JP2010132493A - Composite powder and method for producing the same - Google Patents

Composite powder and method for producing the same Download PDF

Info

Publication number
JP2010132493A
JP2010132493A JP2008309847A JP2008309847A JP2010132493A JP 2010132493 A JP2010132493 A JP 2010132493A JP 2008309847 A JP2008309847 A JP 2008309847A JP 2008309847 A JP2008309847 A JP 2008309847A JP 2010132493 A JP2010132493 A JP 2010132493A
Authority
JP
Japan
Prior art keywords
zinc
composite powder
compound
zinc oxide
coprecipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008309847A
Other languages
Japanese (ja)
Inventor
Yumi Murata
由美 村田
Masanori Iida
正紀 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2008309847A priority Critical patent/JP2010132493A/en
Publication of JP2010132493A publication Critical patent/JP2010132493A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a fine zinc oxide more easily at a low cost, which is suitable for mass production. <P>SOLUTION: By allowing a silicon compound to be present when a zinc compound is precipitated by an alkali in water of 50°C or above, a fine zinc oxide having a BET specific surface area of 30-100 m<SP>2</SP>/g is obtained. The product is a composite powder of a coprecipitate containing zinc oxide and silica, and has sufficient ultraviolet ray-shielding capacity, transparency or the like since it contains zinc oxide. The content of zinc in the coprecipitate is preferably 70.0-99.9 wt.% in terms of ZnO. This method does not need special equipment such as a mill and a mixer in the case of reaction which becomes a high viscosity, and therefore mass production is possible. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸化亜鉛を含む複合粉体及びその製造方法に関する。また、前記の複合粉体を含む紫外線遮蔽性組成物、日焼け止め化粧料に関する。   The present invention relates to a composite powder containing zinc oxide and a method for producing the same. Moreover, it is related with the ultraviolet-ray shielding composition containing the said composite powder, and sunscreen cosmetics.

酸化亜鉛は、白色顔料、紫外線遮蔽剤、吸着剤、光触媒、触媒等種々の用途に用いられており、特に紫外線遮蔽能に優れ、しかも、可視光の透過性が高く透明性に優れているため、化粧料、塗料、プラスチック、紙等に配合して用いられている。酸化亜鉛は微細であるほど、紫外線遮蔽能、透明性等の効果が高く、そのためより一層微細な酸化亜鉛が求められている。
このような微細な酸化亜鉛は、例えば特許文献1には、亜鉛塩水溶液とアルカリ水溶液とを亜鉛:アルカリの当量比が1:1〜1:3となる量比で、それぞれ別々にかつ同時に、連続的に又は半連続的に反応槽に装入し、反応槽を連続的に2000〜20000rpmの回転速度で高速撹拌して反応させ、この反応で生じる中和生成物を連続的に又は半連続的に反応槽から取り出し、その後濾過、洗浄し、次いで乾燥、焼成する方法を記載している。
Zinc oxide is used in various applications such as white pigments, ultraviolet shielding agents, adsorbents, photocatalysts, catalysts, etc., and is particularly excellent in ultraviolet shielding ability, and also has high transparency to visible light and excellent transparency. Used in cosmetics, paints, plastics, papers, etc. The finer the zinc oxide, the higher the effects such as ultraviolet shielding ability and transparency, and therefore there is a demand for finer zinc oxide.
Such fine zinc oxide, for example, in Patent Document 1, a zinc salt aqueous solution and an alkaline aqueous solution are separately and simultaneously in an amount ratio such that the equivalent ratio of zinc: alkali is 1: 1 to 1: 3. The reaction vessel is continuously or semi-continuously charged, and the reaction vessel is continuously stirred at a rotational speed of 2000 to 20000 rpm for reaction, and the neutralized product produced in this reaction is continuously or semi-continuously reacted. The method is described in which it is removed from the reaction vessel and then filtered, washed, then dried and fired.

一方、酸化亜鉛は微細になると、凝集し易くなり、溶媒への分散性が低下し易くなる。また、水への溶解度が比較的高くなり、化粧料等で用いられる水性溶媒中に溶出し易くなる。また、触媒活性が高くなるため、化粧料等に含まれる油剤、界面活性剤などの有機成分を分解したり変質させるという問題も有している。このようなことから、微細な酸化亜鉛に対してシリカ等で改質あるいは被覆処理して前記の問題を改善している。例えば、特許文献2には、一次粒子径1〜150nmのシリカゾルを含有する分散体と、一次粒子径が1〜1000nmの微粒子酸化亜鉛又は酸化亜鉛ゾルを混合した後、溶液のpHを変えることでシリカ及び酸化亜鉛を同時に凝集、沈降させて酸化亜鉛/シリカ複合体を製造することを記載している。また、特許文献3には微細な酸化亜鉛の表面にAl、Si、Zr、Snの酸化物または水酸化物を被覆して触媒活性を抑制したり、特許文献4には高密度のシリカを被覆することにより、水溶出性を抑制することを記載している。   On the other hand, when zinc oxide becomes finer, it tends to aggregate and the dispersibility in a solvent tends to be lowered. In addition, the solubility in water becomes relatively high, and elution easily occurs in an aqueous solvent used in cosmetics and the like. In addition, since the catalytic activity becomes high, there is a problem that organic components such as oils and surfactants contained in cosmetics are decomposed or altered. For this reason, fine zinc oxide is modified or coated with silica or the like to improve the above problem. For example, in Patent Document 2, a dispersion containing silica sol having a primary particle diameter of 1 to 150 nm and fine zinc oxide or zinc oxide sol having a primary particle diameter of 1 to 1000 nm are mixed, and then the pH of the solution is changed. It describes that a zinc oxide / silica composite is produced by coagulating and precipitating silica and zinc oxide simultaneously. Patent Document 3 covers the surface of fine zinc oxide with Al, Si, Zr, Sn oxides or hydroxides to suppress catalytic activity, and Patent Document 4 covers high-density silica. It describes that water elution is suppressed by doing.

特開平10−120418号公報JP-A-10-120418 WO02/024153号パンフレットWO02 / 024153 pamphlet 特許第2851885号公報Japanese Patent No. 2851885 特開平11−302015号公報Japanese Patent Laid-Open No. 11-302015

前記の特許文献1の方法では、比表面積が30〜100m/gである超微細酸化亜鉛を製造することができるものの、高粘度となる反応の際にインペラーミルやインラインミキサー等の特殊な装置を備えて2000〜20000rpmの回転速度で高速撹拌するため、大量生産には適用でき難く、より一層容易に且つ安価に製造する方法が望まれている。また、特許文献2〜4に記載のシリカ処理により、酸化亜鉛の分散性、水溶出性、触媒活性等の改善が図られるものの、シリカ処理の際に酸化亜鉛粒子がすでに凝集した状態であることなどの理由により、シリカ処理による十分な効果が得られ難い。 In the method of the above-mentioned Patent Document 1, an ultrafine zinc oxide having a specific surface area of 30 to 100 m 2 / g can be produced, but a special apparatus such as an impeller mill or an in-line mixer is used in the reaction that results in a high viscosity. Therefore, it is difficult to apply the method to mass production, and a method for manufacturing more easily and inexpensively is desired. In addition, although the silica treatment described in Patent Documents 2 to 4 improves the dispersibility of zinc oxide, water elution, catalytic activity, etc., the zinc oxide particles are already aggregated during the silica treatment. For these reasons, it is difficult to obtain a sufficient effect by the silica treatment.

本発明者らは、大量生産ができ易く、より一層容易に且つ安価に微細な酸化亜鉛を製造することを目的に種々研究した結果、水中で亜鉛化合物をアルカリで析出させる際にケイ素化合物を存在させることにより、30〜100m/gのBET比表面積を有する微細な酸化亜鉛が得られ、しかも、十分な紫外線遮蔽能、透明性等を有することなどを見出し、本発明を完成した。 As a result of various studies aimed at producing fine zinc oxide more easily and inexpensively, the present inventors have found that silicon compounds are present when zinc compounds are precipitated with alkali in water. As a result, it was found that fine zinc oxide having a BET specific surface area of 30 to 100 m 2 / g was obtained, and that it had sufficient ultraviolet shielding ability, transparency, etc., and the present invention was completed.

すなわち、本発明は、30〜100m/gのBET比表面積を有し、亜鉛とケイ素との共沈殿物からなる複合粉体であり、50℃以上の水中で、ケイ素化合物と亜鉛化合物をアルカリで共沈殿させることを特徴とする複合粉体の製造方法などである。 That is, the present invention is a composite powder having a BET specific surface area of 30 to 100 m 2 / g and comprising a coprecipitate of zinc and silicon, and the silicon compound and the zinc compound are alkalinized in water at 50 ° C. or higher. And a method for producing a composite powder characterized by coprecipitation.

本発明の複合粉体は、優れた透明性、紫外線遮蔽能を有する。また、この複合粉体は、酸化亜鉛の触媒活性が抑制され、亜鉛の水溶出量を低く抑えることができる。このため、化粧料、塗料、プラスチックス、紙等に配合する紫外線遮蔽剤として有用であり、水性溶媒への亜鉛溶出量が低いために油剤等の非水溶媒の配合量を低くできるなど組成を自由に設定できる。
また、本発明の複合粉体の製造方法は、高粘度となる反応の際にミル、ミキサーなどの特殊な装置を必要としないために、大量生産に適用でき、より一層容易にかつ安価に製造することができる。
The composite powder of the present invention has excellent transparency and ultraviolet shielding ability. Moreover, this composite powder suppresses the catalytic activity of zinc oxide, and can keep the amount of zinc eluted in water low. For this reason, it is useful as an ultraviolet shielding agent to be blended in cosmetics, paints, plastics, paper, etc., and since the amount of zinc elution into an aqueous solvent is low, the amount of a non-aqueous solvent such as an oil can be reduced Can be set freely.
In addition, the composite powder manufacturing method of the present invention does not require a special device such as a mill or a mixer in the case of a reaction having a high viscosity, so that it can be applied to mass production, and is manufactured more easily and inexpensively. can do.

本発明は、30〜100m/gのBET比表面積を有し、亜鉛とケイ素との共沈殿物からなる複合粉体である。亜鉛は酸化亜鉛、水酸化亜鉛等の化合物となりうるが、酸化亜鉛のX線回折ピークを有するものが好ましく、亜鉛成分のすべてが酸化亜鉛であるのがより好ましい。ケイ素は、シリカ(酸化ケイ素)、ケイ酸塩等の化合物となりうるが、X線回折では特定でき難い。複合粉体は微細なものが好ましく、BET比表面積で表して、30〜100m/gの範囲である。複合粉体の平均粒子径(電子顕微鏡法による50%累積径)を0.001〜0.1μmの範囲にすると、紫外線遮蔽能と透明性が優れているので好ましく、0.005〜0.05μmの範囲のものが更に好ましい。複合粉体中の亜鉛の含有量はZnOに換算して70〜99.9重量%の範囲であるのが好ましく、90〜99.9重量%の範囲がより好ましい。亜鉛の含有量が前記の範囲より少ないと紫外線遮蔽能等の亜鉛の効果が得られ難いため好ましくなく、一方、前記の範囲より多いと、反対にケイ素の含有量が少なくなり、微細な複合粉体が得られ難いため好ましくない。亜鉛、ケイ素の複合粉体は電子顕微鏡で観察することができ、その量は蛍光X線分析、ICP発光分析等の通常の方法で測定することができる。 The present invention is a composite powder having a BET specific surface area of 30 to 100 m 2 / g and comprising a coprecipitate of zinc and silicon. Zinc can be a compound such as zinc oxide and zinc hydroxide, but those having an X-ray diffraction peak of zinc oxide are preferred, and all zinc components are more preferably zinc oxide. Silicon can be a compound such as silica (silicon oxide) or silicate, but is difficult to identify by X-ray diffraction. The composite powder is preferably fine, and is in the range of 30 to 100 m 2 / g in terms of BET specific surface area. When the average particle diameter (50% cumulative diameter by electron microscopy) of the composite powder is in the range of 0.001 to 0.1 μm, the ultraviolet shielding ability and transparency are excellent, and preferably 0.005 to 0.05 μm. The thing of the range of is more preferable. The zinc content in the composite powder is preferably in the range of 70 to 99.9% by weight in terms of ZnO, and more preferably in the range of 90 to 99.9% by weight. If the zinc content is less than the above range, it is not preferable because it is difficult to obtain the effect of zinc such as ultraviolet ray shielding ability. On the other hand, if the zinc content is more than the above range, the silicon content is reduced, and the fine composite powder is not preferable. Since it is difficult to obtain a body, it is not preferable. The composite powder of zinc and silicon can be observed with an electron microscope, and the amount can be measured by a usual method such as fluorescent X-ray analysis or ICP emission analysis.

複合粉体の粒子表面には、無機化合物を被覆してもよい。被覆する無機化合物としては、金属の酸化物、リン酸塩等が挙げられ、無機化合物は2種以上を積層しても、混合物として被覆してもよく、2種以上用いる場合の被覆順序にも制限はない。また、被覆層の性状は多孔質であっても、緻密であってもよい。無機化合物としては、シリカ、チタニア、アルミナ、ジルコニア等から選ばれる少なくとも1種の金属酸化物であれば、亜鉛の水溶出抑制効果が大きいので好ましく、中でもシリカの効果が高く好ましい。本発明での金属酸化物は、金属の無水酸化物、含水酸化物、水和酸化物、水酸化物を包含する化合物である。無機化合物の被覆量は、被覆種や目的に応じて適宜設定することができ、酸化亜鉛に対して0.1〜50重量%程度が好ましい。   The particle surface of the composite powder may be coated with an inorganic compound. Examples of the inorganic compound to be coated include metal oxides, phosphates, and the like, and the inorganic compound may be a laminate of two or more, or may be coated as a mixture. There is no limit. Further, the properties of the coating layer may be porous or dense. As the inorganic compound, at least one metal oxide selected from silica, titania, alumina, zirconia, and the like is preferable because the effect of suppressing the elution of zinc from water is large, and the effect of silica is particularly preferable. The metal oxide in the present invention is a compound including an anhydrous metal oxide, a hydrous oxide, a hydrated oxide, and a hydroxide. The coating amount of the inorganic compound can be appropriately set according to the coating type and purpose, and is preferably about 0.1 to 50% by weight with respect to zinc oxide.

工業的に最も好ましい様態として、シリカを多量に被覆すると、処理スラリーやケーキのチキソトロピック粘性による取扱い作業の困難性や生産効率の低下が起こり、生産性が阻害されるので、そのため、(A)チタニアを含む被覆層を形成し、その上にシリカを、好ましくは多孔質シリカを含む被覆層を形成するか、または、(B)チタニアとシリカを含む共沈物の被覆層を形成すると、このような問題が解消される。前記のようにシリカとチタニアを併用した場合、シリカの被覆量は複合粉体に対しSiO換算で、10〜50重量%の範囲が好ましく、チタニアは、複合粉体に対しTiO換算で0.5〜20重量%の範囲が好ましい。シリカの被覆量が前記範囲より少ないと、所望の亜鉛の水溶出性や酸化亜鉛やチタニアの光触媒活性を抑制する効果が得られ難く、前記範囲より多いと、チタニア被覆を併用しても生産性の改良効果が得られ難くなるため好ましくない。また、チタニアの被覆量が前記範囲より少ないとシリカ使用による生産性の低下を改善することができ難く、多くしても更なる改良は得られ難く、却って、チタニアによる光触媒活性が高まる場合もあるため好ましくない。より好ましいシリカ被覆量は、20〜50重量%の範囲であり、25〜40重量%の範囲とするのが更に好ましい。チタニア被覆量のより好ましい範囲は1〜10重量%である。 As the most industrially preferable aspect, when a large amount of silica is coated, the handling work and the production efficiency are reduced due to the thixotropic viscosity of the treated slurry and cake, and the productivity is hindered. Therefore, (A) When a coating layer containing titania is formed and silica is formed thereon, preferably a coating layer containing porous silica is formed, or (B) a coating layer of coprecipitate containing titania and silica is formed. Such a problem is solved. When silica and titania are used in combination as described above, the silica coating amount is preferably in the range of 10 to 50% by weight in terms of SiO 2 with respect to the composite powder, and titania is 0 in terms of TiO 2 with respect to the composite powder. The range of 5 to 20% by weight is preferred. If the silica coating amount is less than the above range, it is difficult to obtain the desired zinc water-elution property and the effect of suppressing the photocatalytic activity of zinc oxide and titania. This is not preferable because it is difficult to obtain the improvement effect. In addition, if the amount of titania coating is less than the above range, it is difficult to improve the decrease in productivity due to the use of silica, and even if it is increased, further improvement is difficult to obtain. On the other hand, the photocatalytic activity by titania may increase. Therefore, it is not preferable. A more preferable silica coating amount is in the range of 20 to 50% by weight, and more preferably in the range of 25 to 40% by weight. A more preferable range of the titania coating amount is 1 to 10% by weight.

本発明では、水中で亜鉛化合物をアルカリで析出させる際にケイ素化合物を存在させることが重要であり、存在させたケイ素化合物の少なくとも一部は亜鉛化合物とともに共沈殿して析出する。ケイ素化合物、亜鉛化合物は水に溶解した状態で使用し、亜鉛の析出の際にケイ素化合物を存在させることにより、亜鉛粒子の棒状、薄片状等の異方性形状の粒子の生成を抑制することができ、微細な共沈殿物が得られる。亜鉛化合物とケイ素化合物とアルカリとを水中に添加するには、(1)ケイ素化合物を含有する水中に亜鉛化合物とアルカリとを添加する方法、(2)ケイ素化合物と亜鉛化合物を含有する水中に、アルカリを添加する方法、(3)亜鉛化合物を含有する水中に、アルカリとケイ素化合物とを添加する方法、(4)亜鉛化合物を含有する水中に、アルカリとケイ素化合物の混合液を添加する方法、(5)アルカリを含有する水中に、亜鉛化合物とケイ素化合物とを添加する方法、(6)水中に、亜鉛化合物とケイ素化合物とアルカリとを添加する方法、(7)水中に、アルカリとケイ素化合物の混合液と亜鉛化合物を添加する方法などが挙げられ、(1)〜(7)の一つの方法を適宜選択したり、あるいはそれらの二つ以上の方法を組み合わせることもできる。本発明では粒子径や粒子形状の制御が容易な(1)、(7)の方法が好ましい。亜鉛化合物、ケイ素化合物、アルカリの添加時間は適宜設定することができるが、10分〜2時間の範囲とすると所望の共沈殿物が得られ易いので好ましい。水中に二種以上を添加する場合は、それぞれを同時並行的に添加するのが好ましい。アルカリの使用量は、亜鉛化合物の中和当量に対して1.0〜3倍程度であればよく、好ましくは1.5〜2.5倍程度である。また、水のpHを9.5〜12.0の範囲に維持しながら、亜鉛化合物、ケイ素化合物、アルカリ等とを添加するのが好ましく、10〜11の範囲がより好ましい。添加の際の水の温度は室温でもよく、30〜50℃程度に加温しておいてもよいが、亜鉛化合物とアルカリとを反応させる際の水の温度は50℃以上とするのが好ましく、亜鉛化合物の加水分解が進み、酸化亜鉛を生成させることができる。また、水の温度は70℃以上がより好ましく、80℃以上が更に好ましく、微細な球状に近い複合粉体が得られる。更に好ましい水の温度は85〜105℃である。   In the present invention, it is important that a silicon compound is present when the zinc compound is precipitated in water with an alkali, and at least a part of the silicon compound present co-precipitates and precipitates together with the zinc compound. Silicon compounds and zinc compounds are used in the state dissolved in water, and the presence of silicon compounds during precipitation of zinc suppresses the formation of anisotropically shaped particles such as rods and flakes of zinc particles. And a fine coprecipitate is obtained. To add a zinc compound, a silicon compound and an alkali into water, (1) a method of adding a zinc compound and an alkali into water containing a silicon compound, (2) into a water containing a silicon compound and a zinc compound, A method of adding an alkali; (3) a method of adding an alkali and a silicon compound in water containing a zinc compound; (4) a method of adding a mixed solution of an alkali and a silicon compound in water containing a zinc compound; (5) Method of adding zinc compound and silicon compound to water containing alkali, (6) Method of adding zinc compound, silicon compound and alkali to water, (7) Alkali and silicon compound in water And a method of adding a zinc compound and the like. One of the methods (1) to (7) is appropriately selected, or two or more of these methods are combined. Rukoto can also. In the present invention, the methods (1) and (7) are preferred because the particle diameter and particle shape can be easily controlled. Although the addition time of a zinc compound, a silicon compound, and an alkali can be set suitably, since it is easy to obtain a desired coprecipitate when it is the range for 10 minutes-2 hours, it is preferable. When adding 2 or more types in water, it is preferable to add each in parallel. The usage-amount of an alkali should just be about 1.0 to 3 times with respect to the neutralization equivalent of a zinc compound, Preferably it is about 1.5 to 2.5 times. Moreover, it is preferable to add a zinc compound, a silicon compound, an alkali, etc., maintaining the pH of water in the range of 9.5 to 12.0, and the range of 10 to 11 is more preferable. The temperature of the water at the time of addition may be room temperature or may be heated to about 30 to 50 ° C., but the temperature of the water at the time of reacting the zinc compound and the alkali is preferably 50 ° C. or more. The zinc compound can be hydrolyzed to generate zinc oxide. Further, the temperature of water is more preferably 70 ° C. or higher, further preferably 80 ° C. or higher, and a fine composite powder having a nearly spherical shape can be obtained. Furthermore, the preferable temperature of water is 85-105 degreeC.

使用するケイ素化合物としては、ケイ酸ナトリウム、ケイ酸カリウム等の水溶性化合物が好適に用いられる。ケイ酸ナトリウムとしては、オルソケイ酸ナトリウム、セスキケイ酸ナトリウム、メタケイ酸ナトリウムなどを用いることができ、ケイ酸ナトリウムの水溶液であるケイ酸ソーダ1号(SiO/NaOのモル比が2)、2号(SiO/NaOのモル比が2.5)、3号(SiO/NaOのモル比が3)、4号(SiO/NaOのモル比が4)やN特殊ケイ酸ソーダ(SiO/NaOのモル比が3.80〜4.10)、C特殊ケイ酸ソーダ(SiO/NaOのモル比が3.30〜3.50)、APケイ酸ソーダ(SiO/NaOのモル比が4.25〜4.45)(いずれも日本化学工業社製)などを好適に用いることができ、SiO/NaOのモル比が3以上のケイ酸ソーダを用いると残存するナトリウム分がより少なくなるため好ましい。亜鉛化合物には、硫酸亜鉛、塩化亜鉛、硝酸亜鉛等の酸性亜鉛化合物、炭酸亜鉛等の塩基性亜鉛化合物等、公知のものが挙げられ、特に制限はない。アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属またはアルカリ土類金属の水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属またはアルカリ土類金属の炭酸塩、アンモニア、炭酸アンモニウム、硝酸アンモニウム等のアンモニウム化合物等の塩基性化合物を用いることできる。 As the silicon compound to be used, water-soluble compounds such as sodium silicate and potassium silicate are preferably used. As sodium silicate, sodium orthosilicate, sodium sesquisilicate, sodium metasilicate and the like can be used, and sodium silicate No. 1 (SiO 2 / Na 2 O molar ratio is 2) which is an aqueous solution of sodium silicate, No. 2 (SiO 2 / Na 2 O molar ratio is 2.5), No. 3 (SiO 2 / Na 2 O molar ratio is 3), No. 4 (SiO 2 / Na 2 O molar ratio is 4), N special sodium silicate (SiO 2 / Na 2 O molar ratio: 3.80 to 4.10), C special sodium silicate (SiO 2 / Na 2 O molar ratio: 3.30 to 3.50), AP silicate (SiO 2 / Na 2 O molar ratio: 4.25 to 4.45) (all manufactured by Nippon Kagaku Kogyo Co., Ltd.) can be preferably used, and SiO 2 / Na 2 O molar ratio. Use sodium silicate of 3 or more Preferred for sodium content remaining is less. Zinc compounds include known compounds such as acidic zinc compounds such as zinc sulfate, zinc chloride and zinc nitrate, and basic zinc compounds such as zinc carbonate, and are not particularly limited. Examples of the alkali include hydroxides of alkali metals or alkaline earth metals such as sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metals or alkaline earth metal carbonates such as sodium carbonate and potassium carbonate, ammonia Basic compounds such as ammonium compounds such as ammonium carbonate and ammonium nitrate can be used.

共沈殿させた後、必要に応じて10分〜5時間程度そのpH、温度を保持し熟成してもよい。その後、撹拌しながら、前記の水溶液を好ましくは50℃以上、より好ましくは60〜250℃程度、更に好ましくは80〜110℃程度に加温して、亜鉛の結晶性を高めることもできる。また、得られた共沈殿物は必要に応じて、濾過・洗浄して固液分離し、50〜200℃程度の温度で乾燥し、乾式粉砕を行ってもよい。また、得られた共沈殿乾燥物は、200〜800℃程度の温度で焼成してもよい。固液分離には、前記のフィルタープレス、ロールプレス等の濾過器を用いることができる。乾燥にはバンド式ヒーター、バッチ式ヒーター、噴霧乾燥機等が用いられ、乾式粉砕にはハンマーミル、ピンミル等の衝撃粉砕機、ローラーミル、パルペライザー、解砕機等の摩砕粉砕機、ロールクラッシャー、ジョークラッシャー等の圧縮粉砕機、ジェットミル等の気流粉砕機等を用いることができる。   After co-precipitation, if necessary, the pH and temperature may be maintained for about 10 minutes to 5 hours for aging. Thereafter, while stirring, the aqueous solution is preferably heated to 50 ° C. or higher, more preferably about 60 to 250 ° C., and still more preferably about 80 to 110 ° C., to increase the crystallinity of zinc. Moreover, the obtained coprecipitate may be subjected to filtration and washing, solid-liquid separation, drying at a temperature of about 50 to 200 ° C., and dry pulverization, if necessary. Moreover, you may bake the obtained coprecipitation dry material at the temperature of about 200-800 degreeC. For the solid-liquid separation, a filter such as the above-described filter press or roll press can be used. Band type heaters, batch type heaters, spray dryers, etc. are used for drying, impact pulverizers such as hammer mills, pin mills, roller mills, pulverizers, crushers such as crushers, roll crushers, etc. A compression crusher such as a jaw crusher, an airflow crusher such as a jet mill, or the like can be used.

得られた共沈殿物は、必要に応じて、無機化合物の被覆工程に供し、共沈殿物を製造した温度やpHを維持しながら、あるいは、温度やpHを適宜調整して被覆工程を行うことができる。また、共沈殿物の製造工程で生成した可溶性塩類を除去してから、無機化合物の被覆工程に供するのが好ましい。その方法としては、(1)共沈殿物が生成した水性スラリーを、濾過・洗浄して可溶性塩類を除去し、固液分離した共沈殿物を水性媒液に再分散させて水性スラリーとする、(2)イオン交換膜透析、電気透析等により、固液分離することなく液相中で前記水性スラリーから可溶性塩類を除去する、等が挙げられ、工業的には大量生産に適した(1)の方法が好ましい。濾過・洗浄には、フィルタープレス、ロールプレス等の濾過器を用いることができる。水性スラリー中の共沈殿物の濃度は特に制限はなく、製造設備、製造能力等に応じて適宜設定するが、工業的には5〜200g/リットルの範囲が好ましく、20〜100g/リットルの範囲が更に好ましい。   The obtained coprecipitate is subjected to a coating step of an inorganic compound as necessary, and the coating step is performed while maintaining the temperature and pH at which the coprecipitate was produced or by appropriately adjusting the temperature and pH. Can do. Moreover, after removing the soluble salts produced | generated at the manufacturing process of a coprecipitate, it is preferable to use for the coating process of an inorganic compound. As the method, (1) the aqueous slurry in which the coprecipitate is produced is filtered and washed to remove soluble salts, and the solid-liquid separated coprecipitate is redispersed in an aqueous medium to obtain an aqueous slurry. (2) It is possible to remove soluble salts from the aqueous slurry in the liquid phase without performing solid-liquid separation by ion exchange membrane dialysis, electrodialysis, etc., and industrially suitable for mass production (1) This method is preferred. For filtration and washing, a filter such as a filter press or a roll press can be used. The concentration of the coprecipitate in the aqueous slurry is not particularly limited and is appropriately set according to the production equipment, production capacity, etc., but is preferably in the range of 5 to 200 g / liter, and in the range of 20 to 100 g / liter. Is more preferable.

無機化合物の被覆は公知の方法で行ってよく、金属酸化物を被覆するのであれば、共沈殿物を含む水性スラリー中に、金属酸化物を構成する金属元素を含む化合物と中和剤とを別々に添加したり、同時に並行的に添加することで被覆層を形成できる。前記の金属元素を含む化合物が酸性であれば、亜鉛が溶出しないように、水性スラリーのpHを中性近辺に維持しながら、後者の同時並行的添加を行うのが好ましい。より具体的な操作方法は、個々の無機化合物種によって異なるが、例えば、前記(A)の被覆層の形成には、特開2008−94917号公報に記載の方法が好ましい。即ち、酸化亜鉛粒子の水性スラリー中で、チタン化合物をpHが8.0〜10.0の範囲で中和した後、ケイ素化合物を添加しpHが8.0〜10.0の範囲で中和する方法である。また、前記(B)の被覆層の形成には、特開2008−94646号公報に記載の方法が好ましい。即ち、水性スラリー中で、チタン化合物とケイ素化合物をpHが8.0〜10.0の範囲で添加する方法である。これらの方法で用いるチタン化合物には、塩化チタン、硫酸チタン等の水溶性化合物が好適に用いられ、ケイ素化合物には前記の化合物を好適に用いることができる。中和剤には、用いるチタン化合物、ケイ素化合物に応じて、前記の酸性化合物または塩基性化合物を適宜選択して用いる。   The inorganic compound may be coated by a known method. If the metal oxide is coated, the compound containing the metal element constituting the metal oxide and the neutralizing agent are added to the aqueous slurry containing the coprecipitate. The coating layer can be formed by adding them separately or simultaneously in parallel. If the compound containing the metal element is acidic, it is preferable to perform the latter simultaneous addition while maintaining the pH of the aqueous slurry in the vicinity of neutrality so that zinc does not elute. Although a more specific operation method varies depending on the individual inorganic compound species, for example, the method described in JP-A-2008-94917 is preferable for forming the coating layer (A). That is, in an aqueous slurry of zinc oxide particles, the titanium compound is neutralized in the range of pH 8.0 to 10.0, and then the silicon compound is added to neutralize the pH in the range of 8.0 to 10.0. It is a method to do. The method described in JP-A-2008-94646 is preferable for forming the coating layer (B). That is, this is a method in which a titanium compound and a silicon compound are added in an aqueous slurry in the range of pH 8.0 to 10.0. Water-soluble compounds such as titanium chloride and titanium sulfate are preferably used for the titanium compound used in these methods, and the above compounds can be preferably used for the silicon compound. As the neutralizing agent, the above acidic compound or basic compound is appropriately selected and used according to the titanium compound or silicon compound to be used.

無機化合物の被覆には、共沈殿物のスラリーにカルボン酸及び/又はその塩とを混合した後に、無機化合物を添加し、被覆するのが好ましい。前記のカルボン酸はカルボキシル基を有する化合物であり、制限なく用いることができるが、例えば、次のようなものを用いることができ、特にクエン酸及び/又はその塩を用いるのが好ましい。
(1)ポリカルボン酸、特にジカルボン酸、トリカルボン酸、例えば、シュウ酸、フマル酸。
(2)ヒドロキシポリカルボン酸、特にヒドロキシジ−又はヒドロキシトリ−カルボン酸、例えばリンゴ酸、クエン酸又はタルトロン酸。
(3)(ポリヒドロキシ)モノカルボン酸、例えばグルコヘプトン酸又はグルコン酸。
(4)ポリ(ヒドロキシカルボン酸)、例えば酒石酸。
(5)ジカルボキシルアミノ酸及びその対応するアミド、例えばアスパラギン酸、アスパラギン又はグルタミン酸。
(6)ヒドロキシル化され又はヒドロキシル化されていないモノカルボキシルアミノ酸、例えばリジン、セリン又はトレオニン。
カルボン酸塩としては、どのような塩でも制限なく用いることができるが、例えばナトリウム、カリウム等のアルカリ金属塩、アンモニウム塩等を用いることができる。
For coating with the inorganic compound, it is preferable to coat the slurry of the coprecipitate with carboxylic acid and / or a salt thereof, and then add the inorganic compound. The carboxylic acid is a compound having a carboxyl group and can be used without limitation. For example, the following can be used, and citric acid and / or a salt thereof are particularly preferable.
(1) Polycarboxylic acids, particularly dicarboxylic acids and tricarboxylic acids such as oxalic acid and fumaric acid.
(2) Hydroxypolycarboxylic acids, especially hydroxydi- or hydroxytri-carboxylic acids such as malic acid, citric acid or tartronic acid.
(3) (Polyhydroxy) monocarboxylic acid, such as glucoheptonic acid or gluconic acid.
(4) Poly (hydroxycarboxylic acid) such as tartaric acid.
(5) Dicarboxyl amino acids and their corresponding amides, such as aspartic acid, asparagine or glutamic acid.
(6) A hydroxylated or non-hydroxylated monocarboxyl amino acid such as lysine, serine or threonine.
As the carboxylate, any salt can be used without limitation. For example, alkali metal salts such as sodium and potassium, ammonium salts and the like can be used.

共沈殿物には、溶媒、塗料やプラスチックス等への分散性を付与するなどの目的で、更に有機化合物を被覆してもよく、好ましくは無機化合物の被覆上に被覆してもよい。有機化合物の被覆方法としては、(1)共沈殿物を水性スラリーから固液分離、乾燥した後、乾式粉砕機や高速撹拌機等を用いて有機化合物と気相中で接触させる方法、(2)共沈殿物と有機化合物とを水性スラリー中で接触させる方法等が挙げられる。一般的に、(1)の方法は有機化合物の歩留まりがよく、(2)の方法は均一な被覆が行えるので、有機化合物の種類に応じて適宜選択する。用いる有機化合物としては、例えば、(1)有機ケイ素化合物((a)オルガノポリシロキサン類(ジメチルポリシロキサン、メチル水素ポリシロキサン、メチルメトキシポリシロキサン、メチルフェニルポリシロキサン、ジメチルポリシロキサンジオール、ジメチルポリシロキサンジハイドロジェン等またはそれらの共重合体)、(b)オルガノシラン類(アミノシラン、エポキシシラン、メタクリルシラン、ビニルシラン、メルカプトシラン、クロロアルキルシラン、アルキルシラン、フルオロアルキルシラン等またはそれらの加水分解生成物)、(c)オルガノシラザン類(ヘキサメチルシラザン、ヘキサメチルシクロトリシラザン等)、(2)有機金属化合物((a)有機チタニウム化合物(アミノアルコキシチタニウム、リン酸エステルチタニウム、カルボン酸エステルチタニウム、スルホン酸エステルチタニウム、チタニウムキレート、亜リン酸エステルチタニウム錯体等)、(b)有機アルミニウム化合物(アルミニウムキレート等)、(c)有機ジルコニウム化合物(カルボン酸エステルジルコニウム、ジルコニウムキレート等)等)、(3)ポリオール類(トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール等)、(4)アルカノールアミン類(モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、トリプロパノールアミン等)またはその誘導体(酢酸塩、シュウ酸塩、酒石酸塩、ギ酸塩、安息香酸塩等の有機酸塩等)、(5)高級脂肪酸類(ステアリン酸、ラウリン酸、オレイン酸等)またはその金属塩(アルミニウム塩、亜鉛塩、マグネシウム塩、カルシウム塩、バリウム塩等)、(6)高級炭化水素類(パラフィンワックス、ポリエチレンワックス等)またはその誘導体(パーフルオロ化物等)が挙げられる。これらの有機化合物は1種を用いても、2種以上を積層または混合して用いてもよい。化粧料に用いる場合は、オルガノポリシロキサン類、高級脂肪酸類を用いるのが好ましい。有機化合物の被覆量は、共沈殿物に対し、0.1〜50重量%の範囲が好ましく、0.1〜30重量%の範囲が更に好ましい。   The coprecipitate may be further coated with an organic compound for the purpose of imparting dispersibility to a solvent, paint, plastics, or the like, and may preferably be coated on a coating of an inorganic compound. As the organic compound coating method, (1) a method in which a coprecipitate is solid-liquid separated from an aqueous slurry, dried, and then contacted with an organic compound in a gas phase using a dry pulverizer or a high-speed stirrer (2 ) A method of bringing a coprecipitate and an organic compound into contact with each other in an aqueous slurry. In general, the method (1) has a good yield of the organic compound, and the method (2) can be uniformly coated. Therefore, the method is appropriately selected according to the kind of the organic compound. Examples of the organic compound used include (1) organosilicon compounds ((a) organopolysiloxanes (dimethylpolysiloxane, methylhydrogen polysiloxane, methylmethoxypolysiloxane, methylphenylpolysiloxane, dimethylpolysiloxanediol, dimethylpolysiloxane) Dihydrogen and the like or copolymers thereof), (b) organosilanes (amino silane, epoxy silane, methacryl silane, vinyl silane, mercapto silane, chloroalkyl silane, alkyl silane, fluoroalkyl silane, etc. or their hydrolysis products ), (C) organosilazanes (hexamethylsilazane, hexamethylcyclotrisilazane, etc.), (2) organometallic compounds ((a) organotitanium compounds (aminoalkoxytitanium, phosphates) Tertitanium, carboxylic acid ester titanium, sulfonic acid ester titanium, titanium chelate, phosphite titanium complex, etc.), (b) organoaluminum compound (aluminum chelate, etc.), (c) organozirconium compound (carboxylate zirconium, zirconium) Chelate etc.), (3) polyols (trimethylolpropane, trimethylolethane, pentaerythritol etc.), (4) alkanolamines (monoethanolamine, diethanolamine, triethanolamine, monopropanolamine, dipropanolamine, Tripropanolamine) or derivatives thereof (organic acid salts such as acetate, oxalate, tartrate, formate, benzoate, etc.), (5) higher fatty acids (stearic acid, lauric acid) Oleic acid etc.) or metal salts thereof (aluminum salt, zinc salt, magnesium salt, calcium salt, barium salt etc.), (6) higher hydrocarbons (paraffin wax, polyethylene wax etc.) or derivatives thereof (perfluorinated products etc.) These organic compounds may be used singly or in combination of two or more, and when used in cosmetics, it is preferable to use organopolysiloxanes and higher fatty acids. The coating amount of the organic compound is preferably from 0.1 to 50% by weight, more preferably from 0.1 to 30% by weight, based on the coprecipitate.

本発明で得られた複合粉体は、特に紫外線遮蔽性組成物に配合して用いられる。紫外線遮蔽性組成物の具体例として、日焼け止め化粧料、基礎化粧料等の化粧料、塗料、プラスチックスなどが挙げられ、それらに用いられる従来の成分に加えて、前記複合粉体を適量配合して用いられる。例えば、化粧料には、前記複合粉体以外に、通常化粧料に用いられる公知の成分、例えば、(1)溶媒(水、低級アルコール類等)、(2)油剤(高級脂肪酸類、高級アルコール類、オルガノポリシロキサン類(シリコーンオイル)、炭化水素類、油脂類等)、(3)界面活性剤(アニオン性、カチオン性、両性、非イオン性等)、(4)保湿剤(グリセリン類、グリコール等のポリオール系、ピロリドンカルボン酸類等の非ポリオール系等)(5)有機紫外線吸収剤(ベンゾフェノン誘導体、パラアミノ安息香酸誘導体、サリチル酸誘導体等)、(6)酸化防止剤(フェノール系、有機酸またはその塩、酸アミド系、リン酸系等)、(7)増粘剤、(8)香料、(9)着色剤(顔料、色素、染料等)、(10)生理活性成分(ビタミン類、ホルモン類、アミノ酸類等)、(11)抗菌剤等が配合されていてもよい。化粧料の様態は、固形状、液状、ジェル状等特に制限なく、液状やジェル状の場合、その分散形態も油中水型エマルジョン、水中油型エマルジョン、油型等のいずれでもよい。化粧料中の複合粉体の配合量は、0.1〜50重量%の範囲が好ましい。   The composite powder obtained in the present invention is particularly used by blending with an ultraviolet shielding composition. Specific examples of the UV shielding composition include sunscreen cosmetics, cosmetics such as basic cosmetics, paints, plastics, etc. In addition to the conventional ingredients used for them, the composite powder is blended in an appropriate amount. Used. For example, for cosmetics, in addition to the composite powder, known components that are usually used in cosmetics, such as (1) solvents (water, lower alcohols, etc.), (2) oil agents (higher fatty acids, higher alcohols) , Organopolysiloxanes (silicone oil), hydrocarbons, oils and fats), (3) surfactants (anionic, cationic, amphoteric, nonionic, etc.), (4) humectants (glycerins, Polyols such as glycols, non-polyols such as pyrrolidone carboxylic acids) (5) organic ultraviolet absorbers (benzophenone derivatives, paraaminobenzoic acid derivatives, salicylic acid derivatives, etc.), (6) antioxidants (phenolic, organic acids or (7) thickeners, (8) fragrances, (9) colorants (pigments, pigments, dyes, etc.), (10) physiologically active ingredients (vitamins, Rumon, amino acids, etc.), (11) an antibacterial agent or the like may be blended. The form of the cosmetic is not particularly limited, such as solid, liquid, or gel. In the case of liquid or gel, the dispersion may be any of a water-in-oil emulsion, an oil-in-water emulsion, and an oil type. The blending amount of the composite powder in the cosmetic is preferably in the range of 0.1 to 50% by weight.

本発明で得られた複合粉体は、後述の評価2のように流動パラフィン/ワセリン/ステアリン酸=40/26.7/1(重量比)のバインダーを用いて複合粉体2.91重量%を配合して作製した塗膜の透過率を測定すると、550nmの波長の可視光透過率が97%以上であり、350nmの波長の紫外線透過率が55%以下であり、しかも、300nmの波長の紫外線透過率が50%以下である塗膜を作製することができ、このようなものであると、十分な透明性、紫外線遮蔽性を有する塗膜組成物として使用できる。   The composite powder obtained in the present invention was 2.91% by weight of composite powder using a binder of liquid paraffin / petroleum / stearic acid = 40 / 26.7 / 1 (weight ratio) as described later in Evaluation 2. When the transmittance of the coating film prepared by blending is measured, the visible light transmittance at a wavelength of 550 nm is 97% or more, the ultraviolet transmittance at a wavelength of 350 nm is 55% or less, and a wavelength of 300 nm is obtained. A coating film having an ultraviolet transmittance of 50% or less can be produced, and if it is such, it can be used as a coating composition having sufficient transparency and ultraviolet shielding properties.

以下に本発明の実施例を示すが、本発明はこれらに制限されるものではない。   Examples of the present invention are shown below, but the present invention is not limited thereto.

実施例1
ケイ酸ナトリウムの水溶液を90℃の温度に昇温し、前記の水溶液のpH10〜11の範囲と温度を維持しながら硫酸亜鉛(ZnSO・7HO)水溶液と水酸化ナトリウム水溶液を40分かけて同時並行的に添加し、その後30分間熟成させ、次いで、濾過・洗浄して共沈殿物(試料a)を得た。
この試料aの一部を分取し、乾燥して分析に供した結果、亜鉛とケイ素の複合粉体であり、酸化亜鉛のX線回折ピークを示したが、それ以外のピークは認められなかった。また、共沈殿物には酸化亜鉛が99重量%、シリカが1重量%含まれていた。BET比表面積は55.2m/gであった。電子顕微鏡観察の結果、球状に近い微細な複合粒子であり、大きな棒状粒子等は観察されなかった。
Example 1
An aqueous solution of sodium silicate is heated to a temperature of 90 ° C., and an aqueous solution of zinc sulfate (ZnSO 4 .7H 2 O) and an aqueous solution of sodium hydroxide are taken over 40 minutes while maintaining the temperature and the pH range of the aqueous solution of 10-11. And co-precipitate (sample a) was obtained by aging for 30 minutes, followed by filtration and washing.
A portion of this sample a was collected, dried and subjected to analysis. As a result, it was a composite powder of zinc and silicon and showed an X-ray diffraction peak of zinc oxide, but no other peaks were observed. It was. The coprecipitate contained 99% by weight of zinc oxide and 1% by weight of silica. The BET specific surface area was 55.2 m 2 / g. As a result of observation with an electron microscope, the composite particles were nearly spherical, and no large rod-like particles were observed.

実施例2
実施例1において、ケイ酸ナトリウムの量を5倍にしたこと以外は実施例1と同様に処理して、共沈殿物(試料b)を得た。
この試料bの一部を分取し、乾燥して分析に供した結果、亜鉛とケイ素の複合粉体であり、酸化亜鉛のX線回折ピークを示したが、それ以外のピークは認められなかった。また、共沈殿物には酸化亜鉛が95重量%、シリカが5重量%含まれていた。BET比表面積は51.0m/gであった。電子顕微鏡観察の結果、球状に近い微細な複合粒子であり、大きな棒状粒子等は観察されなかった。
Example 2
In Example 1, except that the amount of sodium silicate was increased 5 times, the same treatment as in Example 1 was performed to obtain a coprecipitate (sample b).
A portion of this sample b was collected, dried, and subjected to analysis. As a result, it was a composite powder of zinc and silicon and showed an X-ray diffraction peak of zinc oxide, but no other peaks were observed. It was. The coprecipitate contained 95% by weight of zinc oxide and 5% by weight of silica. The BET specific surface area was 51.0 m 2 / g. As a result of observation with an electron microscope, the composite particles were nearly spherical, and no large rod-like particles were observed.

実施例3
実施例1において、ケイ酸ナトリウムの量を30倍にしたこと以外は実施例1と同様に処理して、共沈殿物(試料c)を得た。
この試料cの一部を分取し、乾燥して分析に供した結果、亜鉛とケイ素の複合粉体であり、酸化亜鉛のX線回折ピークを示したが、それ以外のピークは認められなかった。また、共沈殿物には酸化亜鉛が70重量%、シリカが30重量%含まれていた。BET比表面積は62.2m/gであった。電子顕微鏡観察の結果、球状に近い微細な複合粒子であり、大きな棒状粒子等は観察されなかった。
Example 3
In Example 1, it processed like Example 1 except having increased the quantity of sodium silicate 30 times, and obtained the coprecipitate (sample c).
A portion of this sample c was collected, dried, and subjected to analysis. As a result, it was a composite powder of zinc and silicon and showed an X-ray diffraction peak of zinc oxide, but no other peaks were observed. It was. The coprecipitate contained 70% by weight of zinc oxide and 30% by weight of silica. The BET specific surface area was 62.2 m 2 / g. As a result of observation with an electron microscope, the composite particles were nearly spherical, and no large rod-like particles were observed.

実施例4
水を90℃の温度に昇温した後、その温度を維持しながら硫酸亜鉛(ZnSO・7HO)水溶液とケイ酸ナトリウム水溶液と水酸化ナトリウム水溶液を40分かけて同時並行的に添加し、その後30分間熟成させ、次いで、硫酸でpHを7に調整した後、濾過・洗浄して共沈殿物(試料d)を得た。
この試料dの一部を分取し、乾燥して分析に供した結果、亜鉛とケイ素の複合粉体であり、酸化亜鉛のX線回折ピークを示したが、それ以外のピークは認められなかった。また、共沈殿物には酸化亜鉛が70重量%、シリカが30重量%含まれていた。BET比表面積は84.9m/gであった。電子顕微鏡観察の結果、球状に近い微細な複合粒子であり、大きな棒状粒子等は観察されなかった。
Example 4
After heating the water to a temperature of 90 ° C., a zinc sulfate (ZnSO 4 · 7H 2 O) aqueous solution, an aqueous sodium silicate solution and an aqueous sodium hydroxide solution were added simultaneously over 40 minutes while maintaining the temperature. Thereafter, aging was carried out for 30 minutes, and then the pH was adjusted to 7 with sulfuric acid, followed by filtration and washing to obtain a coprecipitate (sample d).
A part of this sample d was collected, dried and subjected to analysis. As a result, it was a composite powder of zinc and silicon and showed an X-ray diffraction peak of zinc oxide, but no other peaks were observed. It was. The coprecipitate contained 70% by weight of zinc oxide and 30% by weight of silica. The BET specific surface area was 84.9 m 2 / g. As a result of observation with an electron microscope, the composite particles were nearly spherical, and no large rod-like particles were observed.

実施例5
実施例1において、ケイ酸ナトリウムの水溶液を80℃の温度に昇温し、その温度を維持すること以外、実施例1と同様に操作して、共沈殿物(試料e)を得た。
この試料eの一部を分取し、乾燥して分析に供した結果、亜鉛とケイ素の複合粉体であり、酸化亜鉛のX線回折ピークを示したが、それ以外のピークは認められなかった。また、共沈殿物には酸化亜鉛が99重量%、シリカが1重量%含まれていた。BET比表面積は47.5m/gであった。電子顕微鏡観察の結果、球状に近い微細な複合粒子であり、大きな棒状粒子等は観察されなかった。
Example 5
In Example 1, the aqueous solution of sodium silicate was heated to a temperature of 80 ° C., and the same operation was performed as in Example 1 except that the temperature was maintained, thereby obtaining a coprecipitate (sample e).
A portion of this sample e was collected, dried, and subjected to analysis. As a result, it was a composite powder of zinc and silicon and showed an X-ray diffraction peak of zinc oxide, but no other peaks were observed. It was. The coprecipitate contained 99% by weight of zinc oxide and 1% by weight of silica. The BET specific surface area was 47.5 m 2 / g. As a result of observation with an electron microscope, the composite particles were nearly spherical, and no large rod-like particles were observed.

実施例6
実施例1において、ケイ酸ナトリウムの水溶液を70℃の温度に昇温し、その温度を維持すること以外、実施例1と同様に操作して、共沈殿物(試料f)を得た。
この試料fの一部を分取し、乾燥して分析に供した結果、亜鉛とケイ素の複合粉体であり、酸化亜鉛のX線回折ピークを示したが、それ以外のピークは認められなかった。また、共沈殿物には酸化亜鉛が99重量%、シリカが1重量%含まれていた。BET比表面積は41.5m/gであった。電子顕微鏡観察の結果、球状に近い微細な複合粒子であるが、一部棒状粒子の生成が観察された。
Example 6
In Example 1, an aqueous solution of sodium silicate was heated to a temperature of 70 ° C., and the same operation was performed as in Example 1 except that the temperature was maintained, thereby obtaining a coprecipitate (sample f).
A part of this sample f was collected, dried, and subjected to analysis. As a result, it was a composite powder of zinc and silicon and showed an X-ray diffraction peak of zinc oxide, but no other peaks were observed. It was. The coprecipitate contained 99% by weight of zinc oxide and 1% by weight of silica. The BET specific surface area was 41.5 m 2 / g. As a result of observation with an electron microscope, it was a fine composite particle close to a sphere, but formation of a part of rod-like particles was observed.

実施例7
実施例1において、ケイ酸ナトリウムの水溶液を60℃の温度に昇温し、その温度を維持すること以外、実施例1と同様に操作して、共沈殿物(試料g)を得た。
この試料gの一部を分取し、乾燥して分析に供した結果、亜鉛とケイ素の複合粉体であり、酸化亜鉛のX線回折ピークを示したが、それ以外のピークは認められなかった。また、共沈殿物には酸化亜鉛が99重量%、シリカが1重量%含まれていた。BET比表面積は40.3m/gであった。電子顕微鏡観察の結果、多数の棒状粒子の生成が観察された。
Example 7
In Example 1, the aqueous solution of sodium silicate was heated to a temperature of 60 ° C., and the same operation was performed as in Example 1 except that the temperature was maintained, thereby obtaining a coprecipitate (sample g).
A part of this sample g was collected, dried, and subjected to analysis. As a result, it was a composite powder of zinc and silicon and showed an X-ray diffraction peak of zinc oxide, but no other peaks were observed. It was. The coprecipitate contained 99% by weight of zinc oxide and 1% by weight of silica. The BET specific surface area was 40.3 m 2 / g. As a result of observation with an electron microscope, formation of a large number of rod-shaped particles was observed.

実施例8
実施例1において、ケイ酸ナトリウムの水溶液を50℃の温度に昇温し、その温度を維持すること以外、実施例1と同様に操作して、共沈殿物(試料h)を得た。
この試料hの一部を分取し、乾燥して分析に供した結果、亜鉛とケイ素の複合粉体であり、酸化亜鉛のX線回折ピークを示したが、それ以外のピークは認められなかった。また、共沈殿物には酸化亜鉛が99重量%、シリカが1重量%含まれていた。BET比表面積は33.6m/gであった。電子顕微鏡観察の結果、多数の棒状粒子の生成が観察された。
Example 8
In Example 1, the aqueous solution of sodium silicate was heated to a temperature of 50 ° C., and the same operation was performed as in Example 1 except that the temperature was maintained, thereby obtaining a coprecipitate (sample h).
A part of this sample h was collected, dried, and subjected to analysis. As a result, it was a composite powder of zinc and silicon and showed an X-ray diffraction peak of zinc oxide, but no other peaks were observed. It was. The coprecipitate contained 99% by weight of zinc oxide and 1% by weight of silica. The BET specific surface area was 33.6 m 2 / g. As a result of observation with an electron microscope, formation of a large number of rod-shaped particles was observed.

実施例9
実施例1で得られた共沈殿物(試料a)を、超音波分散機を用いて純水に再分散させて100g/リットルの水性スラリーを調製した。この水性スラリーにクエン酸水溶液を添加し、硫酸でpHを9.5〜10.0に調整した後50℃の温度に昇温し、次いで、SiOとして10重量%に相当するケイ酸ナトリウム水溶液と硫酸とをpHを9.5〜10.0に維持しながら40分間かけて添加し30分間撹拌した後、硫酸水溶液をpHが8.0〜8.5の範囲になるように40分間かけて添加して中和し、シリカを含む被覆層を形成した。その状態で30分間保持して熟成させた後、濾過・洗浄、乾燥、乾式粉砕を行い、シリカ被覆複合粉体(試料A)を得た。
試料Aは、10重量%のシリカ被覆層が形成されていることを確認した。
Example 9
The coprecipitate (sample a) obtained in Example 1 was redispersed in pure water using an ultrasonic disperser to prepare a 100 g / liter aqueous slurry. An aqueous citric acid solution was added to the aqueous slurry, the pH was adjusted to 9.5 to 10.0 with sulfuric acid, the temperature was raised to 50 ° C., and then an aqueous sodium silicate solution corresponding to 10% by weight as SiO 2 And sulfuric acid were added over 40 minutes while maintaining the pH at 9.5 to 10.0 and stirred for 30 minutes, and then the sulfuric acid aqueous solution was added over 40 minutes so that the pH was in the range of 8.0 to 8.5. And then neutralized to form a coating layer containing silica. After aging for 30 minutes in this state, filtration, washing, drying, and dry pulverization were performed to obtain a silica-coated composite powder (sample A).
In Sample A, it was confirmed that a silica coating layer of 10% by weight was formed.

比較例1
実施例1において用いたケイ酸ナトリウムの水溶液に代えてケイ酸ナトリウムを含有しない水を用いたこと以外は、実施例1と同様に処理して、酸化亜鉛粒子(試料i)を得た。
この試料iの一部を分取し、乾燥して分析に供した結果、酸化亜鉛のX線回折ピークを示したため、酸化亜鉛であることがわかった。また、BET比表面積は31.1m/gであった。電子顕微鏡観察の結果、多数の棒状粒子が観察された。
Comparative Example 1
Zinc oxide particles (sample i) were obtained in the same manner as in Example 1 except that water containing no sodium silicate was used instead of the aqueous solution of sodium silicate used in Example 1.
A part of this sample i was collected, dried and subjected to analysis. As a result, it showed an X-ray diffraction peak of zinc oxide, and it was found to be zinc oxide. Further, the BET specific surface area was 31.1 m 2 / g. As a result of observation with an electron microscope, a large number of rod-like particles were observed.

比較例2
実施例9において用いた試料aに代えて比較例1で得られた試料iを用いたこと以外は実施例9と同様に処理して、シリカ被覆酸化亜鉛粉体(試料I)を得た。
Comparative Example 2
A silica-coated zinc oxide powder (Sample I) was obtained in the same manner as in Example 9, except that Sample i obtained in Comparative Example 1 was used instead of Sample a used in Example 9.

実施例で得られた試料(試料a〜h)は電子顕微鏡観察、BET比表面積の結果、比較例で得られた試料(試料i)に比べ、高比表面積である微細な酸化亜鉛が得られ、粒子形状も球状に近く、棒状粒子の生成が抑制されることもわかった。
また、亜鉛の水溶出量については下記の評価1で測定したところ、試料a、bでは比較試料iと同程度であるが、試料cでは半分程度に少なくなることがわかった。また、試料Aの水溶出量は試料aの30分の一まで低減されることがわかった。
評価1(水溶出性の評価)
本発明では、試料の水溶出を促進させるため、強酸性水溶液への亜鉛の溶出量により耐水性評価とした。実施例、比較例の試料を、それぞれ1.0gを硫酸でpHを3に調整した100ミリリットルの純水に分散させた。1分経過後、分散液を遠心分離し、得られた上澄み液中の亜鉛の濃度を原子吸光分析により測定した。
Samples obtained in the examples (samples a to h) were observed with an electron microscope, and as a result of the BET specific surface area, fine zinc oxide having a high specific surface area was obtained as compared with the sample obtained in the comparative example (sample i). It was also found that the particle shape was nearly spherical and the production of rod-like particles was suppressed.
Further, when the amount of zinc dissolved in water was measured in the following evaluation 1, it was found that the samples a and b were almost the same as the comparative sample i, but the sample c was reduced to about half. Moreover, it turned out that the amount of water elution of sample A is reduced to 1/30 of sample a.
Evaluation 1 (Evaluation of water elution)
In the present invention, in order to promote water elution of the sample, the water resistance was evaluated based on the elution amount of zinc in the strongly acidic aqueous solution. The samples of Examples and Comparative Examples were each dispersed in 100 ml of pure water whose pH was adjusted to 3 with sulfuric acid. After 1 minute, the dispersion was centrifuged, and the zinc concentration in the resulting supernatant was measured by atomic absorption analysis.

実施例で得られた試料(a〜h、A)と、後述の評価2のように流動パラフィン/ワセリン/ステアリン酸=40/26.7/1(重量比)のバインダーを用いて試料2.91重量%を配合した塗膜の透過率を測定すると、550nmの波長の可視光透過率が97%以上であり、350nmの波長の紫外線透過率が55%以下であり、しかも、300nmの波長の紫外線透過率が50%以下であることがわかった。このことから、試料(a〜h、A)は、十分な透明性、紫外線遮蔽性を有する塗膜組成物として使用できることがわかった。
評価2(光学特性の測定結果)
試料を以下に記す方法で化粧料を想定したペーストとした。このペーストをドクターブレードを用いて透明なトリアセテート・フィルム上に、膜厚が約25μmになるように塗布した後、30分間風乾した。この塗膜の紫外・可視分光透過率スペクトルを、積分球を装着した分光光度計(島津製作所製、UV−VIS UV2200A型)を用いて測定した。
(ペーストの処方)
試料 1.2g
バインダー(流動パラフィン/ワセリン/ステアリン酸=40/26.7/1(重量比)) 40.0g
ガラスビーズ 50.0g
(ペーストの調製方法)
前記処方を140cmの蓋付ガラス瓶に仕込み、密閉してからペイントコンディショナー(レッドデビル社(米)製、クイックミル)を用いて分散させた。
Using the samples (a to h, A) obtained in Examples and a binder of liquid paraffin / petroleum / stearic acid = 40 / 26.7 / 1 (weight ratio) as in Evaluation 2 described later, Sample 2. When the transmittance of the coating film containing 91% by weight was measured, the visible light transmittance at a wavelength of 550 nm was 97% or more, the ultraviolet transmittance at a wavelength of 350 nm was 55% or less, and a wavelength of 300 nm was obtained. It was found that the ultraviolet transmittance was 50% or less. From this, it was found that the samples (a to h, A) can be used as a coating composition having sufficient transparency and ultraviolet shielding properties.
Evaluation 2 (Measurement results of optical characteristics)
The sample was made into the paste which assumed cosmetics by the method described below. This paste was applied onto a transparent triacetate film using a doctor blade so that the film thickness was about 25 μm, and then air-dried for 30 minutes. The ultraviolet / visible spectral transmittance spectrum of this coating film was measured using a spectrophotometer (manufactured by Shimadzu Corporation, UV-VIS UV2200A type) equipped with an integrating sphere.
(Paste formulation)
Sample 1.2g
Binder (liquid paraffin / petroleum / stearic acid = 40 / 26.7 / 1 (weight ratio)) 40.0 g
Glass beads 50.0g
(Paste preparation method)
The formulation was charged into a 140 cm 3 lidded glass bottle, sealed, and then dispersed using a paint conditioner (Red Devil (USA), Quick Mill).

本発明の複合粉体は、優れた透明性、紫外線遮蔽能を有するため、化粧料、塗料、プラスチックス、紙等に配合する紫外線遮蔽剤として有用である。また、白色顔料、吸着剤、触媒等種々の用途にも用いることができる。   Since the composite powder of the present invention has excellent transparency and ultraviolet shielding ability, it is useful as an ultraviolet shielding agent to be blended in cosmetics, paints, plastics, paper and the like. It can also be used for various applications such as white pigments, adsorbents, and catalysts.

実施例1で得られた試料aの電子顕微鏡写真(25000倍)である。2 is an electron micrograph (25,000 times) of a sample a obtained in Example 1. FIG. 実施例1で得られた試料aのX線回折チャートである。2 is an X-ray diffraction chart of Sample a obtained in Example 1. FIG. 実施例2で得られた試料bの電子顕微鏡写真(25000倍)である。2 is an electron micrograph (25000 times) of the sample b obtained in Example 2. 実施例2で得られた試料bのX線回折チャートである。3 is an X-ray diffraction chart of Sample b obtained in Example 2. FIG. 実施例3で得られた試料cの電子顕微鏡写真(25000倍)である。4 is an electron micrograph (25,000 times) of the sample c obtained in Example 3. 実施例3で得られた試料cのX線回折チャートである。6 is an X-ray diffraction chart of sample c obtained in Example 3. FIG. 実施例4で得られた試料dの電子顕微鏡写真(25000倍)である。4 is an electron micrograph (25,000 times) of a sample d obtained in Example 4. 実施例4で得られた試料dのX線回折チャートである。6 is an X-ray diffraction chart of a sample d obtained in Example 4. 実施例5で得られた試料eの電子顕微鏡写真(25000倍)である。4 is an electron micrograph (25000 times) of the sample e obtained in Example 5. 実施例5で得られた試料eのX線回折チャートである。6 is an X-ray diffraction chart of a sample e obtained in Example 5. 実施例6で得られた試料fの電子顕微鏡写真(25000倍)である。It is an electron micrograph (25000 times) of the sample f obtained in Example 6. 実施例6で得られた試料fのX線回折チャートである。7 is an X-ray diffraction chart of a sample f obtained in Example 6. 実施例7で得られた試料gの電子顕微鏡写真(25000倍)である。It is an electron micrograph (25000 times) of the sample g obtained in Example 7. 実施例7で得られた試料gのX線回折チャートである。7 is an X-ray diffraction chart of sample g obtained in Example 7. FIG. 実施例8で得られた試料hの電子顕微鏡写真(25000倍)である。4 is an electron micrograph (25,000 times) of the sample h obtained in Example 8. 実施例8で得られた試料hのX線回折チャートである。6 is an X-ray diffraction chart of a sample h obtained in Example 8. 比較例1で得られた試料iの電子顕微鏡写真(25000倍)である。2 is an electron micrograph (25,000 times) of the sample i obtained in Comparative Example 1. 比較例1で得られた試料iのX線回折チャートである。3 is an X-ray diffraction chart of Sample i obtained in Comparative Example 1.

Claims (10)

30〜100m/gのBET比表面積を有し、亜鉛とケイ素との共沈殿物からなる複合粉体。 A composite powder having a BET specific surface area of 30 to 100 m 2 / g and comprising a coprecipitate of zinc and silicon. 酸化亜鉛のX線回折ピークを有する請求項1に記載の複合粉体。 The composite powder according to claim 1, which has an X-ray diffraction peak of zinc oxide. 共沈殿物中の亜鉛の含有量がZnOに換算して70.0〜99.9重量%の範囲である請求項1又は2に記載の複合粉体。 The composite powder according to claim 1 or 2, wherein the content of zinc in the coprecipitate is in the range of 70.0 to 99.9 wt% in terms of ZnO. 前記の共沈殿物の表面に無機化合物の被覆を有する請求項1〜3のいずれか一項に記載の複合粉体。 The composite powder according to claim 1, wherein the surface of the coprecipitate has a coating of an inorganic compound. 50℃以上の水中で、ケイ素化合物と亜鉛化合物をアルカリで共沈殿させることを特徴とする複合粉体の製造方法。 A method for producing a composite powder, wherein a silicon compound and a zinc compound are coprecipitated with an alkali in water at 50 ° C or higher. 50℃以上の水中に、ケイ素化合物と亜鉛化合物とアルカリを添加することを特徴とする請求項5に記載の複合粉体の製造方法。 The method for producing a composite powder according to claim 5, wherein a silicon compound, a zinc compound, and an alkali are added to water at 50 ° C. or higher. ケイ素化合物を含有する50℃以上の水中に、亜鉛化合物とアルカリとを添加することを特徴とする請求項5に記載の複合粉体の製造方法。 The method for producing a composite powder according to claim 5, wherein a zinc compound and an alkali are added to water containing a silicon compound at 50 ° C. or higher. 水のpHを9.5〜12.0の範囲に維持しながら、亜鉛化合物とケイ素化合物とを共沈殿させることを特徴とする請求項5〜7のいずれか一項に記載の複合粉体の製造方法。 The composite powder according to any one of claims 5 to 7, wherein the zinc compound and the silicon compound are co-precipitated while maintaining the pH of water in the range of 9.5 to 12.0. Production method. 請求項1〜4のいずれか一項に記載の複合粉体を含む紫外線遮蔽性組成物。 The ultraviolet shielding composition containing the composite powder as described in any one of Claims 1-4. 請求項1〜4のいずれか一項に記載の複合粉体を含む日焼け止め化粧料。 A sunscreen cosmetic comprising the composite powder according to any one of claims 1 to 4.
JP2008309847A 2008-12-04 2008-12-04 Composite powder and method for producing the same Pending JP2010132493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008309847A JP2010132493A (en) 2008-12-04 2008-12-04 Composite powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008309847A JP2010132493A (en) 2008-12-04 2008-12-04 Composite powder and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010132493A true JP2010132493A (en) 2010-06-17

Family

ID=42344195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008309847A Pending JP2010132493A (en) 2008-12-04 2008-12-04 Composite powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010132493A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060375A (en) * 2011-09-12 2013-04-04 Daito Kasei Kogyo Kk Metal oxide-zinc oxide solid solution particle, method for producing the same, spherical powder, coated spherical powder and cosmetic
CN110730904A (en) * 2017-07-04 2020-01-24 株式会社电装 Temperature sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060375A (en) * 2011-09-12 2013-04-04 Daito Kasei Kogyo Kk Metal oxide-zinc oxide solid solution particle, method for producing the same, spherical powder, coated spherical powder and cosmetic
CN110730904A (en) * 2017-07-04 2020-01-24 株式会社电装 Temperature sensor
CN110730904B (en) * 2017-07-04 2021-02-19 株式会社电装 Temperature sensor

Similar Documents

Publication Publication Date Title
JP3611303B2 (en) Hollow fine powder, flaky titanium oxide fine powder obtained by pulverizing hollow fine powder, and method for producing them
EP0684208B1 (en) Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same
JP2008254990A (en) Zinc oxide, method for producing the same, and cosmetic using the same
JPH0661457B2 (en) Oil dispersion and method for producing the same
WO2004085315A1 (en) Porous titanium oxide powder and method for production thereof
TW200536900A (en) Surface-modified non-metal/metal oxides coated with silicon dioxide
JP2008254991A (en) Zinc oxide, method for producing the same, and cosmetic using the same
JPH07247119A (en) Titanium dioxide aqueous dispersion
JP5794852B2 (en) Titanium dioxide pigment for cosmetics and method for producing the same
JP5173245B2 (en) Method for producing surface-coated zinc oxide
JP5205204B2 (en) Monoclinic fine particle bismuth oxide production method, ultraviolet shielding dispersion and production method thereof, and ultraviolet shielding coating composition
JPWO2008062871A1 (en) Method for producing fine particle zinc oxide powder and cosmetic containing the same
JP2008094917A (en) Surface-coated zinc oxide and its manufacturing method, and ultraviolet ray-shielding composition comprising the same
JP5876979B2 (en) Titanium dioxide pigment, method for producing the same, and printing ink composition
JP5005414B2 (en) Zinc oxide, method for producing the same, and cosmetics using the same
US5837050A (en) Ultrafine iron-containing rutile titanium oxide and process for producing the same
JP2008019106A (en) Method for producing metal oxide particle
JP2008254989A (en) Zinc oxide, method for producing the same, and cosmetic using the same
JP2010132493A (en) Composite powder and method for producing the same
JP4256133B2 (en) Method for producing acicular titanium dioxide fine particles
KR101763357B1 (en) Preparation method of rutile titanium dioxide powder
JP2010168254A (en) Ultraviolet screening agent, cosmetic, and micro-acicular zinc oxide
EP2050719A1 (en) Powdery titanium oxide-zinc oxide aggregate, and process for production thereof
JP2002226826A (en) Ultraviolet absorber and its use
JP2008273759A (en) Zinc oxide and method for producing the same and ultraviolet shielding composition using the same