。一方、高密度シリカを被覆した試料Dは、チキソトロピック粘性を示し、また、乾燥物の取扱い性も不良であった。多孔質シリカを被覆した試料Eはチキソトロピック粘性が低く、乾燥物の取扱い性もやや良好であった。   The results of this evaluation are shown in Table 1. All of the samples of Examples had low thixotropic viscosity and good handleability of the dried product. On the other hand, Sample D coated with high-density silica showed thixotropic viscosity, and the handleability of the dried product was poor. Sample E coated with porous silica had a low thixotropic viscosity, and the handleability of the dried product was slightly good.

Figure 2010006629
Figure 2010006629

2.透明性、紫外線遮蔽能の評価
実施例、比較例で得られた二酸化チタン微粒子(試料A〜E)を以下に記す方法で化粧料を想定したペーストとした。このペーストをドクターブレードを用いて透明なトリアセテート・フィルム上に膜厚が約25μmになるように塗布した後、30分間風乾した。この塗膜の波長が300nmにおける光の透過率T300及び550nmにおける光の透過率T550を、積分球を装着した分光光度計(島津製作所製、UV−VIS UV−2200A型)を用いて測定し、下式に従って吸光度の割合A300/A550を算出した。
式:A300/A550=log(100/T300)/log(100/T550
2. Evaluation of transparency and ultraviolet shielding ability Titanium dioxide fine particles (samples A to E) obtained in Examples and Comparative Examples were prepared as pastes assuming cosmetics by the method described below. This paste was applied on a transparent triacetate film with a doctor blade so that the film thickness was about 25 μm, and then air-dried for 30 minutes. The light transmittance T 300 at a wavelength of 300 nm and the light transmittance T 550 at 550 nm were measured using a spectrophotometer (manufactured by Shimadzu Corporation, UV-VIS UV-2200A type) equipped with an integrating sphere. Then, the absorbance ratio A 300 / A 550 was calculated according to the following formula.
Formula: A 300 / A 550 = log (100 / T 300 ) / log (100 / T 550 )

(ペーストの処方)
試料 1.2g
バインダー(流動パラフィン/ワセリン/ステアリン酸=40/26.7/1(重量比)) 40.0g
ガラスビーズ 50.0g
(Paste formulation)
Sample 1.2g
Binder (liquid paraffin / petroleum / stearic acid = 40 / 26.7 / 1 (weight ratio)) 40.0 g
Glass beads 50.0g

(ペーストの調製方法)
前記処方を140ccの蓋付ガラス瓶に仕込み、密閉してからペイントコンディショナー(レッドデビル社(米)製、クイックミル)を用いて分散させた。
(Paste preparation method)
The prescription was charged in a 140 cc glass bottle with a lid, sealed, and then dispersed using a paint conditioner (manufactured by Red Devil (USA), Quick Mill).

ペーストによる透過率の測定結果を表2に示す。本発明の二酸化チタン微粒子は化粧料にしても分散性がよく、しかも、A300/A550値が高い、すなわち透明感が高く紫外線遮蔽能が優れていることがわかった。 Table 2 shows the measurement results of the transmittance with the paste. It was found that the titanium dioxide fine particles of the present invention have good dispersibility even in cosmetics, and also have a high A 300 / A 550 value, that is, high transparency and excellent ultraviolet shielding ability.

Figure 2010006629
Figure 2010006629

次に、実施例、比較例の試料A〜Eについて、酸化活性、光活性を下記方法により評価した。
<酸化活性/光活性評価方法>
実施例、比較例で得られた二酸化チタン微粒子(試料A〜E)を表3に示す組成でビタミンC有り、無しのそれぞれのペーストを作製した。このペーストをドクターブレードを用いてガラス板上に膜厚が約125μmになるように塗布した後、120分間セッティングした。ガラス板の下面より各ペーストのカラーL、a、bを測定し、ビタミンC有りとビタミンC無し(ブランク)のペーストの色差ΔEを下記式により算出した(酸化活性)。一方、ブランク側のペーストを塗布したものにつき、下面にブラックライトを2時間照射した後のカラーL、a、bを測定し、ブラックライト照射前後での色差ΔEを算出した(光活性)。
式:ΔE=((ΔL)+(Δa)+(Δb)1/2
Next, the oxidation activity and photoactivity of the samples A to E of Examples and Comparative Examples were evaluated by the following methods.
<Oxidation activity / photoactivity evaluation method>
Titanium dioxide fine particles (samples A to E) obtained in Examples and Comparative Examples were prepared as pastes with and without vitamin C in the composition shown in Table 3. This paste was applied on a glass plate with a doctor blade so that the film thickness was about 125 μm, and then set for 120 minutes. The color L, a, b of each paste was measured from the lower surface of the glass plate, and the color difference ΔE of the paste with vitamin C and without vitamin C (blank) was calculated by the following formula (oxidation activity). On the other hand, the color L, a, and b after irradiation of black light on the lower surface for 2 hours was measured for the blank-side paste applied, and the color difference ΔE before and after the black light irradiation was calculated (photoactivity).
Formula: ΔE = ((ΔL) 2 + (Δa) 2 + (Δb) 2 ) 1/2

Figure 2010006629
Figure 2010006629

その結果を表4に示す。実施例の試料A〜Cでは比較例1の試料Dと同程度の活性であり、高密度シリカ被覆により、酸化活性、光活性が抑制されていることがわかった。また、多孔質シリカ被覆の比較例2の試料Eでは、酸化活性、光活性の抑制が十分でないことがわかった。   The results are shown in Table 4. The samples A to C of the example were as active as the sample D of the comparative example 1, and it was found that the oxidation activity and photoactivity were suppressed by the high-density silica coating. Moreover, it turned out that the suppression of oxidation activity and photoactivity is not enough in the sample E of the comparative example 2 of porous silica coating.

Figure 2010006629
Figure 2010006629

以上の結果から、本発明の二酸化チタン微粒子は、優れた透明性と紫外線遮蔽能を有し、また、触媒活性を十分に抑制することができ、しかも、二酸化チタン微粒子におけるシリカ被覆処理工程で惹起し易い処理スラリーやケーキのチキソトロピック粘性による取扱い作業の困難性や生産効率の低下などを実質的に回避することができることがわかった。   From the above results, the titanium dioxide fine particles of the present invention have excellent transparency and ultraviolet shielding ability, can sufficiently suppress the catalytic activity, and are caused by the silica coating treatment process in the titanium dioxide fine particles. It has been found that it is possible to substantially avoid the difficulty in handling due to the thixotropic viscosity of the processing slurry and cake that are easy to handle and the reduction in production efficiency.

本発明の二酸化チタン微粒子は、優れた透明性とUVB遮蔽能を有することから、紫外線遮蔽剤に有用であり、また、分散液、化粧料、日焼け止め化粧料、医薬品、外用品、紫外線遮蔽材、光学部材、透明部材、塗料、プラスチック組成物等の種々の用途に用いることができる。   Since the titanium dioxide fine particles of the present invention have excellent transparency and UVB shielding ability, they are useful as ultraviolet shielding agents, and are also useful as dispersions, cosmetics, sunscreen cosmetics, pharmaceuticals, external products, ultraviolet shielding materials. , Optical members, transparent members, paints, plastic compositions and the like.

Claims (5)

平均粒子径が100nm以下の二酸化チタン微粒子の表面に、高密度シリカと多孔質シリカの被覆を有することを特徴とする二酸化チタン微粒子。 A titanium dioxide fine particle characterized by having a coating of high-density silica and porous silica on the surface of a titanium dioxide fine particle having an average particle diameter of 100 nm or less. 高密度シリカと多孔質シリカの合量が二酸化チタンの重量に対してSiOとして30〜100重量%であることを特徴とする請求項1に記載の二酸化チタン微粒子。 2. The titanium dioxide fine particles according to claim 1, wherein the total amount of the high-density silica and the porous silica is 30 to 100% by weight as SiO 2 with respect to the weight of the titanium dioxide. 二酸化チタン微粒子の表面に、高密度シリカの第一被覆層と多孔質シリカの第二被覆層とを有することを特徴とする請求項1に記載の二酸化チタン微粒子。 2. The titanium dioxide fine particles according to claim 1, comprising a first coating layer of high-density silica and a second coating layer of porous silica on the surface of the titanium dioxide fine particles. 高密度シリカの第一被覆層が二酸化チタンの重量に対してSiOとして10〜50重量%であり、多孔質シリカの第二被覆層が二酸化チタンの重量に対してSiOとして10〜50重量%であることを特徴とする請求項3に記載の二酸化チタン微粒子。 The first coating layer of high-density silica is 10 to 50% by weight as SiO 2 with respect to the weight of titanium dioxide, and the second coating layer of porous silica is 10 to 50% as SiO 2 with respect to the weight of titanium dioxide. The titanium dioxide fine particles according to claim 3, wherein the fine titanium dioxide particles are%. 平均粒子径が100nm以下の二酸化チタン微粒子の水性スラリーを70℃以上でpH8以上に調整し、次いでケイ酸塩を添加し、しかる後酸で中和して、高密度シリカを形成させ、次いで、水性スラリーのpHを1〜4に保持しながら、ケイ酸塩と酸とを添加して、多孔質シリカを形成することを特徴とする二酸化チタン微粒子の製造方法。 An aqueous slurry of titanium dioxide fine particles having an average particle size of 100 nm or less is adjusted to a pH of 8 or higher at 70 ° C. or higher, then silicate is added, and then neutralized with an acid to form high-density silica; A method for producing fine titanium dioxide particles, wherein porous silica is formed by adding silicate and acid while maintaining the pH of the aqueous slurry at 1 to 4.
JP2008166427A 2008-06-25 2008-06-25 Titanium dioxide fine particle and method for producing the same Pending JP2010006629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008166427A JP2010006629A (en) 2008-06-25 2008-06-25 Titanium dioxide fine particle and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008166427A JP2010006629A (en) 2008-06-25 2008-06-25 Titanium dioxide fine particle and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010006629A true JP2010006629A (en) 2010-01-14

Family

ID=41587551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008166427A Pending JP2010006629A (en) 2008-06-25 2008-06-25 Titanium dioxide fine particle and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010006629A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515662A (en) * 2009-12-23 2013-05-09 クローダ インターナショナル パブリック リミティド カンパニー Particulate titanium dioxide
JP2015007254A (en) * 2014-09-11 2015-01-15 旭硝子株式会社 Method for producing coating composition and coated article
JP2016504213A (en) * 2012-11-13 2016-02-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Laminates made from decorative paper containing self-dispersing pigments
JP2016505654A (en) * 2012-11-13 2016-02-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Self-dispersing pigment
JP2016505406A (en) * 2012-11-13 2016-02-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Laminates prepared from decorative paper containing self-dispersing pigments
JP2016507593A (en) * 2012-11-13 2016-03-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Silica-containing self-dispersing pigment
US10155220B2 (en) 2016-12-12 2018-12-18 Fuji Xerox Co., Ltd. Titanium oxide particle, composition for forming photocatalyst, and photocatalyst
US10183275B2 (en) 2017-03-29 2019-01-22 Fuji Xerox Co., Ltd. Titanium oxide particle, method for producing titanium oxide particle, and composition for forming photocatalyst
JP2019014632A (en) * 2017-07-10 2019-01-31 東ソー株式会社 Titanium oxide-coated mesoporous silica
US10471417B2 (en) 2016-03-04 2019-11-12 Fuji Xerox Co., Ltd. Titanium oxide particle and method for producing the same
US10500579B2 (en) 2017-04-26 2019-12-10 Fuji Xerox Co., Ltd. Metatitanic acid particle, composition for forming photocatalyst, and photocatalyst
US10512895B2 (en) 2017-04-26 2019-12-24 Fuji Xerox Co., Ltd. Titanium oxide particle, composition for forming photocatalyst, and photocatalyst
US10538434B2 (en) 2017-09-08 2020-01-21 Fuji Xerox Co., Ltd. Titanium oxide aerogel particle, photocatalyst forming composition, and photocatalyst
US10563018B2 (en) 2017-09-08 2020-02-18 Fuji Xerox Co., Ltd. Titanium oxide aerogel particle, photocatalyst-forming composition, and photocatalyst
US10668456B2 (en) 2016-12-12 2020-06-02 Fuji Xerox Co., Ltd. Titanium oxide particle, composition for forming photocatalyst, and photocatalyst
US10668457B2 (en) 2016-12-12 2020-06-02 Fuji Xerox Co., Ltd. Metatitanic acid particle, composition for forming photocatalyst, and photocatalyst
US10792641B2 (en) 2018-02-22 2020-10-06 Fuji Xerox Co., Ltd. Structure
US10870105B2 (en) 2017-03-29 2020-12-22 Fuji Xerox Co., Ltd. Metatitanic acid particles, method for producing metatitanic acid particles, and composition for forming photocatalyst
JP2020537710A (en) * 2017-10-17 2020-12-24 ウェーナートール ピーアンドエー フィンランド オーイー Methods for Producing Coated Titanium Dioxide Particles, Coated Titanium Dioxide Particles, and Products Containing These
CN115970669A (en) * 2022-12-30 2023-04-18 广东工业大学 Modified titanium dioxide particles and preparation method and application thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9682869B2 (en) 2009-12-23 2017-06-20 Croda International Plc Particulate titanium dioxide
JP2013515662A (en) * 2009-12-23 2013-05-09 クローダ インターナショナル パブリック リミティド カンパニー Particulate titanium dioxide
US10316209B2 (en) 2012-11-13 2019-06-11 The Chemours Company Fc, Llc Self-dispersing pigments
JP2016505406A (en) * 2012-11-13 2016-02-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Laminates prepared from decorative paper containing self-dispersing pigments
JP2016507593A (en) * 2012-11-13 2016-03-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Silica-containing self-dispersing pigment
JP2016504213A (en) * 2012-11-13 2016-02-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Laminates made from decorative paper containing self-dispersing pigments
JP2016505654A (en) * 2012-11-13 2016-02-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Self-dispersing pigment
JP2015007254A (en) * 2014-09-11 2015-01-15 旭硝子株式会社 Method for producing coating composition and coated article
US10471417B2 (en) 2016-03-04 2019-11-12 Fuji Xerox Co., Ltd. Titanium oxide particle and method for producing the same
US10668456B2 (en) 2016-12-12 2020-06-02 Fuji Xerox Co., Ltd. Titanium oxide particle, composition for forming photocatalyst, and photocatalyst
US10155220B2 (en) 2016-12-12 2018-12-18 Fuji Xerox Co., Ltd. Titanium oxide particle, composition for forming photocatalyst, and photocatalyst
US10668457B2 (en) 2016-12-12 2020-06-02 Fuji Xerox Co., Ltd. Metatitanic acid particle, composition for forming photocatalyst, and photocatalyst
US10183275B2 (en) 2017-03-29 2019-01-22 Fuji Xerox Co., Ltd. Titanium oxide particle, method for producing titanium oxide particle, and composition for forming photocatalyst
US10870105B2 (en) 2017-03-29 2020-12-22 Fuji Xerox Co., Ltd. Metatitanic acid particles, method for producing metatitanic acid particles, and composition for forming photocatalyst
US10512895B2 (en) 2017-04-26 2019-12-24 Fuji Xerox Co., Ltd. Titanium oxide particle, composition for forming photocatalyst, and photocatalyst
US10500579B2 (en) 2017-04-26 2019-12-10 Fuji Xerox Co., Ltd. Metatitanic acid particle, composition for forming photocatalyst, and photocatalyst
JP2019014632A (en) * 2017-07-10 2019-01-31 東ソー株式会社 Titanium oxide-coated mesoporous silica
US10563018B2 (en) 2017-09-08 2020-02-18 Fuji Xerox Co., Ltd. Titanium oxide aerogel particle, photocatalyst-forming composition, and photocatalyst
US10538434B2 (en) 2017-09-08 2020-01-21 Fuji Xerox Co., Ltd. Titanium oxide aerogel particle, photocatalyst forming composition, and photocatalyst
JP2020537710A (en) * 2017-10-17 2020-12-24 ウェーナートール ピーアンドエー フィンランド オーイー Methods for Producing Coated Titanium Dioxide Particles, Coated Titanium Dioxide Particles, and Products Containing These
US10792641B2 (en) 2018-02-22 2020-10-06 Fuji Xerox Co., Ltd. Structure
CN115970669A (en) * 2022-12-30 2023-04-18 广东工业大学 Modified titanium dioxide particles and preparation method and application thereof
CN115970669B (en) * 2022-12-30 2023-08-15 广东工业大学 Modified titanium dioxide particles and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2010006629A (en) Titanium dioxide fine particle and method for producing the same
US5846310A (en) Coated spherical SiO2 particles
JP5209861B2 (en) Titanium dioxide white pigment and method for producing the same
US7276231B2 (en) Lower-energy process for preparing passivated inorganic nanoparticles
TW200404045A (en) Titanium dioxide pigment and method for producing the same, and resin composition using the same
JP4090405B2 (en) Method for producing titanium dioxide pigment
JP7140974B2 (en) Composite pigment, method for producing the same, coating composition and coating film containing the same
JP5849944B2 (en) Composite particles and method for producing the same
EP0803550B1 (en) Coated SiO2 particles
JP6031175B2 (en) Titanium dioxide pigment, method for producing the same, and printing ink composition
JP4668705B2 (en) Method for producing titanium dioxide pigment
JP4382607B2 (en) Titanium oxide particles
JP4256133B2 (en) Method for producing acicular titanium dioxide fine particles
JPH02194065A (en) Minute titanium dioxide composition
JP2008094917A (en) Surface-coated zinc oxide and its manufacturing method, and ultraviolet ray-shielding composition comprising the same
JP2007277057A (en) Crystalline titanium oxide film coated powder and method of manufacturing the same
JP4201880B2 (en) Butterfly-like rutile titanium oxide, method for producing the same, and use thereof
JP2003292818A (en) Aqueous slurry of silica-coated zinc oxide fine particle and polymer composition
JP4562492B2 (en) Rod-like titanium dioxide, near-infrared shielding agent containing the same, and resin composition containing the near-infrared shielding agent
JP3732265B2 (en) Spindle-shaped fine particle titanium dioxide and method for producing the same
JP4195254B2 (en) Rutile type titanium dioxide fine particles and method for producing the same
JP4256134B2 (en) Method for producing iron-containing acicular titanium dioxide fine particles
JP2010168254A (en) Ultraviolet screening agent, cosmetic, and micro-acicular zinc oxide
JP3877235B2 (en) Rutile-type titanium dioxide particles and production method thereof
JP2009292717A (en) Method for producing titanium oxide particle