JP5876979B2 - Titanium dioxide pigment, method for producing the same, and printing ink composition - Google Patents

Titanium dioxide pigment, method for producing the same, and printing ink composition Download PDF

Info

Publication number
JP5876979B2
JP5876979B2 JP2010000896A JP2010000896A JP5876979B2 JP 5876979 B2 JP5876979 B2 JP 5876979B2 JP 2010000896 A JP2010000896 A JP 2010000896A JP 2010000896 A JP2010000896 A JP 2010000896A JP 5876979 B2 JP5876979 B2 JP 5876979B2
Authority
JP
Japan
Prior art keywords
titanium dioxide
range
titanium
dioxide pigment
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010000896A
Other languages
Japanese (ja)
Other versions
JP2010180402A (en
Inventor
磯部 薫
薫 磯部
猛 藤村
猛 藤村
和哉 横田
和哉 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2010000896A priority Critical patent/JP5876979B2/en
Publication of JP2010180402A publication Critical patent/JP2010180402A/en
Application granted granted Critical
Publication of JP5876979B2 publication Critical patent/JP5876979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Description

本発明は、隠ペイ性と印刷適正に優れ、青味色調を呈する印刷インキ組成物用の二酸化チタン顔料、及び、その製造方法に関する。   The present invention relates to a titanium dioxide pigment for a printing ink composition that is excellent in concealment property and printability and exhibits a bluish color tone, and a method for producing the same.

グラビア印刷は、写真印刷に適しているため、包装材、出版物、建材等に広く用いられている。グラビア印刷に用いるインキ組成物には高隠ペイ性が求められるので、一般的に、可視光の屈折率が高いルチル型二酸化チタン顔料が配合されている。しかし、ルチル型二酸化チタン顔料は硬度が高く、ドクターブレードが摩擦して、版カブリ、ドクター筋等の印刷欠陥が生じ易くなったり、高価な印刷シリンダーの磨耗が促進されるという問題があった。特に、近年、印刷の高速化やインキ組成物の水溶性化によって、ドクターブレードに一層負荷が掛かる方向に進んでいる。このため、グラビア印刷に、硬度の低いアナターゼ型二酸化チタン顔料を用いて、印刷適正を向上させる技術が提案されている。(特許文献1参照) アナターゼ型はルチル型より可視光の屈折率が小さいので、この技術では、顔料の粒子径を、隠ペイ性が得られるのに最適な0.2〜0.4μmの範囲としている。   Since gravure printing is suitable for photographic printing, it is widely used for packaging materials, publications, building materials and the like. Since an ink composition used for gravure printing is required to have a high concealment property, a rutile type titanium dioxide pigment having a high refractive index of visible light is generally blended. However, the rutile type titanium dioxide pigment has a high hardness, and the doctor blade is rubbed to cause printing defects such as plate fog and doctor streaks, and wear of an expensive printing cylinder is promoted. In particular, in recent years, the doctor blade has been increasingly loaded with higher printing speed and water-solubility of the ink composition. For this reason, a technique for improving printing suitability by using anatase-type titanium dioxide pigment having low hardness for gravure printing has been proposed. (See Patent Document 1) Since the anatase type has a smaller refractive index of visible light than the rutile type, in this technique, the particle diameter of the pigment is in a range of 0.2 to 0.4 μm which is optimal for obtaining a concealment property. It is said.

特開2004−83904号公報JP 2004-83904 A

しかしながら、特許文献1記載の二酸化チタン顔料でも、隠ペイ性がルチル型には及ばず、ルチル型と同等の隠ペイ性を得ようと、インキ組成物の顔料濃度を高くすると、ドクターブレードや印刷シリンダーの金属磨耗が大きくなり、従来のルチル型との差異がほとんど認められなくなってしまった。また、顔料濃度が高いインキ組成物の塗膜は、色調が黄味になり、二酸化チタン顔料が有する青味色調の鮮やかな白さが損なわれるという問題も生じた。   However, even with the titanium dioxide pigment described in Patent Document 1, the hiding property does not reach that of the rutile type, and in order to obtain the hiding property equivalent to the rutile type, if the pigment concentration of the ink composition is increased, a doctor blade or printing The metal wear of the cylinder increased, and the difference from the conventional rutile type was hardly recognized. In addition, the coating film of the ink composition having a high pigment concentration has a problem that the color tone becomes yellow and the vivid white of the blue color tone of the titanium dioxide pigment is impaired.

本発明者らは、これらの問題点を解決すべく鋭意研究を重ねた結果、特定の平均粒子径を有する多孔性二酸化チタン粒子の表面に、特定の無機化合物を被覆した二酸化チタン顔料を、グラビア印刷のインキ組成物に用いると、高隠ペイ性が得られ、金属磨耗、特にドクターブレードの磨耗も低減されて印刷適正が向上すること、また、このものは著しい青味の色調を有することを見出し、本発明を完成させた。   As a result of intensive studies to solve these problems, the present inventors have obtained a gravure coating of a titanium dioxide pigment coated with a specific inorganic compound on the surface of porous titanium dioxide particles having a specific average particle diameter. When used in a printing ink composition, high concealment is obtained, metal wear, particularly doctor blade wear, is reduced and printing suitability is improved, and this has a remarkable bluish hue. The headline and the present invention were completed.

即ち、本発明は0.2〜1.0μmの範囲の平均粒子径を有する二酸化チタンの多孔性粒子の表面に、ケイ素酸化物及び/又はアルミニウム酸化物が被覆されている印刷インキ組成物用の二酸化チタン顔料である。   That is, the present invention is for a printing ink composition in which the surface of titanium dioxide porous particles having an average particle size in the range of 0.2 to 1.0 μm is coated with silicon oxide and / or aluminum oxide. It is a titanium dioxide pigment.

本発明により、隠ペイ性が優れ印刷適正に優れた印刷インキ組成物が得られる。   According to the present invention, a printing ink composition having excellent concealment properties and excellent printability can be obtained.

図1は実施例1で得られた二酸化チタンの多孔性粒子(試料a)の透過型電子顕微鏡写真である。(倍率16,000倍)1 is a transmission electron micrograph of titanium dioxide porous particles (sample a) obtained in Example 1. FIG. (Magnification 16,000 times) 図2は実施例1で得られた二酸化チタン顔料(試料A)の透過型電子顕微鏡写真である。(倍率1万6,000倍)FIG. 2 is a transmission electron micrograph of the titanium dioxide pigment (sample A) obtained in Example 1. (Magnification 16,000 times) 図3は比較例1で得られた二酸化チタン粒子(試料b)の透過型電子顕微鏡写真である。(倍率1万6,000倍)FIG. 3 is a transmission electron micrograph of the titanium dioxide particles (sample b) obtained in Comparative Example 1. (Magnification 16,000 times) 図4は比較例1で得られた二酸化チタン顔料(試料B)の透過型電子顕微鏡写真である。(倍率1万6,000倍)FIG. 4 is a transmission electron micrograph of the titanium dioxide pigment (sample B) obtained in Comparative Example 1. (Magnification 16,000 times) 図5は実施例1で得られた二酸化チタン顔料(試料A)の走査型電子顕微鏡写真である。(倍率2万4,000倍)FIG. 5 is a scanning electron micrograph of the titanium dioxide pigment (sample A) obtained in Example 1. (Magnification 24,000 times) 図6は実施例1で得られた二酸化チタン顔料(試料A)の走査型電子顕微鏡写真である。(倍率13万倍)FIG. 6 is a scanning electron micrograph of the titanium dioxide pigment (sample A) obtained in Example 1. (Magnification 130,000 times)

本発明は、印刷インキ組成物用の二酸化チタン顔料であって、0.2〜1.0μmの範囲の平均粒子径を有する二酸化チタンの多孔性粒子の表面に、ケイ素酸化物及び/又はアルミニウム酸化物が被覆されていることを特徴とする。本発明では、多孔性粒子の平均径が、可視光の反射率が最も高くなる前記範囲にあるので、稠密で表面が平滑な粒子でなくても、二酸化チタンが有する優れた隠ペイ性が損なわれることがなく、多孔性粒子表面に、ケイ素酸化物及び/又はアルミニウム酸化物を被覆することで、より印刷インキに適した二酸化チタン顔料としている。また、一般的に、二酸化チタン顔料は、可視光領域での屈折能が、短波長光側の方が高いため、青味色調を示すが、本発明では、従来のものに比べて一層青味の色調を呈する。多孔性粒子が空孔を有している故に、長波長光が粒子内部にまで達し易くなり、粒子表面での屈折能が著しく低下するからではないかと推測される。このため、本発明の二酸化チタン顔料を、高濃度でインキ組成物に配合しても、黄味色調になり難い。更に、グラビア印刷のインキ組成物に用いると、優れた印刷適正が得られる。これは、多孔性粒子表面の凹凸によって、硬度の高い二酸化チタンとドクターブレードとが接触し難くなって、ドクターブレードの磨耗が低減されるからであると考えられる。より好ましい、多孔性粒子の平均粒子径は、0.2〜0.5μmである。   The present invention relates to a titanium dioxide pigment for a printing ink composition, wherein silicon oxide and / or aluminum oxide is formed on the surface of titanium dioxide porous particles having an average particle diameter in the range of 0.2 to 1.0 μm. The object is covered. In the present invention, the average diameter of the porous particles is in the above-described range where the reflectance of visible light is the highest, so even if the particles are not dense and have a smooth surface, the excellent concealment property of titanium dioxide is impaired. Thus, the surface of the porous particles is coated with silicon oxide and / or aluminum oxide, thereby making the titanium dioxide pigment more suitable for printing ink. In general, titanium dioxide pigments exhibit a bluish color tone because the refractive power in the visible light region is higher on the short wavelength side, but in the present invention, they are more bluish than conventional ones. The color tone is exhibited. It is presumed that because the porous particles have pores, long-wavelength light easily reaches the inside of the particles, and the refractive power on the particle surface is significantly reduced. For this reason, even if it mix | blends the titanium dioxide pigment of this invention with an ink composition by high concentration, it is hard to become a yellowish color tone. Furthermore, when it is used for an ink composition for gravure printing, excellent printing suitability is obtained. This is presumably because the hardness of the titanium dioxide and the doctor blade are difficult to come into contact with each other due to the irregularities on the surface of the porous particles, and wear of the doctor blade is reduced. More preferably, the average particle diameter of the porous particles is 0.2 to 0.5 μm.

本発明においては、多孔性粒子に含まれる粒子が、走査型電子顕微鏡写真から計測した最長径が10nm以上の細孔を粒子表面に有していれば、青味色調や印刷適正に有利に作用するので好ましい。最長径が50nm以上の細孔であればより好ましく、80nm以上であれば更に好ましい。最長径の上限は、多孔性粒子の平均粒子径によって制限を受けるが、通常は300nm未満である。また、電子顕微鏡法による平均粒子径をD、粒子形状を真球として比表面積から算出した粒子径をDとすると、従来の球密な二酸化チタン粒子は表面がほぼ平滑であるため、DとDの値に大差がなく、その比・D/Dは1に近似される。一方、本発明で用いる多孔性粒子は表面に凹凸を有しているので、Dの方がDより大きくなり、D/Dは1.50以上となる。多孔性粒子の形状は、等方性形状が好ましく、等方性粒子であれば、非球状粒子、略球状粒子等のいずれでも良い。更に、多孔性粒子が、一次粒子の集合体であれば、多孔性状粒子表面の凹凸のピッチが大きく、空孔の深度が深くなり易いので好ましい。これらの一次粒子同士は、ファンデルワールス力等の粒子間の相互作用で凝集したり、機械的に圧密化されたものではなく、強固に結合しており、通常の混合、解砕等の工業的操作では容易に崩壊せず、ほとんどが多孔性粒子として残る。一次粒子の平均粒子径は0.01μm以上0.2μm未満の範囲にあれば、所望の多孔性粒子が形成され易く好ましい。 In the present invention, if the particles contained in the porous particles have pores having a longest diameter of 10 nm or more as measured from a scanning electron micrograph on the particle surface, it is advantageous for bluish color tone and printing suitability. Therefore, it is preferable. It is more preferable if the longest diameter is a pore of 50 nm or more, and further preferable if it is 80 nm or more. The upper limit of the longest diameter is limited by the average particle diameter of the porous particles, but is usually less than 300 nm. Further, assuming that the average particle diameter by electron microscopy is D 1 , and the particle diameter calculated from the specific surface area with the particle shape being a true sphere is D 2 , the conventional spherical dense titanium dioxide particles have a substantially smooth surface. There is no significant difference between the values of 1 and D 2 , and the ratio D 1 / D 2 is approximated to 1. On the other hand, porous particles used in the present invention because it has an uneven surface, towards D 1 is larger than D 2, D 1 / D 2 becomes 1.50 or more. The shape of the porous particles is preferably an isotropic shape. As long as the particles are isotropic, any of non-spherical particles, substantially spherical particles and the like may be used. Furthermore, if the porous particles are aggregates of primary particles, it is preferable because the pitch of the irregularities on the surface of the porous particles is large and the depth of the holes tends to be deep. These primary particles are not agglomerated by the interaction between particles such as van der Waals force, or are mechanically consolidated, but are firmly bonded, and are usually used for industrial mixing and crushing industries. Operation does not disintegrate easily and most remains as porous particles. If the average particle diameter of the primary particles is in the range of 0.01 μm or more and less than 0.2 μm, it is preferable that desired porous particles are easily formed.

結晶形はアナターゼ型、ルチル形のいずれでも良いが、より優れた印刷適正を得るのであれば、ルチル型より硬度が小さいアナターゼ型を用いるのが好ましい。アナターゼ型にすると、隠ペイ性がルチル型より低下するが、本発明では金属磨耗が非常に小さいため、金属磨耗への顔料濃度の影響が小さく、隠ペイ性を補うために高顔料濃度にしても、印刷適性がほとんど低下しない。また、青味色調も強いので、同様の理由で高顔料濃度にしても、黄味色調を呈し難い。アナターゼ型二酸化チタン粒子とは、アナターゼ型結晶を98〜100%の範囲で含むものであり、X線回折によりルチル型結晶の含有量(R%)を求め、100−R(%)をアナターゼ型結晶の含有量とする。   The crystal form may be either anatase type or rutile type, but it is preferable to use an anatase type whose hardness is smaller than that of the rutile type in order to obtain better printing suitability. When the anatase type is used, the hiding property is lower than that of the rutile type, but in the present invention, the metal wear is very small, so the influence of the pigment concentration on the metal wear is small, and a high pigment concentration is used to supplement the hiding property. However, the printability is hardly deteriorated. Moreover, since the blue tint is strong, even if it is a high pigment density | concentration for the same reason, it is hard to exhibit a yellow tint. Anatase-type titanium dioxide particles contain anatase-type crystals in the range of 98 to 100%, and the content (R%) of rutile-type crystals is determined by X-ray diffraction, and 100-R (%) is converted to anatase-type. The content of crystals.

ケイ素酸化物、アルミニウム酸化物の被覆層の様態は、多孔質であっても、緻密であっても良く、適宜選択できる。また、それぞれを単独で被覆することも、これらを積層したり、混合して被覆する等して、組み合わせて用いることもできる。特に、多孔性粒子表面にケイ素酸化物を被覆した後、更にその表面にアルミニウム酸化物を被覆すると、裏刷りグラビア印刷に適した隠ペイ性が高いものとなり、ケイ素酸化物を被覆せずにアルミニウム酸化物を被覆すると、表刷りグラビア印刷に適した光沢が高いものとなる。これらの好ましい被覆量は、TiO換算の多孔性粒子に対し、ケイ素酸化物がSiO換算で0〜10重量%の範囲であり、アルミニウム酸化物がAl換算で1〜10重量%の範囲である。より好ましくは、裏刷り用では、それぞれ2〜5重量%、1〜6重量%の範囲であり、表刷り用では、それぞれ0重量%、1〜6重量%の範囲である。尚、本発明では、ケイ素酸化物、アルミニウム酸化物とは、ケイ素、アルミニウムの無水酸化物、含水酸化物、水和酸化物を包含している。 The form of the silicon oxide or aluminum oxide coating layer may be porous or dense, and can be selected as appropriate. Each of them can be coated alone, or can be used in combination by laminating or mixing them. In particular, if the surface of the porous particles is coated with silicon oxide and then further coated with aluminum oxide, the surface is suitable for back-printing gravure printing, and the aluminum is not coated with silicon oxide. When the oxide is coated, the gloss suitable for surface printing and gravure printing becomes high. These preferable coating amounts are in the range of 0 to 10% by weight of silicon oxide in terms of SiO 2 and 1 to 10% by weight of aluminum oxide in terms of Al 2 O 3 with respect to porous particles in terms of TiO 2. Range. More preferably, it is in the range of 2 to 5% by weight and 1 to 6% by weight, respectively, for back printing, and is in the range of 0% by weight and 1 to 6% by weight, respectively, for surface printing. In the present invention, the silicon oxide and aluminum oxide include silicon, an anhydrous oxide of aluminum, a hydrous oxide, and a hydrated oxide.

本発明では、ケイ素酸化物、アルミニウム酸化物に加え、更に、これら以外の無機化合物や、有機化合物を被覆しても良い。無機化合物としては、例えば、ジルコニウム、スズ、チタン、アンチモン物等の酸化物、リン酸塩等が挙げられる。有機化合物としては、例えば、ポリオール化合物(トリメチロールプロパン、トリメチロールエタン、ジトリメチロールプロパン、トリメチロールプロパンエトキシレート、ペンタエリスリトール等)、アルカノールアミン化合物(モノエタノールアミン、モノプロパノールアミン、ジエタノールアミン、ジプロパノールアミン、トリエタノールアミン、トリプロパノールアミン等)及びその誘導体(酢酸塩、シュウ塩、酒石酸塩、ギ酸塩、安息香酸塩等)が挙げられる。中でも、ポリオール化合物は、分散性を向上させる効果が高いので好ましく、トリメチロールプロパン、トリメチロールエタンであれば更に好ましい。有機化合物は、ケイ素酸化物、アルミニウム酸化物の被覆上に被覆するのが好ましく、その被覆量は、TiO換算の多孔性粒子に対し、0.1〜5重量%の範囲が好ましく、0.1〜2重量%の範囲が更に好ましい。 In the present invention, in addition to silicon oxide and aluminum oxide, inorganic compounds other than these and organic compounds may be coated. Examples of the inorganic compound include oxides such as zirconium, tin, titanium, and antimony, and phosphates. Examples of organic compounds include polyol compounds (trimethylolpropane, trimethylolethane, ditrimethylolpropane, trimethylolpropane ethoxylate, pentaerythritol, etc.), alkanolamine compounds (monoethanolamine, monopropanolamine, diethanolamine, dipropanolamine). , Triethanolamine, tripropanolamine and the like) and derivatives thereof (acetate, oxalate, tartrate, formate, benzoate, etc.). Among these, a polyol compound is preferable because it has a high effect of improving dispersibility, and trimethylolpropane and trimethylolethane are more preferable. The organic compound is preferably coated on a silicon oxide or aluminum oxide coating, and the coating amount is preferably in the range of 0.1 to 5% by weight with respect to the porous particles in terms of TiO 2 . The range of 1 to 2% by weight is more preferable.

次に、本発明は、印刷インキ用の酸化チタン顔料の製造方法であって、0.2〜1.0μmの範囲の平均粒子径を有する二酸化チタンの多孔性粒子を得る工程、得られた多孔性粒子の表面にケイ素酸化物及び/又はアルミニウム酸化物を被覆する工程を含むことを特徴とする。   Next, the present invention is a method for producing a titanium oxide pigment for printing ink, the step of obtaining porous particles of titanium dioxide having an average particle diameter in the range of 0.2 to 1.0 μm, and the obtained porous The surface of the conductive particles is covered with silicon oxide and / or aluminum oxide.

多孔性粒子を得るには、適当な大きさの二酸化チタン粒子を、噴霧乾燥や圧密処理等によって造粒しても良い。しかし、本発明においては、加水分解性チタン化合物溶液を200〜400℃の範囲の温度下で、且つ30〜200kg/cmの範囲の圧力下で加水分解して含水酸化チタンを生成させた後、得られた含水酸化チタンを400〜1200℃の範囲の温度で焼成する方法を用いると、前記範囲の大きさの細孔を有する多孔性粒子が得られ易く好ましい。 In order to obtain porous particles, titanium dioxide particles having an appropriate size may be granulated by spray drying, compaction treatment or the like. However, in the present invention, the hydrolyzable titanium compound solution is hydrolyzed at a temperature in the range of 200 to 400 ° C. and a pressure in the range of 30 to 200 kg / cm 2 to generate hydrous titanium oxide. When the method of calcining the obtained hydrous titanium oxide at a temperature in the range of 400 to 1200 ° C. is used, it is preferable that porous particles having pores in the above range are easily obtained.

加水分解は、オートクレーブ等の公知の耐圧容器中で行うことができ、加水分解により好ましい温度は200〜350℃の範囲であり、より好ましい圧力は30〜150kg/cmの範囲である。反応を促進するために、加水分解を加水分解用核剤の存在下で行っても良い。加水分解用核剤は、例えば、含水酸化チタンを熟成させることで得られる。加水分解性チタン化合物としては、例えば、硫酸チタニル(TiOSO)、四塩化チタン(TiCl)、チタンアルコキシド(Ti(OR):Rはアルキル基)等を用いることができ、コストの点で硫酸チタニル、四塩化チタンを用いるのが好ましい。特に、硫酸チタニルを加水分解すると、カリフラワー状の多孔性粒子がより得られ易くなるので、硫酸チタニルを用いるのが好ましい。硫酸チタニルは、例えば、イルミナイト鉱、チタンスラグ等のチタン含有鉱石を、硫酸で溶解させながらチタン成分と硫酸とを反応させることで得られる。 Hydrolysis can be carried out in a known pressure vessel such as an autoclave, and a preferable temperature by hydrolysis is in the range of 200 to 350 ° C., and a more preferable pressure is in the range of 30 to 150 kg / cm 2 . In order to accelerate the reaction, the hydrolysis may be performed in the presence of a nucleating agent for hydrolysis. The nucleating agent for hydrolysis can be obtained, for example, by aging hydrous titanium oxide. As the hydrolyzable titanium compound, for example, titanyl sulfate (TiOSO 4 ), titanium tetrachloride (TiCl 4 ), titanium alkoxide (Ti (OR) 4 : R is an alkyl group), and the like can be used. It is preferable to use titanyl sulfate or titanium tetrachloride. In particular, when titanyl sulfate is hydrolyzed, cauliflower-like porous particles are more easily obtained. Therefore, it is preferable to use titanyl sulfate. Titanyl sulfate is obtained, for example, by reacting a titanium component and sulfuric acid while dissolving a titanium-containing ore such as illuminite ore and titanium slag with sulfuric acid.

含水酸化チタンの焼成には、ロータリーキルン、トンネルキルン等の公知の機器を用いることができる。焼成温度はアナターゼ型結晶を得るのであれば、400〜900℃の範囲が好ましく、ルチル型結晶を得るのであれば、900〜1200℃の範囲が好ましい。焼成は、各種の焼成処理剤、例えば、リン酸化合物、カリウム化合物、アルミニウム化合物、亜鉛化合物等の存在下で行うこともできる。特に、リン酸化合物、カリウム化合物は、粒子形状を整える効果を有するので、焼成処理剤としてこれらを併用するのが好ましい。これらの使用量は、TiO換算の含水酸化チタンに対し、リン酸化合物はPとして0.1〜0.4重量%の範囲が好ましく、カリウム化合物はKOとして0.05〜0.4重量%の範囲が好ましい。リン酸化合物としては、例えば、オルトリン酸、ピロリン酸及びそれらの塩等が挙げられる。カリウム化合物としては、例えば、水酸化カリウム、塩化カリウム等が挙げられる。 Known devices such as a rotary kiln and a tunnel kiln can be used for firing the hydrous titanium oxide. The firing temperature is preferably in the range of 400 to 900 ° C. if an anatase type crystal is obtained, and is preferably in the range of 900 to 1200 ° C. if a rutile type crystal is obtained. Baking can also be performed in the presence of various baking treatment agents such as a phosphoric acid compound, a potassium compound, an aluminum compound, and a zinc compound. In particular, since a phosphoric acid compound and a potassium compound have an effect of adjusting the particle shape, it is preferable to use them together as a baking treatment agent. The amount of these used is preferably in the range of 0.1 to 0.4% by weight as the phosphoric acid compound as P 2 O 5 with respect to the hydrous titanium oxide in terms of TiO 2 , and the potassium compound is 0.05 to as the K 2 O. A range of 0.4% by weight is preferred. Examples of the phosphoric acid compound include orthophosphoric acid, pyrophosphoric acid, and salts thereof. Examples of the potassium compound include potassium hydroxide and potassium chloride.

次いで、得られた多孔性粒子を、ケイ素酸化物やアルミニウム酸化物を被覆する工程に供する。先ず、多孔性粒子を水中に分散させて、好ましくは、縦型サンドミル、横型サンドミル等を用いて湿式粉砕を行い、水性スラリーを調製する。この際、水性スラリーのpHを9以上に調整すると、多孔性粒子が水中に安定して分散するので好ましい。また、必要に応じて、例えば、ヘキサメタリン酸ナトリウム、ピロリン酸ナトリウム等のリン酸化合物、ケイ酸ナトリウム、ケイ酸カリウム等のケイ酸化合物等の分散剤を用いても良い。水性スラリー中の多孔性粒子の固形分濃度は、50〜800g/リットルの範囲であり、好ましくは100〜500g/リットルの範囲である。   Next, the obtained porous particles are subjected to a step of coating silicon oxide or aluminum oxide. First, porous particles are dispersed in water, and wet pulverization is preferably performed using a vertical sand mill, a horizontal sand mill, or the like to prepare an aqueous slurry. At this time, it is preferable to adjust the pH of the aqueous slurry to 9 or more because the porous particles are stably dispersed in water. Moreover, you may use dispersing agents, such as phosphoric acid compounds, such as sodium hexametaphosphate and sodium pyrophosphate, and silicic acid compounds, such as sodium silicate and potassium silicate, as needed. The solid content concentration of the porous particles in the aqueous slurry is in the range of 50 to 800 g / liter, and preferably in the range of 100 to 500 g / liter.

その後、水性スラリー中に、ケイ素化合物の塩、アルミニウム化合物の塩等を添加した後、中和剤を添加したり、あるいは、ケイ素化合物の塩、アルミニウム化合物の塩等と中和剤とを同時に添加する等すれば、ケイ素酸化物、アルミニウム化合物が被覆される。用いるケイ素化合物の塩としては、ケイ酸ナトリウム、ケイ酸カリウム等が挙げられる。アルミニウム化合物の塩としては、アルミン酸ナトリウム、硫酸アルミニウム、硝酸アルミニウム等が挙げられる。また、中和剤としては、塩基性化合物であれば、アルカリ金属、アルカリ土類金属等の水酸化物や炭酸塩等、アンモニア等のアンモニウム化合物、アミン類等が、酸性化合物であれば、硫酸、塩酸等の無機酸、酢酸、ギ酸等の有機酸等が挙げられる。   Then, after adding a salt of a silicon compound, a salt of an aluminum compound, etc. to an aqueous slurry, a neutralizing agent is added, or a salt of a silicon compound, a salt of an aluminum compound and the neutralizing agent are added simultaneously. By doing so, the silicon oxide and the aluminum compound are coated. Examples of the silicon compound salt used include sodium silicate and potassium silicate. Examples of the aluminum compound salt include sodium aluminate, aluminum sulfate, and aluminum nitrate. Further, as the neutralizing agent, if it is a basic compound, hydroxides or carbonates such as alkali metals and alkaline earth metals, ammonium compounds such as ammonia, amines, etc., if acidic compounds, sulfuric acid And inorganic acids such as hydrochloric acid, and organic acids such as acetic acid and formic acid.

多孔性粒子に被覆するケイ素酸化物は、多孔質処理と緻密処理が知られており、前記の方法では多孔質ケイ素酸化物の被覆が得られる。緻密ケイ素酸化物を被覆するのであれば、特開昭53−33228号公報等に記載されている公知の方法を応用できる。特開昭53−33228号公報に記載の方法を用いるのであれば、多孔性粒子のスラリー80〜100℃の範囲の温度に維持しながら、好ましくは、スラリーのpHを9〜10.5の範囲に維持しながら、ケイ酸ナトリウムを急速に添加した後、9〜10.5のpHで中和し、その後、80〜100℃の範囲の温度を50〜60分間保持する。あるいは、ケイ酸化合物の塩を30分間以上かけて中和する方法を用いることもできる。この方法では、中和は1時間以上かけて行うのが更に好ましい。中和pHは4〜7.5の範囲に、また、中和時の水性スラリーのpHが80℃以上であれば、より緻密な被覆が形成され易いので好ましい。より好ましい中和pHの範囲は4.5〜7であり、中和温度は90℃以上である。   As for the silicon oxide coated on the porous particles, porous treatment and dense treatment are known, and the porous silicon oxide coating can be obtained by the above-described method. If the dense silicon oxide is coated, a known method described in JP-A-53-33228 can be applied. If the method described in JP-A-53-33228 is used, the slurry pH is preferably in the range of 9 to 10.5 while maintaining the slurry in the range of 80 to 100 ° C. of the porous particle slurry. The sodium silicate is rapidly added while being maintained at, and then neutralized at a pH of 9-10.5, after which a temperature in the range of 80-100 ° C. is held for 50-60 minutes. Or the method of neutralizing the salt of a silicic acid compound over 30 minutes can also be used. In this method, the neutralization is more preferably performed over 1 hour. If the neutralization pH is in the range of 4 to 7.5 and the pH of the aqueous slurry at the time of neutralization is 80 ° C. or higher, it is preferable because a denser coating is easily formed. The range of more preferable neutralization pH is 4.5-7, and the neutralization temperature is 90 degreeC or more.

ケイ素酸化物、アルミニウム酸化物等を被覆した多孔性粒子を、脱水してスラリーから固液分離して乾燥し、必要に応じて乾式粉砕を行えば、二酸化チタン顔料が得られる。脱水には、例えば、フィルタープレス、ロールプレス等を用いることができる。乾燥には、例えば、バンド式ヒーター、バッチ式ヒーター等を用いることができる。乾式粉砕には、例えば、ハンマーミル、ピンミル等の衝撃粉砕機、解砕機等に摩砕粉砕機、ジェットミル等の気流粉砕機、スプレードライヤー等の噴霧乾燥機等を用いることができる。   Porous particles coated with silicon oxide, aluminum oxide or the like are dehydrated, solid-liquid separated from the slurry, dried, and then subjected to dry pulverization as required to obtain a titanium dioxide pigment. For dehydration, for example, a filter press, a roll press, or the like can be used. For example, a band heater, a batch heater, or the like can be used for drying. For the dry pulverization, for example, an impact pulverizer such as a hammer mill or a pin mill, a pulverizer or the like, a grinding pulverizer, an airflow pulverizer such as a jet mill, or a spray dryer such as a spray dryer can be used.

有機化合物として、例えば、ポリオール化合物を被覆するのであれば、ケイ素酸化物やアルミニウム酸化物を被覆後の多孔性粒子と、乾式粉砕機や高速撹拌機を用い、両者を撹拌、混合することで被覆が行える。特に、乾式粉砕機を用いる方法は、多孔性粒子の粉砕と有機化合物の被覆とを同時に行うことができるので好ましい。乾式粉砕機としては、粉砕効率が良く、混合性に優れたジェットミル等の気流式粉砕機を用いるが好ましい。   As an organic compound, for example, if a polyol compound is coated, the porous particles coated with silicon oxide or aluminum oxide are coated by using a dry pulverizer or a high-speed stirrer, and stirring and mixing them. Can be done. In particular, a method using a dry pulverizer is preferable because pulverization of porous particles and coating with an organic compound can be performed simultaneously. As the dry pulverizer, an airflow pulverizer such as a jet mill having good pulverization efficiency and excellent mixing properties is preferably used.

更に、本発明は、印刷インキ組成物であって、前記二酸化チタン顔料及びインキ用樹脂を含むことを特徴とする。本発明は、特に、裏刷り、表刷り等のグラビア印刷において、金属磨耗を低減するので、ドクターブレードの摩擦が抑制され、版カブリ、ドクター筋等の印刷欠陥が生じ難く、優れた印刷適正を有している。このため、ドクターブレードに負荷が掛かり易い印刷の高速化やインキ組成物の水溶性化にも対応できる。また、高価な印刷シリンダーも磨耗し難くなるので、経済的にも有利である。しかも、隠ペイ性が高く、青味色調の鮮やかな白さを有している。また、グラビア印刷ばかりでなく、その他の凹版印刷、あるいは、凸版印刷、平板印刷、孔版印刷等にも用いることができる。印刷する基材は、プラスチックス、紙、金属箔等制限無く選択できる。尚、印刷インキ組成物には、最終的な印刷インキの他に、調色インキ、カラーチップ等の印刷インキの中間品も包含される。   Furthermore, this invention is a printing ink composition, Comprising: The said titanium dioxide pigment and the resin for ink are characterized by the above-mentioned. In particular, the present invention reduces metal wear in gravure printing such as back printing and surface printing, so that friction of the doctor blade is suppressed, printing defects such as plate fog and doctor streaks are unlikely to occur, and excellent printing suitability is achieved. Have. For this reason, it is possible to cope with high-speed printing and water-solubilization of the ink composition, in which the doctor blade is likely to be loaded. In addition, an expensive printing cylinder is less likely to be worn, which is economically advantageous. In addition, it has a high concealment property and a vivid white color with a blue tint. Moreover, it can be used not only for gravure printing but also for other intaglio printing, letterpress printing, flat printing, stencil printing, and the like. The substrate to be printed can be selected without limitation, such as plastics, paper, and metal foil. The printing ink composition includes intermediate products of printing inks such as toning inks and color chips in addition to the final printing ink.

前記二酸化チタン顔料の配合量は、インキ樹脂1重量部に対し、0.5〜10重量部の範囲が好ましく、裏刷り用であれば、2〜10重量部の範囲が更に好ましく、表刷り用であれば、0.5〜2重量部の範囲が更に好ましい。インキ樹脂としては、ウレタン樹脂、塩酢ビ樹脂、塩素化プロピレン樹脂、ポリアミド樹脂、アクリル樹脂、マレイン酸樹脂、環化ゴム樹脂、硝化綿、ロジン樹脂等が挙げられ、印刷方法、印刷する基材に応じて適宜選択できる。これらのインキ樹脂は、溶解型、エマルジョン型、コロイダルディスパージョン型等のいずれでも良く、常温硬化型、熱硬化型、紫外線硬化型、電子線硬化型等硬化方式も制限無く用いることができる。更に、インキ組成物には、アルコール化合物、エステル化合物、エーテル化合物、ケトン化合物、芳香族炭化水素化合物、脂肪族炭化水素化合物等の有機溶媒、水又はそれらの混合用剤等が溶媒として含まれていても良く、インキ樹脂との適正に応じて選択する。その他にも、有機顔料、無機顔料、染料等の着色剤、増量剤、界面活性剤、帯電防止剤、可塑剤、硬化助剤、消泡剤、滑剤、酸化防止剤、紫外線吸収剤、キレート剤等の各種添加剤が含まれていても良い。   The blending amount of the titanium dioxide pigment is preferably in the range of 0.5 to 10 parts by weight with respect to 1 part by weight of the ink resin, and more preferably in the range of 2 to 10 parts by weight if used for back printing. If it is, the range of 0.5-2 weight part is still more preferable. Examples of the ink resin include urethane resin, vinyl chloride resin, chlorinated propylene resin, polyamide resin, acrylic resin, maleic acid resin, cyclized rubber resin, nitrified cotton, and rosin resin. It can be appropriately selected depending on These ink resins may be any of a dissolution type, an emulsion type, a colloidal dispersion type, and a curing method such as a room temperature curing type, a thermosetting type, an ultraviolet curing type, and an electron beam curing type can be used without limitation. Furthermore, the ink composition contains an organic solvent such as an alcohol compound, an ester compound, an ether compound, a ketone compound, an aromatic hydrocarbon compound, an aliphatic hydrocarbon compound, water or a mixing agent thereof as a solvent. It may be selected according to the suitability with the ink resin. In addition, colorants such as organic pigments, inorganic pigments, dyes, extenders, surfactants, antistatic agents, plasticizers, curing aids, antifoaming agents, lubricants, antioxidants, UV absorbers, chelating agents Various additives such as these may be contained.

本発明の印刷インキ組成物は、前記二酸化チタン顔料及びインキ樹脂に、必要に応じて前記の溶媒を添加し、サンドミル、アトライター、ディスパー、ボールミル、ペイントシェイカー、2本ロールミル、3本ロールミル等の分散機を用いて混合、分散させることによって得られる。各種添加剤は、分散時に加えても、分散後に加えても良い。   The printing ink composition of the present invention may be added to the titanium dioxide pigment and the ink resin, if necessary, such as a sand mill, attritor, disper, ball mill, paint shaker, two roll mill, three roll mill, etc. It is obtained by mixing and dispersing using a disperser. Various additives may be added at the time of dispersion or after dispersion.

以下に本発明の実施例を示すが、本発明はこれらに制限されるものではない。   Examples of the present invention are shown below, but the present invention is not limited thereto.

実施例1
(多孔性粒子の調製)
TiO換算で150g/リットルの濃度の硫酸チタニル水溶液をオートクレーブに仕込み、加水分解用核剤を添加し、100kg/cmの圧力下、250℃の温度下で、4時間かけて加水分解させた後、濾過、洗浄して、含水酸化チタンを得た。その後、TiO換算で150gの含水酸化チタンに対して、オルトリン酸をPとして0.2重量%、水酸化カリウムをKOとして0.2重量%を添加した後、850℃で焼成した。得られた焼成物を、TiO濃度が300g/リットルの水性スラリーとし、水酸化ナトリウム水溶液を添加して、pHを10.5として分散させた後、サンドミルで湿式粉砕し、静置分級を行い、二酸化チタンの多孔性粒子を得た。(試料a)
Example 1
(Preparation of porous particles)
An aqueous solution of titanyl sulfate having a concentration of 150 g / liter in terms of TiO 2 was charged into an autoclave, a nucleating agent for hydrolysis was added, and hydrolysis was performed at a pressure of 100 kg / cm 2 at a temperature of 250 ° C. for 4 hours. Thereafter, filtration and washing were performed to obtain hydrous titanium oxide. Thereafter, 0.2 wt% of orthophosphoric acid as P 2 O 5 and 0.2 wt% of potassium hydroxide as K 2 O are added to 150 g of hydrous titanium oxide in terms of TiO 2 , and then at 850 ° C. Baked. The obtained baked product is made into an aqueous slurry having a TiO 2 concentration of 300 g / liter, a sodium hydroxide aqueous solution is added to disperse the pH to 10.5, and then wet pulverized by a sand mill and subjected to stationary classification. The porous particles of titanium dioxide were obtained. (Sample a)

(二酸化チタン顔料の調製)
分級後のスラリーを1000ミリリットル分取し、温度を60℃に保持しながら、撹拌下で、ケイ酸ナトリウム水溶液(SiOとして150g/リットル)80ミリリットルを60分間かけて添加し、30分間熟成した。次に、アルミン酸ナトリウム水溶液(Alとして150g/リットル)80ミリリットルを40分間かけて添加し、硫酸で30分間かけてpHを7に調整した後、60分間熟成した。熟成後、吸引濾過器で濾過、水洗し、120℃で20時間乾燥した後、ジェットミルで粉砕して、含水ケイ素酸化物をSiO換算で4重量%、含水アルミニウム酸化物をAl換算で4重量%混合被覆した本発明の二酸化チタン顔料(試料A)を得た。
(Preparation of titanium dioxide pigment)
After the classification, 1000 ml of the slurry was taken, and while maintaining the temperature at 60 ° C., 80 ml of an aqueous sodium silicate solution (150 g / liter as SiO 2 ) was added over 60 minutes with stirring, and aged for 30 minutes. . Next, 80 ml of an aqueous sodium aluminate solution (150 g / liter as Al 2 O 3 ) was added over 40 minutes, the pH was adjusted to 7 with sulfuric acid for 30 minutes, and then aged for 60 minutes. After aging, the mixture is filtered with a suction filter, washed with water, dried at 120 ° C. for 20 hours, and then pulverized with a jet mill. The hydrous silicon oxide is 4% by weight in terms of SiO 2 , and the hydrous aluminum oxide is Al 2 O 3. A titanium dioxide pigment of the present invention (sample A) coated with 4% by weight in terms of conversion was obtained.

比較例1
(二酸化チタン粒子の調製)
硫酸チタニルの加水分解を、常圧下で、100℃の温度で行った以外は、実施例1と同様にして含水酸化チタンを得た。次いで、含水酸化チタン中のTiOに対し、Al換算で0.1重量%に相当する硫酸アルミニウム、KO換算で0.3重量%に相当する水酸化カリウム及びP換算で0.15重量%に相当するオルトリン酸を焼成処理剤として得られた含水酸化チタンに添加し、電気炉を用いて960℃の温度で1時間加熱焼成して、アナターゼ型二酸化チタン粒子を得た。得られた二酸化チタン粒子を、実施例同様にして、濾過、洗浄、乾燥、粉砕、分級を行い、比較対象の二酸化チタン粒子を得た。(試料b)
Comparative Example 1
(Preparation of titanium dioxide particles)
A hydrous titanium oxide was obtained in the same manner as in Example 1 except that hydrolysis of titanyl sulfate was performed at 100 ° C. under normal pressure. Subsequently, with respect to TiO 2 in the hydrous titanium oxide, aluminum sulfate corresponding to 0.1% by weight in terms of Al 2 O 3 , potassium hydroxide corresponding to 0.3% by weight in terms of K 2 O and P 2 O 5 Orthophosphoric acid equivalent to 0.15% by weight in terms of conversion is added to the hydrous titanium oxide obtained as a baking treatment agent, and heated and baked at a temperature of 960 ° C. for 1 hour using an electric furnace to obtain anatase-type titanium dioxide particles. Obtained. The obtained titanium dioxide particles were filtered, washed, dried, pulverized, and classified in the same manner as in the Examples to obtain comparative titanium dioxide particles. (Sample b)

(無機化合物の被覆)
分級後のスラリーを1000ミリリットル分取した後、実施例と同様の方法で表面被覆して、含水ケイ素酸化物をSiO換算で4重量%、含水アルミニウム酸化物をAl換算で4重量%混合被覆した比較対象の二酸化チタン顔料を得た。(試料B)
(Inorganic compound coating)
1000 ml of the classified slurry was collected, and then surface-coated by the same method as in Example 1. The hydrous silicon oxide was 4% by weight in terms of SiO 2 and the hydrous aluminum oxide was 4 in terms of Al 2 O 3. A comparative titanium dioxide pigment coated with a weight percent mixture was obtained. (Sample B)

比較例2
硫酸法で得られたルチル型二酸化チタン粒子(試料c)を用い、実施例2と同様の方法で表面被覆して、含水ケイ素酸化物をSiO換算で4重量%、含水アルミニウム酸化物をAl換算で4重量%混合被覆した比較対象の二酸化チタン顔料を得た。(試料C)
Comparative Example 2
Using rutile-type titanium dioxide particles (sample c) obtained by the sulfuric acid method, the surface was coated in the same manner as in Example 2, and the hydrous silicon oxide was 4% by weight in terms of SiO 2 and the hydrous aluminum oxide was Al. A comparative titanium dioxide pigment coated with 4% by weight in terms of 2 O 3 was obtained. (Sample C)

評価1:粒子形状の評価
実施例1、比較例1で得られた試料a、A、b、Bの透過型電子顕微鏡写真を、図1〜4に示す。また、実施例1の試料Aの走査型電子顕微鏡写真を、図5、6に示す。試料a、Aは、多孔性粒子であることが判る。そして、図5、6から、試料Aには、最長径が100〜150nmの細孔を表面に有する粒子が含まれていることが判る。
Evaluation 1: Evaluation of Particle Shape Transmission electron micrographs of samples a, A, b, and B obtained in Example 1 and Comparative Example 1 are shown in FIGS. Moreover, the scanning electron micrograph of the sample A of Example 1 is shown in FIGS. Samples a and A are found to be porous particles. 5 and 6, it can be seen that the sample A contains particles having pores having a longest diameter of 100 to 150 nm on the surface.

評価2:平均粒子径、比表面積の評価
実施例1で得られた二酸化チタンの多孔性粒子(試料a)、比較例1、2で得られた二酸化チタン粒子(試料b、c)の平均粒子径を、電子顕微鏡法により、パーティクルアナライザー(TGZ3型:カール・ツァイス社製)を用いて測定した。累積50%粒子径を、平均粒子径とした。また、比表面積を、比表面積測定装置(モノソーブMS−16型:ユアサアイオニクス社製)を用い、簡易BET法により測定した。粒子形状を真球として比表面積から算出した粒子径(D)は、下式1によって算出した。尚、アナターゼ型二酸化チタンの比重は、3.9とした。結果を表1に示す。
式1:D=6/二酸化チタンの比重×比表面積
Evaluation 2: Evaluation of average particle diameter and specific surface area Titanium dioxide porous particles obtained in Example 1 (sample a), average particles of titanium dioxide particles obtained in Comparative Examples 1 and 2 (samples b and c) The diameter was measured by electron microscopy using a particle analyzer (TGZ3 type: manufactured by Carl Zeiss). The 50% cumulative particle size was taken as the average particle size. The specific surface area was measured by a simple BET method using a specific surface area measuring device (Monosorb MS-16 type: manufactured by Yuasa Ionics). The particle diameter (D 2 ) calculated from the specific surface area with the particle shape as a true sphere was calculated by the following formula 1. The specific gravity of anatase titanium dioxide was 3.9. The results are shown in Table 1.
Formula 1: D 2 = 6 / specific gravity of titanium dioxide × specific surface area

評価3:アナターゼ型含有量の評価
実施例1で得られた二酸化チタンの多孔性粒子(試料a)、比較例1、2で得られた二酸化チタン粒子(試料b、c)を、アルミセルに表面が平滑になるように充填した後、X線回折装置(RAD−2CV型:リガク社製)を用いて、ルチル型結晶の含有量(R(%))を求め、100−R(%)を算出して、アナターゼ型の含有量とした。結果を表1に示す。
Evaluation 3: Evaluation of content of anatase type The titanium dioxide porous particles (sample a) obtained in Example 1 and the titanium dioxide particles (samples b and c) obtained in Comparative Examples 1 and 2 were placed on the surface of an aluminum cell. After being filled so as to be smooth, using an X-ray diffractometer (RAD-2CV type: manufactured by Rigaku Corporation), the content (R (%)) of the rutile type crystal is obtained, and 100-R (%) is obtained. The content of the anatase type was calculated. The results are shown in Table 1.

Figure 0005876979
Figure 0005876979

実施例2、3、比較例3、4(インキ組成物の調製)
実施例1、比較例1、2で得られた二酸化チタン顔料(試料A〜C)を、表2に示す処方1にて、220ccのガラス製容器に仕込み、ペイントコンディショナー(レッドデビル社製)を用いて30分間分散して分散液を調製した後、表3に示す処方2処方にて、インキ樹脂1重量部に対し、二酸化チタン顔料4重量部のインキ組成物を得た。これらを、それぞれ実施例2、比較例3、4(試料D、F、G)とする。又、試料Aについては、表4に示す処方3にて、220ccのガラス製容器に仕込み、同様にして分散液を調製した後、表5に示す処方4にて、インキ樹脂1重量部に対し、二酸化チタン顔料5重量部のインキ組成物を得た。これを、実施例3(試料E)とする。
Examples 2 and 3, Comparative Examples 3 and 4 (Preparation of ink composition)
The titanium dioxide pigments (samples A to C) obtained in Example 1 and Comparative Examples 1 and 2 were charged into a 220 cc glass container according to the formulation 1 shown in Table 2, and a paint conditioner (manufactured by Red Devil) was used. The dispersion was prepared by dispersing for 30 minutes, and an ink composition of 4 parts by weight of a titanium dioxide pigment was obtained with respect to 1 part by weight of the ink resin according to the formulation 2 formulation shown in Table 3. These are referred to as Example 2 and Comparative Examples 3 and 4 (Samples D, F, and G), respectively. For Sample A, a 220 cc glass container was prepared according to the prescription 3 shown in Table 4 and a dispersion was prepared in the same manner. Then, according to the prescription 4 shown in Table 5 with respect to 1 part by weight of the ink resin. An ink composition containing 5 parts by weight of titanium dioxide pigment was obtained. This is Example 3 (Sample E).

Figure 0005876979
Figure 0005876979

Figure 0005876979
Figure 0005876979

Figure 0005876979
Figure 0005876979

Figure 0005876979
Figure 0005876979

評価4:ラミネート後の隠ペイ性、色調の評価
実施例2、3比較例3、4で得られたインキ組成物(試料D〜G)を、実用系の印刷粘度になるように、トルエン/イソプロピルアルコール/メチルエチルケトン=3/2/5の混合溶剤にて、#3ザーンカップ粘度が15〜16秒になるように希釈、調整した。この希釈インキを、#3バーコーターを用いてPETフィルム上に塗布し、30分間自然乾燥させて塗膜化した後、その塗膜上に、ウレタン樹脂(IB−422:三洋化成製、固形分濃度30重量%)を、#16バーコーターで塗布して、その上からOPPフィルムを塗膜に貼り合わせた。このフィルムの黒紙上の反射率(Y値)及びハンター表色系によるb値を、カラーコンピューター(SM−7型:スガ試験機製)を用いて測定した。結果を表6に示す。Y値が大きい程、隠ペイ性が高く、b値が小さい程、青味の色調を有している。
Evaluation 4: Evaluation of Hidden Payability and Color Tone after Lamination The ink compositions (samples D to G) obtained in Examples 2 and 3 and Comparative Examples 3 and 4 were treated with toluene / It was diluted and adjusted with a mixed solvent of isopropyl alcohol / methyl ethyl ketone = 3/2/5 so that the # 3 Zahn cup viscosity was 15 to 16 seconds. This diluted ink was applied onto a PET film using a # 3 bar coater and allowed to dry naturally for 30 minutes to form a coating film. Then, a urethane resin (IB-422: manufactured by Sanyo Chemical Industries, solid content) was formed on the coating film. 30 wt%) was applied with a # 16 bar coater, and an OPP film was bonded to the coating film from above. The reflectivity (Y value) of the film on black paper and the b value by the Hunter color system were measured using a color computer (SM-7 type: manufactured by Suga Test Instruments). The results are shown in Table 6. The higher the Y value, the higher the hidden payability, and the smaller the b value, the bluish color tone.

評価5:耐金属磨耗性の評価
評価1で用いたインキ組成物500gを、アブレーションテスター(ATII型:カール・シュレッダー社製)を用い、50万回転により試験を行った。試験前後の試験板の重量を測定し、減量を金属磨耗性の評価とした。結果を表4に示す。
Evaluation 5: Evaluation of metal abrasion resistance 500 g of the ink composition used in Evaluation 1 was tested at 500,000 revolutions using an ablation tester (ATII type: manufactured by Carl Shredder). The weight of the test plate before and after the test was measured, and the weight loss was evaluated as the metal wear resistance. The results are shown in Table 4.

本発明の二酸化チタン顔料は、従来のアナターゼ型二酸化チタン顔料より隠ペイ性が高く、青味の色調を有し、耐金属磨耗性が優れている。又、ルチル型二酸化チタン顔料と同等の隠ペイ性になるように顔料濃度を高くしても、青味色調や耐金属磨耗性が損なわれることが、ほとんど無い。   The titanium dioxide pigment of the present invention has a higher hiding property than a conventional anatase-type titanium dioxide pigment, has a bluish color tone, and is excellent in metal abrasion resistance. Moreover, even if the pigment concentration is increased so as to have the same hiding property as that of the rutile titanium dioxide pigment, the bluish color tone and the metal wear resistance are hardly impaired.

Figure 0005876979
Figure 0005876979

本発明の二酸化チタン顔料により、特にグラビア印刷において、印刷適正に優れた印刷インキ組成物が得られるので、印刷の高速化や水溶化にも対応が可能となる。   With the titanium dioxide pigment of the present invention, a printing ink composition excellent in printing suitability can be obtained particularly in gravure printing, so that it is possible to cope with higher printing speed and water solubility.

Claims (4)

水分解性チタン化合物溶液を200〜400℃の範囲の温度下で、且つ100〜200kg/cmの範囲の圧力下で加水分解して含水酸化チタンを生成させた後、得られた含水酸化チタンを400〜1200℃の範囲の温度で焼成して、電子顕微鏡法による平均粒子径D1が0.2〜1.0μmの範囲を有する二酸化チタンの多孔性粒子を得る工程、得られた多孔性粒子の表面にケイ素酸化物及び/又はアルミニウム酸化物を被覆する工程を含む印刷インキ用の二酸化チタン顔料の製造方法。 Pressurized hydrolyzable titanium compound solution at a temperature in the range of 200 to 400 ° C., and after hydrolyzing under pressure in the range of 100 to 200 kg / cm 2 to produce a hydrous oxide of titanium, the resulting hydrated The step of firing titanium at a temperature in the range of 400 to 1200 ° C. to obtain porous particles of titanium dioxide having an average particle diameter D1 in the range of 0.2 to 1.0 μm by electron microscopy, and the resulting porosity The manufacturing method of the titanium dioxide pigment for printing ink including the process of coat | covering the silicon oxide and / or aluminum oxide on the surface of particle | grains . 加水分解性チタン化合物として硫酸チタニルを用いることを特徴とする請求項に記載の二酸化チタン顔料の製造方法。 The method for producing a titanium dioxide pigment according to claim 1 , wherein titanyl sulfate is used as the hydrolyzable titanium compound. 焼成温度を400〜900℃の範囲としてアナターゼ型の二酸化チタン粒子を得ることを特徴とする請求項に記載の二酸化チタン顔料の製造方法。 The method for producing a titanium dioxide pigment according to claim 2 , wherein anatase-type titanium dioxide particles are obtained at a firing temperature in the range of 400 to 900 ° C. 含水酸化チタンの焼成をリン酸化合物、カリウム化合物の存在下で行うことを特徴とする請求項に記載の二酸化チタン顔料の製造方法。 The method for producing a titanium dioxide pigment according to claim 1 , wherein the hydrous titanium oxide is baked in the presence of a phosphoric acid compound and a potassium compound.
JP2010000896A 2009-01-08 2010-01-06 Titanium dioxide pigment, method for producing the same, and printing ink composition Active JP5876979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010000896A JP5876979B2 (en) 2009-01-08 2010-01-06 Titanium dioxide pigment, method for producing the same, and printing ink composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009002272 2009-01-08
JP2009002272 2009-01-08
JP2010000896A JP5876979B2 (en) 2009-01-08 2010-01-06 Titanium dioxide pigment, method for producing the same, and printing ink composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015197683A Division JP6031175B2 (en) 2009-01-08 2015-10-05 Titanium dioxide pigment, method for producing the same, and printing ink composition

Publications (2)

Publication Number Publication Date
JP2010180402A JP2010180402A (en) 2010-08-19
JP5876979B2 true JP5876979B2 (en) 2016-03-02

Family

ID=42762152

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010000896A Active JP5876979B2 (en) 2009-01-08 2010-01-06 Titanium dioxide pigment, method for producing the same, and printing ink composition
JP2015197683A Active JP6031175B2 (en) 2009-01-08 2015-10-05 Titanium dioxide pigment, method for producing the same, and printing ink composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015197683A Active JP6031175B2 (en) 2009-01-08 2015-10-05 Titanium dioxide pigment, method for producing the same, and printing ink composition

Country Status (1)

Country Link
JP (2) JP5876979B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897303B2 (en) * 2011-04-20 2016-03-30 三井化学株式会社 Pigment for water-based ink
JP6357083B2 (en) * 2014-11-18 2018-07-11 サカタインクス株式会社 Aqueous white printing ink composition
JP6363941B2 (en) * 2014-12-01 2018-07-25 サカタインクス株式会社 Gravure white ink composition
CN107532020B (en) * 2015-07-20 2020-11-03 惠普发展公司,有限责任合伙企业 White ink
CN110305524A (en) * 2018-03-20 2019-10-08 常州格林感光新材料有限公司 A kind of radiation-curable composition containing modified pigment and its application
JP7238472B2 (en) * 2019-02-28 2023-03-14 東洋インキScホールディングス株式会社 Gravure or flexographic white ink and its use

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928057A (en) * 1974-05-30 1975-12-23 Du Pont TiO{HD 2 {B Pigment coated with porous alumina/silica and dense silica
JPH05163022A (en) * 1991-12-11 1993-06-29 Ishihara Sangyo Kaisha Ltd Spherical anatase titanium oxide and its production
JP4153066B2 (en) * 1997-12-01 2008-09-17 石原産業株式会社 Method for producing strongly cohesive titanium oxide
JP3925886B2 (en) * 1998-12-25 2007-06-06 テイカ株式会社 Spherical titanium dioxide aggregate formed from small spherical particles of titanium dioxide and method for producing the same
JP2000319411A (en) * 1999-05-12 2000-11-21 Mitsubishi Chem Mkv Co Film for decorative sheet
EP1188714B1 (en) * 2000-01-25 2015-03-04 Nippon Aerosil Co., Ltd. Oxide powder and method for preparing the same, and product using the same
JP4014406B2 (en) * 2001-12-28 2007-11-28 千代田化工建設株式会社 Porous titanium oxide and method for producing the same
JP4090405B2 (en) * 2002-08-07 2008-05-28 石原産業株式会社 Method for producing titanium dioxide pigment
JP4626829B2 (en) * 2007-11-15 2011-02-09 Toto株式会社 Method for producing porous composite structure and porous fine particles used for the production

Also Published As

Publication number Publication date
JP6031175B2 (en) 2016-11-24
JP2016000836A (en) 2016-01-07
JP2010180402A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP6031175B2 (en) Titanium dioxide pigment, method for producing the same, and printing ink composition
TWI289541B (en) Titanium dioxide pigment and method for producing the same, and resin composition using the same
JP5209861B2 (en) Titanium dioxide white pigment and method for producing the same
JP4090405B2 (en) Method for producing titanium dioxide pigment
JP5513777B2 (en) Pigment composition for paint
JP2010006629A (en) Titanium dioxide fine particle and method for producing the same
CN103289470A (en) Inkjet recording ink composition and recorded matter
CN109952348B (en) Composite pigment, method for producing same, coating composition containing composite pigment, and coating film
JP2003055591A (en) Ink jet ink colorant and ink jet ink, aqueous pigment dispersion and organic inorganic composite particle powder
CN104411779A (en) Titanium dioxide-containing and carbonate-containing composite pigments and method for producing same
JP2020537710A (en) Methods for Producing Coated Titanium Dioxide Particles, Coated Titanium Dioxide Particles, and Products Containing These
JP4668705B2 (en) Method for producing titanium dioxide pigment
JP5292809B2 (en) Ultrafine barium sulfate, aqueous coating composition and aqueous ink composition
JPH1160231A (en) Amorphous silica particle having dual structure, its production and use
EP4077545A1 (en) Printing ink containing undried, coated titanium dioxide
JP2002275389A (en) Amorphous silica particle having increased oil- absorption, producing method and use thereof
EP2942328A1 (en) Surface coated particles and use of same
US5338354A (en) Composite pigmentary material
JP4562492B2 (en) Rod-like titanium dioxide, near-infrared shielding agent containing the same, and resin composition containing the near-infrared shielding agent
JP4256133B2 (en) Method for producing acicular titanium dioxide fine particles
JPS6156258B2 (en)
JP2003327866A (en) Black colorant for ink-jet ink and ink-jet ink and aqueous pigment dispersion
EP2912224B1 (en) Cationic polyoxometalate-coated alumina trihydrate dispersants
JP4862977B2 (en) Fine green pigment, paint and resin composition using the fine green pigment
JP4256134B2 (en) Method for producing iron-containing acicular titanium dioxide fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R151 Written notification of patent or utility model registration

Ref document number: 5876979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250