JP5173245B2 - Method for producing surface-coated zinc oxide - Google Patents

Method for producing surface-coated zinc oxide Download PDF

Info

Publication number
JP5173245B2
JP5173245B2 JP2007116566A JP2007116566A JP5173245B2 JP 5173245 B2 JP5173245 B2 JP 5173245B2 JP 2007116566 A JP2007116566 A JP 2007116566A JP 2007116566 A JP2007116566 A JP 2007116566A JP 5173245 B2 JP5173245 B2 JP 5173245B2
Authority
JP
Japan
Prior art keywords
zinc oxide
compound
zinc
coated
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007116566A
Other languages
Japanese (ja)
Other versions
JP2008273760A (en
Inventor
英雄 高橋
正紀 飯田
由美 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2007116566A priority Critical patent/JP5173245B2/en
Publication of JP2008273760A publication Critical patent/JP2008273760A/en
Application granted granted Critical
Publication of JP5173245B2 publication Critical patent/JP5173245B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、粒子表面を被覆した酸化亜鉛の製造方法に関する。   The present invention relates to a method for producing zinc oxide having a particle surface coated.

酸化亜鉛は、白色顔料、紫外線遮蔽材、吸着剤、光触媒、触媒等種々の用途に用いられており、化粧料、塗料、プラスチックス、紙等に配合する紫外線遮蔽材として活発に利用されている。
紫外線は、その波長が長い順に、A、B、Cの3領域に大別される。波長が200〜290nmのC領域の紫外線は、オゾン層に遮蔽されるので、一般に、日焼けや炎症等の皮膚障害を引き起こすのは、波長が320〜380nmのA領域と、290〜320nmのB領域であると言われている。B領域の紫外線所謂UVBは、皮膚への影響が最も大きいと言われ、従来、日焼け止め化粧料ではUVBから皮膚を保護することが重視されてきた。一方、A領域の紫外線所謂UVAは、UVBと比較して皮膚への影響は穏やかであるが、太陽光中に多量に含まれ、また、透過性が高いので皮膚の深部で障害を引き起こし易く、近年、UVA遮蔽能にも着目されている。
UVA遮蔽能を有する材料として種々の無機酸化物が用いられているが、その中でも酸化亜鉛はUVAからの皮膚の保護が優れ、しかも、可視光の透過性が高く透明性が優れており、日焼け止め化粧料に用いる紫外線遮蔽材として広く使用されるようになっている。そのような酸化亜鉛の製造方法としては、例えば、(1)金属亜鉛を加熱溶融し蒸発させた後、酸化する方法(所謂フランス法)、(2)亜鉛含有鉱石に還元剤を加えて焼成する方法(所謂アメリカ法)、(3)亜鉛塩を溶液中で中和後、中和生成物を固液分離して焼成する方法、(4)前記中和生成後、媒液中で加水分解させる方法、(5)酸化亜鉛と炭酸ガスとを溶液中で反応させ、得られた塩基性炭酸塩を固液分離して焼成する方法等が知られている。((1)〜(4)は非特許文献1、(4)は特許文献1、(5)は特許文献2に開示。)
ところが、酸化亜鉛は無機酸化物としては水への溶解度が比較的高く、化粧料で用いられる水性溶媒中に酸化亜鉛が溶出し易いという欠点がある。また、酸化亜鉛は、光触媒活性が高いため、化粧料に含まれる油剤、界面活性剤などの有機成分を分解したり変質させるという問題も有している。このため、酸化亜鉛の粒子表面に、シリカ、チタニア、アルミナ、ジルコニア等の少なくとも二つの異なった水和金属酸化物の別々になった被覆を付着することで、好ましくは緻密な無定形シリカの被覆上にアルミナを被覆することで、酸化亜鉛を不活性化する技術(特許文献3)が知られている。また、酸化亜鉛の表面にAl、Si、Zr、Snの酸化物または水酸化物を被覆したり(特許文献4)、高密度のシリカを被覆すること(特許文献5)で、水溶出性を抑制したり、光触媒活性を抑制したりする技術が知られている。
Zinc oxide is used in various applications such as white pigments, UV shielding materials, adsorbents, photocatalysts, catalysts, and is actively used as UV shielding materials for cosmetics, paints, plastics, papers, etc. .
Ultraviolet rays are roughly divided into three regions A, B, and C in order of increasing wavelength. Since the ultraviolet rays in the C region having a wavelength of 200 to 290 nm are shielded by the ozone layer, in general, skin damage such as sunburn and inflammation is caused by the A region having a wavelength of 320 to 380 nm and the B region having a wavelength of 290 to 320 nm. It is said that. It is said that ultraviolet rays in the B region, so-called UVB, have the greatest effect on the skin, and conventionally, sunscreen cosmetics have been focused on protecting the skin from UVB. On the other hand, ultraviolet rays in the A region, so-called UVA, have a gentle effect on the skin compared to UVB, but are contained in a large amount in sunlight, and because they are highly permeable, they easily cause damage in the deep part of the skin. In recent years, attention has also been paid to UVA shielding ability.
Various inorganic oxides are used as materials having UVA shielding ability. Among them, zinc oxide is excellent in protecting the skin from UVA, has high visible light transparency and transparency, and is tanned. Widely used as an ultraviolet shielding material used in cosmetics. As a method for producing such zinc oxide, for example, (1) a method in which metal zinc is heated and melted and evaporated and then oxidized (so-called French method), and (2) a reducing agent is added to the zinc-containing ore and fired. A method (so-called American method), (3) a method in which a zinc salt is neutralized in a solution, and a neutralized product is solid-liquid separated and calcined. (4) After the neutralization is produced, hydrolysis is performed in a medium. There are known a method, (5) a method in which zinc oxide and carbon dioxide gas are reacted in a solution, and the obtained basic carbonate is solid-liquid separated and fired. ((1) to (4) are disclosed in Non-Patent Document 1, (4) is disclosed in Patent Document 1, and (5) is disclosed in Patent Document 2.)
However, zinc oxide has a relatively high solubility in water as an inorganic oxide, and has a disadvantage that zinc oxide is easily eluted in an aqueous solvent used in cosmetics. In addition, since zinc oxide has a high photocatalytic activity, it also has a problem of decomposing and altering organic components such as oils and surfactants contained in cosmetics. For this reason, a dense amorphous silica coating is preferably applied by adhering a separate coating of at least two different hydrated metal oxides such as silica, titania, alumina, zirconia, etc. to the zinc oxide particle surface. A technique (Patent Document 3) is known in which zinc oxide is inactivated by coating with alumina. In addition, the surface of zinc oxide is coated with an oxide or hydroxide of Al, Si, Zr, Sn (Patent Document 4), or coated with high-density silica (Patent Document 5), thereby improving water elution. Techniques for suppressing or suppressing the photocatalytic activity are known.

「14096の化学商品」、化学工業日報社刊、2006年1月24日、P48−P49"Chemical products of 14096", published by Chemical Industry Daily, January 24, 2006, P48-P49 特開平4−164815号公報JP-A-4-164815 特開2001−342021号公報JP 2001-342021 A 特開平8−104823号公報JP-A-8-104823 特許第2851885号公報Japanese Patent No. 2851885 特開平11−302015号公報Japanese Patent Laid-Open No. 11-302015

前記の特許文献3〜5に記載の技術を用いて酸化亜鉛の粒子表面にシリカなどを被覆すると、酸化亜鉛の光触媒活性の低減や水溶出性の抑制効果が認められるものの、充分ではなく更なる改善が求められている。しかしながら、前記の非特許文献1や特許文献2に記載のように、気相酸化や焼成して製造した酸化亜鉛は粒子同士の焼結を生じ、また、乾燥粉末では粒子同士の固結を生じる。そのため、シリカなどを表面被覆する際に、前記の酸化亜鉛では水系媒液に分散し難く、また、分散してもシリカなどの添加により凝集し易いことから、酸化亜鉛の粒子表面に均一な被覆が形成され難く、水溶出性の抑制等の更なる改善が得られない。   When the surface of zinc oxide particles is coated with silica or the like using the techniques described in Patent Documents 3 to 5, although the photocatalytic activity of zinc oxide is reduced and the water elution property is suppressed, it is not sufficient but further. There is a need for improvement. However, as described in Non-Patent Document 1 and Patent Document 2 described above, zinc oxide produced by vapor phase oxidation or baking causes sintering of particles, and dry powder causes consolidation of particles. . For this reason, when coating the surface of silica or the like, the zinc oxide is difficult to disperse in an aqueous medium, and even when dispersed, it is easy to agglomerate due to the addition of silica or the like. Is difficult to form, and further improvement such as suppression of water elution cannot be obtained.

本発明者らは、これらの問題点を解決すべく鋭意研究を重ねた結果、球状酸化亜鉛粒子を水性媒液中で生成させた後、得られた球状酸化亜鉛粒子を、気相中で乾燥、焼成等の加熱操作を行うことなく、水性媒液中で無機化合物の被覆を行うと、水溶出性がより一層改善できることを見出し、本発明を完成した。 As a result of intensive studies to solve these problems, the present inventors have produced spherical zinc oxide particles in an aqueous medium and then dried the obtained spherical zinc oxide particles in a gas phase. The present inventors have found that water elution can be further improved by coating with an inorganic compound in an aqueous medium without performing a heating operation such as firing.

即ち、本発明は、鉄化合物及び/又はコバルト化合物を含まず、かつ、60℃以上100℃以下の水性媒液中で亜鉛化合物を中和剤と反応させ、球状酸化亜鉛粒子を得る工程、、得られた球状酸化亜鉛粒子を気相中で加熱操作をすることなく、水性媒液中でその粒子表面に無機化合物の被覆を行う工程を含む表面被覆した球状酸化亜鉛の製造方法である。また、球状酸化亜鉛粒子を得る工程において、反応温度や中和剤の添加時間等を設定することにより、凝集し難い微粒子酸化亜鉛を製造する方法を含む。

That is, the present invention includes a step of obtaining spherical zinc oxide particles by reacting a zinc compound with a neutralizing agent in an aqueous medium at 60 ° C. or more and 100 ° C. or less without containing an iron compound and / or a cobalt compound , This is a method for producing a surface-coated spherical zinc oxide particle comprising a step of coating an inorganic compound on the surface of the obtained spherical zinc oxide particle in an aqueous medium without heating the resulting spherical zinc oxide particle. In addition, the step of obtaining spherical zinc oxide particles includes a method of producing finely divided zinc oxide that hardly aggregates by setting the reaction temperature, the addition time of the neutralizing agent, and the like.

本発明で得られる酸化亜鉛は、光触媒活性が抑制され、特に亜鉛の水溶出量を低く抑えることができる。このため、化粧料、塗料、プラスチックス、紙等に配合する紫外線遮蔽材として有用であり、水性溶媒への亜鉛溶出量が低いために油剤等の非水溶媒の配合量を低くできるなど組成を自由に設定できる。   In the zinc oxide obtained in the present invention, the photocatalytic activity is suppressed, and in particular, the water elution amount of zinc can be suppressed low. For this reason, it is useful as an ultraviolet shielding material to be blended in cosmetics, paints, plastics, paper, etc., and since the amount of zinc elution into an aqueous solvent is low, the amount of blending of non-aqueous solvents such as oils can be reduced. Can be set freely.

本発明は、表面被覆した酸化亜鉛の製造方法であって、水性媒液中で亜鉛化合物を中和剤と反応させて酸化亜鉛粒子を得、得られた酸化亜鉛粒子を気相中で乾燥、焼成等の加熱操作をすることなく、水性媒液中でその粒子表面に無機化合物の被覆を行う。本発明では気相中で加熱操作をしないので、酸化亜鉛粒子が焼結することなく分散された状態で無機化合物が被覆されるので、均一な被覆層が形成され易くなり、優れた水溶出性の改善効果が得られる。   The present invention is a method for producing a surface-coated zinc oxide, wherein a zinc compound is reacted with a neutralizing agent in an aqueous medium to obtain zinc oxide particles, and the obtained zinc oxide particles are dried in a gas phase. The surface of the particles is coated with an inorganic compound in an aqueous medium without performing a heating operation such as firing. In the present invention, since the heating operation is not performed in the gas phase, since the inorganic compound is coated in a dispersed state without sintering the zinc oxide particles, a uniform coating layer is easily formed, and excellent water elution properties The improvement effect is obtained.

亜鉛化合物と中和剤との反応は、(1)亜鉛化合物水溶液中に中和剤を添加する、(2)水性媒液中に亜鉛化合物水溶液と中和剤とを同時並行的に添加する、(3)中和剤を含む水性媒液中に亜鉛化合物水溶液を添加する等が挙げられ、本発明では粒子径や粒子形状の制御が容易な(1)の方法が好ましい。亜鉛化合物には、硫酸亜鉛、塩化亜鉛、硝酸亜鉛等の酸性亜鉛化合物、炭酸亜鉛等の塩基性亜鉛化合物等、公知のものが挙げられ、特に制限は無い。これらと反応させる中和剤は、亜鉛化合物の性状に応じて適宜選択する。例えば、酸性亜鉛化合物であれば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属またはアルカリ土類金属の水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属またはアルカリ土類金属の炭酸塩、アンモニア、炭酸アンモニウム、硝酸アンモニウム等のアンモニウム化合物等の塩基性化合物を用いることできる。また、塩基性亜鉛化合物なら、硫酸、塩酸等の無機酸や、酢酸、ギ酸等の有機酸等を用いることができる。   The reaction between the zinc compound and the neutralizing agent includes (1) adding a neutralizing agent to the aqueous zinc compound solution, and (2) adding the aqueous zinc compound solution and the neutralizing agent to the aqueous medium in parallel. (3) A zinc compound aqueous solution is added to an aqueous medium containing a neutralizing agent. In the present invention, the method (1) in which the particle diameter and particle shape are easily controlled is preferred. Zinc compounds include known compounds such as acidic zinc compounds such as zinc sulfate, zinc chloride and zinc nitrate, and basic zinc compounds such as zinc carbonate, and are not particularly limited. The neutralizing agent to be reacted with these is appropriately selected according to the properties of the zinc compound. For example, in the case of an acidic zinc compound, alkali metal or alkaline earth metal hydroxide such as sodium hydroxide, potassium hydroxide or calcium hydroxide, alkali metal or alkaline earth metal carbonate such as sodium carbonate or potassium carbonate, etc. Basic compounds such as salts, ammonium compounds such as ammonia, ammonium carbonate, and ammonium nitrate can be used. In addition, for basic zinc compounds, inorganic acids such as sulfuric acid and hydrochloric acid, organic acids such as acetic acid and formic acid, and the like can be used.

生成する酸化亜鉛粒子の平均粒子径(電子顕微鏡法による50%累積径)を0.001〜0.1μmの範囲にすると、紫外線遮蔽能と透明性が優れているので好ましく、0.005〜0.05μmの範囲のものが更に好ましい。酸化亜鉛粒子の形状にも特に制限はなく、真球状、略球状等の球状粒子、針状、紡錘状、板状、薄片状等の異方性形状粒子等の定形粒子や、粒塊状粒子等の不定形粒子等を用いることができるが、特に球状が好ましい。反応温度は60℃以上とすると、球状粒子が生成し易く、また、中和生成物の加水分解が進み易いので好ましい。反応温度には特に上限は無いが、100℃以下とすると耐圧容器等の特別な機器を要しないので、工業的に好ましい。また、前記(1)の方法の場合、中和剤の添加時間を10〜40分の範囲とすると、前記範囲の平均粒子径を有する球状の酸化亜鉛粒子が得られ易いので好ましい。前記範囲より添加時間が短いと、異方性形状の粒子が生成し易くなり、長いと粒子が成長してしまう。より好ましい範囲は、10〜30分である。中和剤の使用量は、亜鉛化合物と中和当量であれば良く、好ましくは中和剤を若干過剰量とする。   When the average particle diameter of the zinc oxide particles to be generated (50% cumulative diameter by electron microscopy) is in the range of 0.001 to 0.1 μm, the ultraviolet shielding ability and transparency are excellent, and preferably 0.005 to 0 The range of 0.05 μm is more preferable. There is no particular limitation on the shape of the zinc oxide particles, spherical particles such as true spheres and substantially spheres, regular particles such as needle-shaped, spindle-shaped, plate-shaped, and flake-shaped anisotropic shaped particles, agglomerated particles, etc. The irregularly shaped particles can be used, but the spherical shape is particularly preferable. A reaction temperature of 60 ° C. or higher is preferable because spherical particles are easily generated and the neutralized product is easily hydrolyzed. There is no particular upper limit to the reaction temperature, but if it is 100 ° C. or lower, no special equipment such as a pressure vessel is required, which is industrially preferable. In the case of the method (1), it is preferable to set the addition time of the neutralizing agent in the range of 10 to 40 minutes because spherical zinc oxide particles having an average particle diameter in the above range can be easily obtained. If the addition time is shorter than the above range, anisotropically shaped particles are likely to be formed, and if longer, the particles grow. A more preferable range is 10 to 30 minutes. The amount of the neutralizing agent used may be a neutralizing equivalent to the zinc compound, and preferably the neutralizing agent is slightly excessive.

得られた酸化亜鉛粒子は、気相中で加熱操作をすることなく、無機化合物の被覆工程に供し、酸化亜鉛粒子を製造した温度やpHを維持しながら、あるいは、温度やpHを適宜調整して被覆工程を行うことができる。また、酸化亜鉛粒子の製造工程で生成した可溶性塩類を除去してから、無機化合物の被覆工程に供するのが好ましい。その方法としては、(1)酸化亜鉛粒子が生成した水性スラリーを、濾過・洗浄して可溶性塩類を除去し、固液分離した酸化亜鉛粒子を水性媒液に再分散させて水性スラリーとする、(2)イオン交換膜透析、電気透析等により、固液分離することなく液相中で前記水性スラリーから可溶性塩類を除去する、等が挙げられ、工業的には大量生産に適した(1)の方法が好ましい。濾過・洗浄には、フィルタープレス、ロールプレス等の濾過器を用いることができる。また、酸化亜鉛粒子の凝集程度に応じて、縦型サンドミル、横型サンドミル、ボールミル等の湿式粉砕機を用いて、適宜分散させても良い。また、水性スラリー中の酸化亜鉛粒子の濃度は特に制限はなく、製造設備、製造能力等に応じて適宜設定するが、工業的には5〜200g/リットルの範囲が好ましく、20〜100g/リットルの範囲が更に好ましい。   The obtained zinc oxide particles are subjected to a coating step of an inorganic compound without performing a heating operation in the gas phase, and the temperature and pH are adjusted appropriately while maintaining the temperature and pH at which the zinc oxide particles are produced. The coating process can be performed. Moreover, after removing the soluble salts produced | generated at the manufacturing process of a zinc oxide particle, it is preferable to use for the coating process of an inorganic compound. As the method, (1) the aqueous slurry in which the zinc oxide particles are produced is filtered and washed to remove soluble salts, and the solid oxide separated zinc oxide particles are redispersed in an aqueous medium to obtain an aqueous slurry. (2) It is possible to remove soluble salts from the aqueous slurry in the liquid phase without performing solid-liquid separation by ion exchange membrane dialysis, electrodialysis, etc., and industrially suitable for mass production (1) This method is preferred. For filtration and washing, a filter such as a filter press or a roll press can be used. Further, depending on the agglomeration degree of the zinc oxide particles, it may be appropriately dispersed using a wet pulverizer such as a vertical sand mill, a horizontal sand mill, or a ball mill. Further, the concentration of the zinc oxide particles in the aqueous slurry is not particularly limited, and is appropriately set according to production equipment, production capacity, etc., but is preferably in the range of 5 to 200 g / liter, and 20 to 100 g / liter industrially. The range of is more preferable.

粒子表面に被覆する無機化合物としては、金属の酸化物、リン酸塩等が挙げられ、無機化合物は2種以上を積層しても、混合物として被覆しても良く、2種以上用いる場合の被覆順序にも制限は無い。また、被覆層の性状は多孔質であっても、緻密であっても良い。無機化合物としては、シリカ、チタニア、アルミナ、ジルコニア等から選ばれる少なくとも1種の金属酸化物であれば、亜鉛の水溶出抑制効果が大きいので好ましく、中でもシリカの効果が高く好ましい。本発明での金属酸化物は、金属の無水酸化物、含水酸化物、水和酸化物、水酸化物を包含する化合物である。無機化合物の被覆量は、被覆種や目的に応じて適宜設定することができ、酸化亜鉛に対して0.1〜50重量%程度が好ましい。   Examples of the inorganic compound to be coated on the particle surface include metal oxides and phosphates. The inorganic compound may be a laminate of two or more, or may be coated as a mixture, or a coating when two or more are used. There is no limit to the order. The properties of the coating layer may be porous or dense. As the inorganic compound, at least one metal oxide selected from silica, titania, alumina, zirconia, and the like is preferable because the effect of suppressing the elution of zinc from water is large, and the effect of silica is particularly preferable. The metal oxide in the present invention is a compound including an anhydrous metal oxide, a hydrous oxide, a hydrated oxide, and a hydroxide. The coating amount of the inorganic compound can be appropriately set according to the coating type and purpose, and is preferably about 0.1 to 50% by weight with respect to zinc oxide.

工業的に最も好ましい様態として、シリカを多量に被覆すると、生産性が阻害されるので、(A)チタニアを含む被覆層を形成し、その上にシリカを、好ましくは多孔質シリカを含む被覆層を形成するか、または、(B)チタニアとシリカを含む共沈物の被覆層を形成すると、このような問題が解消される。前記のようにシリカとチタニアを併用した場合、シリカの被覆量は酸化亜鉛に対しSiO換算で、10〜50重量%の範囲が好ましく、チタニアは、酸化亜鉛に対しTiO換算で0.5〜20重量%の範囲が好ましい。シリカの被覆量が前記範囲より少ないと、所望の亜鉛の水溶出性や酸化亜鉛やチタニアの光触媒活性を抑制する効果が得られ難く、前記範囲より多いと、チタニア被覆を併用しても生産性の改良効果が得られ難くなるため好ましくない。また、チタニアの被覆量が前記範囲より少ないとシリカ使用による生産性の低下を改善することができ難く、多くしても更なる改良は得られ難く、却って、チタニアによる光触媒活性が高まる場合もあるため好ましくない。より好ましいシリカ被覆量は、20〜50重量%の範囲であり、25〜40重量%の範囲とするのが更に好ましい。チタニア被覆量のより好ましい範囲は1〜10重量%である。 As an industrially most preferable aspect, since productivity is inhibited when a large amount of silica is coated, (A) a coating layer containing titania is formed, and silica is coated thereon, preferably a coating layer containing porous silica. Or (B) a coprecipitate coating layer containing titania and silica is eliminated. As described above, when silica and titania are used in combination, the coating amount of silica is preferably in the range of 10 to 50% by weight in terms of SiO 2 with respect to zinc oxide, and titania is 0.5 in terms of TiO 2 with respect to zinc oxide. A range of ˜20% by weight is preferred. If the silica coating amount is less than the above range, it is difficult to obtain the desired zinc water-elution property and the effect of suppressing the photocatalytic activity of zinc oxide and titania. This is not preferable because it is difficult to obtain the improvement effect. In addition, if the amount of titania coating is less than the above range, it is difficult to improve the decrease in productivity due to the use of silica, and even if it is increased, further improvement is difficult to obtain. On the other hand, the photocatalytic activity by titania may increase. Therefore, it is not preferable. A more preferable silica coating amount is in the range of 20 to 50% by weight, and more preferably in the range of 25 to 40% by weight. A more preferable range of the titania coating amount is 1 to 10% by weight.

無機化合物の被覆は公知の方法で行って良く、金属酸化物を被覆するのであれば、酸化亜鉛粒子を含む水性スラリー中に、金属酸化物を構成する金属元素を含む化合物と中和剤とを別々に添加したり、同時に並行的に添加することで被覆層を形成できる。前記の金属元素を含む化合物が酸性であれば、亜鉛が溶出しないように、水性スラリーのpHを中性近辺に維持しながら、後者の同時並行的添加を行うのが好ましい。より具体的な操作方法は、個々の無機化合物種によって異なるが、例えば、前記(A)の被覆層の形成には、特願2006−276517号に記載の方法が好ましい。即ち、酸化亜鉛粒子の水性スラリー中で、チタン化合物をpHが8.0〜10.0の範囲で中和した後、ケイ素化合物を添加しpHが8.0〜10.0の範囲で中和する方法である。また、前記(B)の被覆層の形成には、特願2006−276518号に記載の方法が好ましい。即ち、水性スラリー中で、チタン化合物とケイ素化合物をpHが8.0〜10.0の範囲で添加する方法である。これらの方法で用いるチタン化合物には、塩化チタン、硫酸チタン等の水溶性化合物が好適に用いられ、ケイ素化合物には、ケイ酸ナトリウム、ケイ酸カリウム、シリカゾル等を用いることができ、ケイ酸ナトリウム等の水溶性化合物が好適に用いられる。ケイ酸ナトリウムとしては、オルソケイ酸ナトリウム、セスキケイ酸ナトリウム、メタケイ酸ナトリウムなどを用いることができ、ケイ酸ナトリウムの水溶液であるケイ酸ソーダ1号(SiO/NaOのモル比が2)、2号(SiO/NaOのモル比が2.5)、3号(SiO/NaOのモル比が3)、4号(SiO/NaOのモル比が4)やN特殊ケイ酸ソーダ(SiO/NaOのモル比が3.80〜4.10)、C特殊ケイ酸ソーダ(SiO/NaOのモル比が3.30〜3.50)、APケイ酸ソーダ(SiO/NaOのモル比が4.25〜4.45)(いずれも日本化学工業社製)などを好適に用いることができ、SiO/NaOのモル比が3以上のケイ酸ソーダを用いると残存するナトリウム分がより少なくなるため好ましい。中和剤には、用いるチタン化合物、ケイ素化合物に応じて、前記の酸性化合物または塩基性化合物を適宜選択して用いる。 The inorganic compound may be coated by a known method. If the metal oxide is coated, the compound containing the metal element constituting the metal oxide and the neutralizing agent are added to the aqueous slurry containing the zinc oxide particles. The coating layer can be formed by adding them separately or simultaneously in parallel. If the compound containing the metal element is acidic, it is preferable to perform the latter simultaneous addition while maintaining the pH of the aqueous slurry in the vicinity of neutrality so that zinc does not elute. Although a more specific operation method varies depending on each inorganic compound species, for example, the method described in Japanese Patent Application No. 2006-276517 is preferable for forming the coating layer (A). That is, in an aqueous slurry of zinc oxide particles, the titanium compound is neutralized in the range of pH 8.0 to 10.0, and then the silicon compound is added to neutralize the pH in the range of 8.0 to 10.0. It is a method to do. The method described in Japanese Patent Application No. 2006-276518 is preferable for forming the coating layer (B). That is, this is a method in which a titanium compound and a silicon compound are added in an aqueous slurry in the range of pH 8.0 to 10.0. Water-soluble compounds such as titanium chloride and titanium sulfate are preferably used for the titanium compounds used in these methods, and sodium silicate, potassium silicate, silica sol, and the like can be used for the silicon compound. Water-soluble compounds such as are preferably used. As sodium silicate, sodium orthosilicate, sodium sesquisilicate, sodium metasilicate and the like can be used, and sodium silicate No. 1 (SiO 2 / Na 2 O molar ratio is 2) which is an aqueous solution of sodium silicate, No. 2 (SiO 2 / Na 2 O molar ratio is 2.5), No. 3 (SiO 2 / Na 2 O molar ratio is 3), No. 4 (SiO 2 / Na 2 O molar ratio is 4), N special sodium silicate (SiO 2 / Na 2 O molar ratio: 3.80 to 4.10), C special sodium silicate (SiO 2 / Na 2 O molar ratio: 3.30 to 3.50), AP silicate (SiO 2 / Na 2 O molar ratio: 4.25 to 4.45) (all manufactured by Nippon Kagaku Kogyo Co., Ltd.) can be preferably used, and SiO 2 / Na 2 O molar ratio. Use sodium silicate of 3 or more Preferred for sodium content remaining is less. As the neutralizing agent, the above acidic compound or basic compound is appropriately selected and used according to the titanium compound or silicon compound to be used.

無機化合物の被覆を形成した後、必要に応じて濾過・洗浄して固液分離し、乾燥、乾式粉砕を行うと、表面を被覆した酸化亜鉛粉末が得られる。固液分離には、前記のフィルタープレス、ロールプレス等の濾過器を用いることができる。乾燥にはバンド式ヒーター、バッチ式ヒーター、噴霧乾燥機等が用いられ、乾式粉砕にはハンマーミル、ピンミル等の衝撃粉砕機、ローラーミル、パルペライザー、解砕機等の摩砕粉砕機、ロールクラッシャー、ジョークラッシャー等の圧縮粉砕機、ジェットミル等の気流粉砕機等を用いることができる。   After forming the coating of the inorganic compound, if necessary, it is filtered and washed to separate it into solid and liquid, followed by drying and dry pulverization to obtain a zinc oxide powder having a coated surface. For the solid-liquid separation, a filter such as the above-described filter press or roll press can be used. Band type heaters, batch type heaters, spray dryers, etc. are used for drying, impact pulverizers such as hammer mills, pin mills, roller mills, pulverizers, crushers such as crushers, roll crushers, etc. A compression crusher such as a jaw crusher, an airflow crusher such as a jet mill, or the like can be used.

本発明では、溶媒、塗料やプラスチックス等への分散性を付与するなどの目的で、更に有機化合物を被覆しても良く、好ましくは無機化合物の被覆上に被覆しても良い。有機化合物の被覆方法としては、(1)酸化亜鉛を水性スラリーから固液分離、乾燥した後、乾式粉砕機や高速撹拌機等を用いて有機化合物と気相中で接触させる方法、(2)酸化亜鉛と有機化合物とを水性スラリー中で接触させる方法等が挙げられる。一般的に、(1)の方法は有機化合物の歩留まりが良く、(2)の方法は均一な被覆が行えるので、有機化合物の種類に応じて適宜選択する。用いる有機化合物としては、例えば、(1)有機ケイ素化合物((a)オルガノポリシロキサン類(ジメチルポリシロキサン、メチル水素ポリシロキサン、メチルメトキシポリシロキサン、メチルフェニルポリシロキサン、ジメチルポリシロキサンジオール、ジメチルポリシロキサンジハイドロジェン等またはそれらの共重合体)、(b)オルガノシラン類(アミノシラン、エポキシシラン、メタクリルシラン、ビニルシラン、メルカプトシラン、クロロアルキルシラン、アルキルシラン、フルオロアルキルシラン等またはそれらの加水分解生成物)、(c)オルガノシラザン類(ヘキサメチルシラザン、ヘキサメチルシクロトリシラザン等)、(2)有機金属化合物((a)有機チタニウム化合物(アミノアルコキシチタニウム、リン酸エステルチタニウム、カルボン酸エステルチタニウム、スルホン酸エステルチタニウム、チタニウムキレート、亜リン酸エステルチタニウム錯体等)、(b)有機アルミニウム化合物(アルミニウムキレート等)、(c)有機ジルコニウム化合物(カルボン酸エステルジルコニウム、ジルコニウムキレート等)等)、(3)ポリオール類(トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール等)、(4)アルカノールアミン類(モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、トリプロパノールアミン等)またはその誘導体(酢酸塩、シュウ酸塩、酒石酸塩、ギ酸塩、安息香酸塩等の有機酸塩等)、(5)高級脂肪酸類(ステアリン酸、ラウリン酸、オレイン酸等)またはその金属塩(アルミニウム塩、亜鉛塩、マグネシウム塩、カルシウム塩、バリウム塩等)、(5)高級炭化水素類(パラフィンワックス、ポリエチレンワックス等)またはその誘導体(パーフルオロ化物等)が挙げられる。これらの有機化合物は1種を用いても、2種以上を積層または混合して用いても良い。化粧料に用いる場合は、オルガノポリシロキサン類、高級脂肪酸類を用いるのが好ましい。有機化合物の被覆量は、酸化亜鉛に対し、0.1〜50重量%の範囲が好ましく、0.1〜30重量%の範囲が更に好ましい。   In the present invention, an organic compound may be further coated for the purpose of imparting dispersibility to a solvent, a paint, plastics, or the like, and may preferably be coated on an inorganic compound coating. As a method for coating an organic compound, (1) a method in which zinc oxide is solid-liquid separated from an aqueous slurry, dried, and then contacted with an organic compound in a gas phase using a dry pulverizer or a high-speed stirrer, (2) Examples include a method of bringing zinc oxide and an organic compound into contact in an aqueous slurry. In general, the method (1) has a good yield of the organic compound, and the method (2) can be uniformly coated. Therefore, the method is appropriately selected according to the kind of the organic compound. Examples of the organic compound used include (1) organosilicon compounds ((a) organopolysiloxanes (dimethylpolysiloxane, methylhydrogen polysiloxane, methylmethoxypolysiloxane, methylphenylpolysiloxane, dimethylpolysiloxanediol, dimethylpolysiloxane) Dihydrogen and the like or copolymers thereof), (b) organosilanes (amino silane, epoxy silane, methacryl silane, vinyl silane, mercapto silane, chloroalkyl silane, alkyl silane, fluoroalkyl silane, etc. or their hydrolysis products ), (C) organosilazanes (hexamethylsilazane, hexamethylcyclotrisilazane, etc.), (2) organometallic compounds ((a) organotitanium compounds (aminoalkoxytitanium, phosphates) Tertitanium, carboxylic acid ester titanium, sulfonic acid ester titanium, titanium chelate, phosphite titanium complex, etc.), (b) organic aluminum compound (aluminum chelate, etc.), (c) organic zirconium compound (carboxylic acid ester zirconium, zirconium) Chelate etc.), (3) polyols (trimethylolpropane, trimethylolethane, pentaerythritol etc.), (4) alkanolamines (monoethanolamine, diethanolamine, triethanolamine, monopropanolamine, dipropanolamine, Tripropanolamine) or derivatives thereof (organic acid salts such as acetate, oxalate, tartrate, formate, benzoate, etc.), (5) higher fatty acids (stearic acid, lauric acid) Oleic acid, etc.) or metal salts thereof (aluminum salt, zinc salt, magnesium salt, calcium salt, barium salt, etc.), (5) higher hydrocarbons (paraffin wax, polyethylene wax, etc.) or derivatives thereof (perfluorinated products, etc.) These organic compounds may be used singly or in combination of two or more, and when used in cosmetics, it is preferable to use organopolysiloxanes and higher fatty acids. The coating amount of the organic compound is preferably in the range of 0.1 to 50% by weight and more preferably in the range of 0.1 to 30% by weight with respect to zinc oxide.

本発明で得られた表面被覆酸化亜鉛は、特に紫外線遮蔽性組成物に配合して用いられる。紫外線遮蔽性組成物の具体例として、日焼け止め化粧料、基礎化粧料等の化粧料、塗料、プラスチックスなどが挙げられ、それらに用いられる従来の成分に加えて、前記表面被覆酸化亜鉛を適量配合して用いられる。例えば、化粧料には、前記表面被覆酸化亜鉛以外に、通常化粧料に用いられる公知の成分、例えば、(1)溶媒(水、低級アルコール類等)、(2)油剤(高級脂肪酸類、高級アルコール類、オルガノポリシロキサン類(シリコーンオイル)、炭化水素類、油脂類等)、(3)界面活性剤(アニオン性、カチオン性、両性、非イオン性等)、(4)保湿剤(グリセリン類、グリコール等のポリオール系、ピロリドンカルボン酸類等の非ポリオール系等)(5)有機紫外線吸収剤(ベンゾフェノン誘導体、パラアミノ安息香酸誘導体、サリチル酸誘導体等)、(6)酸化防止剤(フェノール系、有機酸またはその塩、酸アミド系、リン酸系等)、(7)増粘剤、(8)香料、(9)着色剤(顔料、色素、染料等)、(10)生理活性成分(ビタミン類、ホルモン類、アミノ酸類等)、(11)抗菌剤等が配合されていても良い。化粧料の様態は、固形状、液状、ジェル状等特に制限なく、液状やジェル状の場合、その分散形態も油中水型エマルジョン、水中油型エマルジョン、油型等のいずれでも良い。化粧料中の表面被覆酸化亜鉛の配合量は、0.1〜50重量%の範囲が好ましい。   The surface-coated zinc oxide obtained in the present invention is particularly used by blending with an ultraviolet shielding composition. Specific examples of the ultraviolet shielding composition include sunscreen cosmetics, cosmetics such as basic cosmetics, paints, plastics, and the like. In addition to the conventional components used for these, an appropriate amount of the surface-coated zinc oxide is included. Used in combination. For example, for cosmetics, in addition to the surface-coated zinc oxide, known components commonly used in cosmetics, such as (1) solvents (water, lower alcohols, etc.), (2) oil agents (higher fatty acids, higher grades) Alcohols, organopolysiloxanes (silicone oil), hydrocarbons, oils and fats), (3) surfactants (anionic, cationic, amphoteric, nonionic, etc.), (4) humectants (glycerins) (5) Organic ultraviolet absorbers (benzophenone derivatives, paraaminobenzoic acid derivatives, salicylic acid derivatives, etc.), (6) antioxidants (phenolic, organic acids, etc.) Or salts thereof, acid amides, phosphates, etc.), (7) thickeners, (8) fragrances, (9) colorants (pigments, dyes, dyes, etc.), (10) physiologically active ingredients (vita) Emissions, hormones, amino acids, etc.), (11) an antibacterial agent or the like may be blended. The form of the cosmetic is not particularly limited, such as solid, liquid, or gel. In the case of liquid or gel, the dispersion may be any of a water-in-oil emulsion, an oil-in-water emulsion, and an oil type. The amount of surface-coated zinc oxide in the cosmetic is preferably in the range of 0.1 to 50% by weight.

以下に本発明の実施例を示すが、本発明はこれらに制限されるものではない。   Examples of the present invention are shown below, but the present invention is not limited thereto.

実施例1
(酸化亜鉛粒子の合成)
硫酸亜鉛(ZnSO・7HO)168gを純水に溶解し、ZnO換算として100g/リットルの水溶液を調製した。この水溶液250ミリリットルを90℃の温度に昇温後、90℃に維持しながら200g/リットルの水酸化ナトリウム溶液283ミリリットルを、撹拌しながら15分間かけて添加して中和生成物を得た後、90分間熟成させた。次いで、濾過・洗浄して酸化亜鉛粒子(試料a)を得た。
Example 1
(Synthesis of zinc oxide particles)
168 g of zinc sulfate (ZnSO 4 .7H 2 O) was dissolved in pure water to prepare a 100 g / liter aqueous solution in terms of ZnO. After heating 250 ml of this aqueous solution to a temperature of 90 ° C. and maintaining at 90 ° C., 283 ml of a 200 g / liter sodium hydroxide solution was added over 15 minutes with stirring to obtain a neutralized product. And aged for 90 minutes. Subsequently, it filtered and wash | cleaned and obtained the zinc oxide particle (sample a).

(無機化合物の被覆)
気相中で加熱操作を行うことなく得られた酸化亜鉛粒子(試料a)50gを、超音波分散機を用いて純水に再分散させて100g/リットルの水性スラリーを調製した。この水性スラリー500ミリリットルを70℃の温度に昇温後、撹拌しながらTiOとして5重量%に相当する50g/リットルの四塩化チタン水溶液と10%水酸化ナトリウム溶液とを、pHが8.0〜9.5の範囲になるように40分間かけて同時並行添加し、チタニアを含む第一の被覆層を形成した。その状態で60分間保持して熟成させた。
引き続き、スラリー温度を50℃に冷却し、SiOとして25重量%に相当する50g/リットルのケイ酸ナトリウム水溶液を40分間かけて添加し20分間撹拌した後、2%硫酸水溶液をpHが9.0〜9.5の範囲になるように40分間かけて添加して中和し、多孔質シリカを含む第二の被覆層を形成した。その状態で20分間保持して熟成させ、8.0〜8.5の範囲にpH調整を行い、濾過・洗浄、乾燥、乾式粉砕を行い、チタニア/シリカ被覆酸化亜鉛(試料A)を得た。
(Inorganic compound coating)
50 g of zinc oxide particles (sample a) obtained without heating operation in the gas phase was redispersed in pure water using an ultrasonic disperser to prepare a 100 g / liter aqueous slurry. After heating 500 ml of this aqueous slurry to a temperature of 70 ° C., a 50 g / l aqueous solution of titanium tetrachloride corresponding to 5% by weight as TiO 2 and a 10% sodium hydroxide solution were stirred, and the pH was 8.0. The first coating layer containing titania was formed by simultaneous addition over 40 minutes so as to be in the range of ˜9.5. In this state, it was aged by holding for 60 minutes.
Subsequently, the slurry temperature was cooled to 50 ° C., 50 g / liter sodium silicate aqueous solution corresponding to 25% by weight as SiO 2 was added over 40 minutes, and the mixture was stirred for 20 minutes. It added over 40 minutes and neutralized so that it might become the range of 0-9.5, and the 2nd coating layer containing porous silica was formed. In this state, the mixture was aged for 20 minutes, adjusted to pH in the range of 8.0 to 8.5, filtered, washed, dried, and dry pulverized to obtain titania / silica-coated zinc oxide (sample A). .

比較例1
(酸化亜鉛粒子の合成)
一級試薬の酸化亜鉛粉末40gを純水に分散させてZnO換算で約7%の濃度の水性スラリーを調製した。この水性スラリー265ミリリットルを45℃の温度に昇温後、撹拌しながら前記スラリーのpHが約6.0になるまで二酸化炭素を吹き込み、塩基性炭酸亜鉛を生成させた。得られた塩基性炭酸亜鉛を濾過・洗浄、乾燥した後、320℃の温度で45分間焼成し、その後、乾式粉砕して酸化亜鉛粒子(試料b)を得た。
Comparative Example 1
(Synthesis of zinc oxide particles)
An aqueous slurry having a concentration of about 7% in terms of ZnO was prepared by dispersing 40 g of zinc oxide powder as a primary reagent in pure water. After raising the temperature of 265 ml of this aqueous slurry to a temperature of 45 ° C., carbon dioxide was blown into the slurry until the pH of the slurry reached about 6.0 while stirring to produce basic zinc carbonate. The obtained basic zinc carbonate was filtered, washed and dried, then calcined at a temperature of 320 ° C. for 45 minutes, and then dry pulverized to obtain zinc oxide particles (sample b).

(無機化合物の被覆)
得られた酸化亜鉛粒子(試料b)50gを、超音波分散機を用いて純水に再分散させて100g/リットルの水性スラリーを調製した。この水性スラリーを用いた以外は実施例1と同様にして比較対象のチタニア/シリカ被覆酸化亜鉛(試料B)を得た。
(Inorganic compound coating)
50 g of the obtained zinc oxide particles (sample b) were redispersed in pure water using an ultrasonic disperser to prepare a 100 g / liter aqueous slurry. A comparative titania / silica-coated zinc oxide (sample B) was obtained in the same manner as in Example 1 except that this aqueous slurry was used.

評価1(水溶出性の評価)
本発明では、試料の水溶出を促進させるため、強酸性水溶液への亜鉛の溶出量により耐水性評価とした。実施例1、比較例1の酸化亜鉛(試料A、B)を、それぞれ1.0gを硫酸でpHを3に調整した100ミリリットルの純水に分散させた。1分経過後、分散液を遠心分離し、得られた上澄み液中の亜鉛の濃度を原子吸光分析により測定した。結果を表1に示す。本発明で得られた酸化亜鉛は、比較例の試料に比べて亜鉛の水溶出性に優れていることが判った。
Evaluation 1 (Evaluation of water elution)
In the present invention, in order to promote water elution of the sample, the water resistance was evaluated based on the elution amount of zinc in the strongly acidic aqueous solution. Zinc oxide (Samples A and B) of Example 1 and Comparative Example 1 was dispersed in 100 milliliters of pure water in which 1.0 g of each was adjusted to pH 3 with sulfuric acid. After 1 minute, the dispersion was centrifuged, and the zinc concentration in the resulting supernatant was measured by atomic absorption analysis. The results are shown in Table 1. It was found that the zinc oxide obtained in the present invention was superior in zinc water elution as compared with the comparative sample.

Figure 0005173245
Figure 0005173245

本発明は、酸化亜鉛の水性溶媒への亜鉛溶出を抑制することができ、白色顔料、紫外線遮蔽材、吸着剤、触媒等種々の用途に用いることができる。
しかも、酸化亜鉛として微粒子状のものを用いることにより、紫外線遮蔽能と透明性にも優れているため、化粧料、塗料、プラスチックス、紙等に配合する紫外線遮蔽材として有用である。
The present invention can suppress zinc elution of zinc oxide into an aqueous solvent, and can be used for various applications such as a white pigment, an ultraviolet shielding material, an adsorbent, and a catalyst.
In addition, by using fine particles of zinc oxide, it is excellent in ultraviolet shielding ability and transparency, and thus is useful as an ultraviolet shielding material to be blended in cosmetics, paints, plastics, paper and the like.

Claims (3)

鉄化合物及び/又はコバルト化合物を含まず、かつ、60℃以上100℃以下の水性媒液中で亜鉛化合物を中和剤と反応させ、球状酸化亜鉛粒子を得る工程、得られた球状酸化亜鉛粒子を気相中で加熱操作をすることなく、水性媒液中でその粒子表面に、シリカ、チタニア、アルミナ、ジルコニアから選ばれる少なくとも1種の無機化合物の被覆を行う工程を含む、表面被覆した球状酸化亜鉛の製造方法。 A step of obtaining spherical zinc oxide particles by reacting a zinc compound with a neutralizing agent in an aqueous medium at 60 ° C. or higher and 100 ° C. or lower without containing an iron compound and / or a cobalt compound, and the obtained spherical zinc oxide particles A surface-coated spherical shape comprising a step of coating at least one inorganic compound selected from silica, titania, alumina, and zirconia on the particle surface in an aqueous medium without heating in a gas phase. A method for producing zinc oxide. 亜鉛化合物溶液中に、中和剤を10〜40分間かけて添加することを特徴とする請求項1記載の球状酸化亜鉛の製造方法。 The method for producing spherical zinc oxide according to claim 1, wherein a neutralizing agent is added to the zinc compound solution over 10 to 40 minutes. 得られた球状酸化亜鉛粒子を濾過・洗浄した後、水性媒液中に再分散させ、当該無機化合物の被覆を行うことを特徴とする請求項1記載の球状酸化亜鉛の製造方法。 2. The method for producing spherical zinc oxide according to claim 1, wherein the obtained spherical zinc oxide particles are filtered and washed and then redispersed in an aqueous medium to coat the inorganic compound.
JP2007116566A 2007-04-26 2007-04-26 Method for producing surface-coated zinc oxide Expired - Fee Related JP5173245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007116566A JP5173245B2 (en) 2007-04-26 2007-04-26 Method for producing surface-coated zinc oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007116566A JP5173245B2 (en) 2007-04-26 2007-04-26 Method for producing surface-coated zinc oxide

Publications (2)

Publication Number Publication Date
JP2008273760A JP2008273760A (en) 2008-11-13
JP5173245B2 true JP5173245B2 (en) 2013-04-03

Family

ID=40052243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007116566A Expired - Fee Related JP5173245B2 (en) 2007-04-26 2007-04-26 Method for producing surface-coated zinc oxide

Country Status (1)

Country Link
JP (1) JP5173245B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5658057B2 (en) * 2011-02-25 2015-01-21 花王株式会社 Method for producing flaky zinc oxide powder
JP5872825B2 (en) * 2011-09-12 2016-03-01 大東化成工業株式会社 Metal oxide / zinc oxide solid solution particle production method, spherical powder production method, coated spherical powder production method, and cosmetic production method
JP5942701B2 (en) * 2012-08-27 2016-06-29 住友大阪セメント株式会社 Zinc oxide composite powder, zinc oxide composite powder-containing dispersion and cosmetic
JP6779294B2 (en) 2016-08-04 2020-11-04 日本板硝子株式会社 Zinc oxide-containing composite particles, UV shielding compositions, and cosmetics
CN118201879A (en) * 2021-12-06 2024-06-14 堺化学工业株式会社 Organosilicon surface-coated zinc oxide particles, method for producing same, cosmetic, dispersion, heat-dissipating filler, and resin composition
CN116750787A (en) * 2022-03-04 2023-09-15 Tcl科技集团股份有限公司 Nano zinc oxide solution, preparation method, nano zinc oxide film and photoelectric device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2851885B2 (en) * 1989-12-12 1999-01-27 住友大阪セメント株式会社 Zinc oxide and cosmetics
GB9616978D0 (en) * 1996-08-13 1996-09-25 Tioxide Specialties Ltd Zinc oxide dispersions
JP3520785B2 (en) * 1998-02-20 2004-04-19 堺化学工業株式会社 Zinc oxide particle composition with suppressed surface activity, method for producing the same, and cosmetic containing the composition
JP3534039B2 (en) * 1999-05-12 2004-06-07 堺化学工業株式会社 Zinc oxide particles with reduced surface activity and their production and use
JP2007023127A (en) * 2005-07-14 2007-02-01 Nippon Chem Ind Co Ltd Method for producing silica-coated zinc oxide, silica-coated zinc oxide, and cosmetic containing the same

Also Published As

Publication number Publication date
JP2008273760A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
TW200536900A (en) Surface-modified non-metal/metal oxides coated with silicon dioxide
CN100513317C (en) Porous titanium oxide powder and method for production thereof
JP2852487B2 (en) Titanium dioxide aqueous dispersion
JP5631530B2 (en) Porous silica-based particles having surface smoothness, a method for producing the same, and a cosmetic comprising the porous silica-based particles
JPH0661457B2 (en) Oil dispersion and method for producing the same
JP5173245B2 (en) Method for producing surface-coated zinc oxide
ES2357990T3 (en) IMPROVED PROCESS FOR THE MANUFACTURE OF TITANIUM DIOXIDE PIGMENTS TREATED WITH CIRCONIA.
EP0684208B1 (en) Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same
JP2005528454A (en) Aqueous dispersion containing metal oxide particles and dispersant produced by pyrolysis method
JP2010006629A (en) Titanium dioxide fine particle and method for producing the same
JP5921188B2 (en) Method for producing silica-based particles having an ultraviolet shielding effect, silica-based particles obtained from the method, and a cosmetic comprising the silica-based particles
JP5794852B2 (en) Titanium dioxide pigment for cosmetics and method for producing the same
Asadi et al. Synthesis of colloidal nanosilica from waste glass powder as a low cost precursor
KR20010049615A (en) Granules based on pyrogenic titanium dioxide, a process for preparing them and their use
JP2008094917A (en) Surface-coated zinc oxide and its manufacturing method, and ultraviolet ray-shielding composition comprising the same
JP4756738B2 (en) Zinc oxide fine particles for UV shielding
KR20080011425A (en) Degradable zinc oxide powder and process for production thereof
JP7185143B2 (en) Titanium dioxide aqueous dispersion and method for producing the same
JPH07257923A (en) High concentration titanium dioxide aqeous dispersion
JP5791771B2 (en) Porous silica-based particles having excellent surface smoothness and cosmetics comprising the porous silica-based particles
JP4256133B2 (en) Method for producing acicular titanium dioxide fine particles
JP5010183B2 (en) Method for producing disintegrating zinc oxide powder
JP2010132493A (en) Composite powder and method for producing the same
US20090258068A1 (en) Titanium Oxide-Zinc Oxide Aggregate Powder And Production Method Thereof
JP2010168254A (en) Ultraviolet screening agent, cosmetic, and micro-acicular zinc oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R151 Written notification of patent or utility model registration

Ref document number: 5173245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees