JP5005414B2 - Zinc oxide, method for producing the same, and cosmetics using the same - Google Patents

Zinc oxide, method for producing the same, and cosmetics using the same Download PDF

Info

Publication number
JP5005414B2
JP5005414B2 JP2007102226A JP2007102226A JP5005414B2 JP 5005414 B2 JP5005414 B2 JP 5005414B2 JP 2007102226 A JP2007102226 A JP 2007102226A JP 2007102226 A JP2007102226 A JP 2007102226A JP 5005414 B2 JP5005414 B2 JP 5005414B2
Authority
JP
Japan
Prior art keywords
zinc oxide
zinc
compound
salt
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007102226A
Other languages
Japanese (ja)
Other versions
JP2008254992A (en
Inventor
誠司 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2007102226A priority Critical patent/JP5005414B2/en
Publication of JP2008254992A publication Critical patent/JP2008254992A/en
Application granted granted Critical
Publication of JP5005414B2 publication Critical patent/JP5005414B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、酸化亜鉛及びその製造方法並びにそれを用いた化粧料に関する。   The present invention relates to zinc oxide, a method for producing the same, and a cosmetic using the same.

酸化亜鉛は、白色顔料、紫外線遮蔽材、充填剤、吸着剤、光触媒、触媒、セラミックス原料、導電材、圧電材料、ガスセンサー、電子写真感光材料、バリスタ、蛍光体、エミッタ、電子デバイス等種々の用途に用いられており、また、化粧料、外用剤、塗料、樹脂組成物等に配合して用いられている。
酸化亜鉛を製造するには、例えば、亜鉛塩を含む溶液をアルカリ中和剤で中和することにより、液中で直接酸化亜鉛を製造する方法が知られている(特許文献1参照)。また、特許文献2には、前記の酸化亜鉛を直接製造するに際し、レイノルズ数30以上の撹拌を行いながら、1秒〜15分間で亜鉛の塩を含む水溶液と沈殿剤とを混合し、pH11以上の母液から沈殿を生成させて、平均粒子径0.1〜0.88μm、平均粒子厚さ0.01〜0.2μm、平均板状比3以上の薄片状酸化亜鉛粉末を製造する方法が提案されており、沈殿生成に際し、クエン酸、エタノールアミン等の水溶性有機物を共存させることも開示している。更に、特許文献3には、亜鉛塩水溶液にアルカリを加え水酸化亜鉛[Zn(OH)]の沈殿を得た後、水酸化亜鉛の沈殿が全部溶解するまでアルカリを更に加えて、透明で均一なテトラヒドロキシ亜鉛酸イオン[Zn(OH) 2−]を生成し、次いで、30℃以上100℃未満で加熱することによって0.01μmから10μmの大きさを有する酸化亜鉛粒子や膜を製造する方法を開示している。
Zinc oxide is a white pigment, UV shielding material, filler, adsorbent, photocatalyst, catalyst, ceramic raw material, conductive material, piezoelectric material, gas sensor, electrophotographic photosensitive material, varistor, phosphor, emitter, electronic device, etc. It is used for applications, and is used in cosmetics, external preparations, paints, resin compositions and the like.
In order to produce zinc oxide, for example, a method of producing zinc oxide directly in a liquid by neutralizing a solution containing a zinc salt with an alkali neutralizer is known (see Patent Document 1). Further, in Patent Document 2, an aqueous solution containing a zinc salt and a precipitating agent are mixed in 1 second to 15 minutes while stirring with a Reynolds number of 30 or more when directly producing the zinc oxide, and the pH is 11 or more. To produce a flaky zinc oxide powder having an average particle size of 0.1 to 0.88 μm, an average particle thickness of 0.01 to 0.2 μm, and an average plate ratio of 3 or more It is also disclosed that water-soluble organic substances such as citric acid and ethanolamine are allowed to coexist in the precipitation. Furthermore, in Patent Document 3, an alkali is added to an aqueous zinc salt solution to obtain a precipitate of zinc hydroxide [Zn (OH) 2 ], and then an alkali is further added until the precipitate of zinc hydroxide is completely dissolved. Uniform tetrahydroxyzincate ions [Zn (OH) 4 2− ] are generated, and then heated at 30 ° C. or higher and lower than 100 ° C. to produce zinc oxide particles and films having a size of 0.01 μm to 10 μm. The method of doing is disclosed.

特開昭53−116296号公報JP-A-53-116296 特許第2683389号公報Japanese Patent No. 2683389 特開2004−149367号公報JP 2004-149367 A

前記の従来技術は、亜鉛塩を含む溶液を水酸化ナトリウム、アンモニア等のアルカリ中和剤で中和して酸化亜鉛を直接析出させることにより、薄片状、針状の粒子形状を有する酸化亜鉛を製造することができるが、特許文献1の酸化亜鉛は、粒子径、形状のばらつきが大きく結晶性が低いなどの問題がある。特許文献2の薄片状酸化亜鉛は、かさ密度が高く充填性が低いなどの問題がある。また、特許文献3の針状酸化亜鉛は、凝集粒子になりやすく、また、かさ密度が高く充填性が低いなどの問題がある。
そのため、酸化亜鉛はそれぞれの用途に応じて、形状、大きさ、結晶性等の制御が求められている。例えば、充填剤、セラミックス原料等に用いる場合は、薄片状や針状の粒子ではかさ密度が高いことから、かさ密度が低く、充填性の良い酸化亜鉛が求められている。また、光触媒、触媒、セラミックス原料、導電材、圧電材料等に用いる場合は、充填性に加えて結晶性の良い酸化亜鉛が求められている。また、化粧料、外用剤、塗料、樹脂組成物等に配合して用いる場合は、分散性の良い酸化亜鉛が求められている。
In the prior art, zinc oxide having a flake-like or needle-like particle shape is obtained by neutralizing a solution containing a zinc salt with an alkali neutralizing agent such as sodium hydroxide or ammonia and directly depositing zinc oxide. Although it can be manufactured, the zinc oxide of Patent Document 1 has problems such as large variations in particle diameter and shape and low crystallinity. The flaky zinc oxide of Patent Document 2 has problems such as high bulk density and low filling properties. Moreover, the acicular zinc oxide of patent document 3 tends to be aggregated particles, and has a problem that the bulk density is high and the filling property is low.
For this reason, zinc oxide is required to be controlled in shape, size, crystallinity and the like according to each application. For example, when used for fillers, ceramic raw materials, etc., since the bulk density of flaky or needle-like particles is high, zinc oxide having a low bulk density and good fillability is required. In addition, when used as a photocatalyst, a catalyst, a ceramic raw material, a conductive material, a piezoelectric material, etc., zinc oxide having good crystallinity in addition to filling properties is required. In addition, zinc oxide with good dispersibility is required for use in cosmetics, external preparations, paints, resin compositions and the like.

本発明者は、酸化亜鉛の粒子形状、粒子径等を制御する方法を探索した結果、亜鉛化合物とカルボン酸及び/又はその塩とを混合した水溶液にアミン化合物を添加し水溶液のpHを7以上として沈殿物を析出させ、次いで、該水溶液を40℃以上に加熱すると、酸化亜鉛の粒子形状を六角柱、特に、鼓に類似した形状に制御できることなどを見出し、本発明を完成した。   As a result of searching for a method for controlling the particle shape, particle diameter, etc. of zinc oxide, the present inventor added an amine compound to an aqueous solution in which a zinc compound and a carboxylic acid and / or a salt thereof were mixed, and the pH of the aqueous solution was 7 or more. As a result, it was found that, when the aqueous solution was heated to 40 ° C. or higher, the particle shape of zinc oxide could be controlled to a hexagonal column, particularly a shape similar to a drum, and the present invention was completed.

すなわち、本発明は、(1)六角柱の形状を有し、その柱の平均短軸径が0.5〜5.0μmであり、平均長軸径が0.5〜10.0μmであり、六角柱の柱の中央部の短軸径が、その両端部に比し小さい酸化亜鉛、特に、鼓に類似した形状を有する酸化亜鉛、(2)亜鉛化合物と、その亜鉛化合物の亜鉛原子に対するモル比で表して、0.001〜0.01の範囲の量のカルボン酸及び/又はその塩とを混合した水溶液にアミン化合物を添加し水溶液のpHを7以上として沈殿物を析出させ、次いで、該水溶液を40℃以上に加熱することを特徴とする酸化亜鉛の製造方法、(3)前記の酸化亜鉛を含有する化粧料、などである。   That is, the present invention has (1) a hexagonal column shape, the average minor axis diameter of the column is 0.5 to 5.0 μm, the average major axis diameter is 0.5 to 10.0 μm, Zinc oxide in which the minor axis diameter of the central portion of the hexagonal column is smaller than both ends thereof, in particular, zinc oxide having a shape similar to a drum, (2) a zinc compound, and a mole of the zinc compound with respect to zinc atoms Expressed as a ratio, an amine compound is added to an aqueous solution mixed with an amount of carboxylic acid and / or a salt thereof in the range of 0.001 to 0.01 to precipitate the precipitate with an aqueous solution having a pH of 7 or more, A method for producing zinc oxide, wherein the aqueous solution is heated to 40 ° C. or higher, and (3) a cosmetic containing the zinc oxide.

本発明の酸化亜鉛は、特定の大きさを持つ六角柱であり、六角柱の柱の中央部の短軸径が、その両端部に比し小さい形状、特に、鼓に類似した形状を有する酸化亜鉛であり、薄片状、針状の形状に比べて充填性が良く、化粧料、外用剤、塗料、樹脂組成物等に充填剤、白色顔料等として配合する際に、あるいはセラミックス原料、導電材等に使用する際に、高い充填性を確保することができるため、酸化亜鉛の特性を充分活用することができる。また、特定の大きさを有することから化粧料に配合すると、分散性が良く肌へのすべり感が良くなる。
また、本発明の酸化亜鉛の製造方法は、水溶液から酸化亜鉛を析出させることができることから、生産性良く製造することができる。

The zinc oxide of the present invention is a hexagonal column having a specific size, and the minor axis diameter of the central part of the column of the hexagonal column is smaller than both end portions, particularly an oxidation having a shape similar to a drum. Zinc, which has better filling properties than flakes and needles, and is used as a filler, white pigment, etc. in cosmetics, external preparations, paints, resin compositions, etc., or as a ceramic raw material and conductive material When used for the above, the high filling property can be secured, so that the characteristics of zinc oxide can be fully utilized. Moreover, when it mix | blends with cosmetics from having a specific magnitude | size, a dispersibility is good and the feeling of sliding to skin improves.
Moreover, since the manufacturing method of the zinc oxide of this invention can precipitate zinc oxide from aqueous solution, it can manufacture with sufficient productivity.

本発明の酸化亜鉛は、六方晶、立方晶、立方晶面心構造いずれかのX線回折パターンを示すZnOを少なくとも50重量%含むものであり、水酸化亜鉛や製造の際に使用する硫酸亜鉛、硝酸亜鉛、塩化亜鉛、酢酸亜鉛等の亜鉛化合物が含まれていても良い。また、製造の際に使用する亜鉛化合物を構成していた硫酸根、硝酸根、塩素、酢酸等が含まれていても良く、また、カルボン酸、その塩、アミン化合物等の材料が含まれていても良い。更に、酸化亜鉛の粒子表面にはシリカ、アルミナ等の無機化合物やシロキサン等の有機化合物の表面処理剤を被覆していても良い。   The zinc oxide of the present invention contains at least 50% by weight of ZnO exhibiting an X-ray diffraction pattern of any one of hexagonal, cubic and cubic face-centered structures. Zinc hydroxide and zinc sulfate used in production Zinc compounds such as zinc nitrate, zinc chloride, and zinc acetate may be contained. It may also contain sulfate radicals, nitrate radicals, chlorine, acetic acid, etc. that comprised the zinc compound used in the production, and also contains materials such as carboxylic acids, their salts, and amine compounds. May be. Furthermore, the surface of the zinc oxide particles may be coated with a surface treatment agent of an inorganic compound such as silica or alumina or an organic compound such as siloxane.

酸化亜鉛は、六角形の面を有し、その面に垂直方向に伸びた六角柱の形状を有し、その柱の平均短軸径が0.5〜5.0μmであり、好ましくは1.0〜4.0μmである。また、柱の平均長軸径が0.5〜10.0μmであり、好ましくは1.0〜8.0μmである。酸化亜鉛の粒子形状は電子顕微鏡で観察することができる。酸化亜鉛の平均短軸径、平均長軸径は、少なくとも20個の粒子の長軸径(最も長い軸の長さをいう)、短軸径(最も長い軸の中点に垂直な軸の最も短い長さをいう。後述の鼓形状では中心部の最も短い長さをいう)を電子顕微鏡写真から計測して、それらの粒子を角柱相当体と仮定し、下記式によって算出した重量平均長軸径、重量平均短軸径を基準とする。
重量平均長軸径=Σ(Ln・Ln・Dn)/Σ(Ln・Dn
重量平均短軸径=Σ(Dn・Ln・Dn)/Σ(Ln・Dn
上記式中、nは計測した個々の粒子の番号を表し、Lnは第n番目の粒子の長軸径、Dnは第n番目の粒子の短軸径をそれぞれ表す。
また、電子顕微鏡写真を詳細に観察すると、六角柱状の中央部にくびれがあり、その部分の短軸径は両端部に比べ小さい酸化亜鉛粒子がある。このような六角柱の柱の両端部と中央部の短軸径が、両端部に比し中央部の短軸径が小さい形状を本発明では鼓に類似した形状(鼓形状)という。(中央部の短軸径)/(両端部の短軸径)は、0.5〜0.99程度が好ましく、0.7〜0.99程度がより好ましい。このような鼓形状は、中央部のくびれ部分に存在する六角板状核晶を対称面とした成長双晶が起こったような形状を有する。
Zinc oxide has a hexagonal surface and has a hexagonal column shape extending in a direction perpendicular to the surface, and the average minor axis diameter of the column is 0.5 to 5.0 μm. It is 0-4.0 micrometers. Moreover, the average major axis diameter of a column is 0.5-10.0 micrometers, Preferably it is 1.0-8.0 micrometers. The particle shape of zinc oxide can be observed with an electron microscope. The average minor axis diameter and average major axis diameter of zinc oxide are the major axis diameter of at least 20 particles (referred to as the length of the longest axis), the minor axis diameter (the axis most perpendicular to the midpoint of the longest axis). Measured from the electron micrograph, and the weight-average major axis calculated by the following formula, assuming that the particles are prismatic equivalents. Based on diameter and weight average minor axis diameter.
Weight average major axis diameter = Σ (Ln · Ln · Dn 2 ) / Σ (Ln · Dn 2 )
Weight average minor axis diameter = Σ (Dn · Ln · Dn 2 ) / Σ (Ln · Dn 2 )
In the above formula, n represents the number of each measured particle, Ln represents the major axis diameter of the nth particle, and Dn represents the minor axis diameter of the nth particle.
Moreover, when an electron micrograph is observed in detail, there is a constriction at the center of the hexagonal column, and there are zinc oxide particles whose minor axis diameter is smaller than at both ends. A shape in which the minor axis diameters of the both end portions and the central portion of the hexagonal column are smaller than the both end portions is referred to as a shape similar to a drum (drum shape) in the present invention. The (short axis diameter at the center) / (short axis diameter at both ends) is preferably about 0.5 to 0.99, and more preferably about 0.7 to 0.99. Such a drum shape has a shape in which a growth twin crystal having a hexagonal plate nuclei existing in the constricted portion at the center as a symmetry plane occurs.

本発明の酸化亜鉛の製造方法は、亜鉛化合物と、その亜鉛化合物の亜鉛原子に対するモル比で表して、0.001〜0.01の範囲の量のカルボン酸及び/又はその塩とを混合した水溶液にアミン化合物を添加し水溶液のpHを7以上として沈殿物を析出させ、次いで、該水溶液を40℃以上に加熱することを特徴とする。亜鉛化合物は、水溶性のものであればどのようなものでも用いることができ、例えば硫酸亜鉛、硝酸亜鉛、塩化亜鉛、酢酸亜鉛等を用いることができる。六角柱状、特に鼓形状の酸化亜鉛が得られ易いことから硫酸亜鉛が好ましい。また、金属亜鉛、酸化亜鉛、水酸化亜鉛等、中性の水に溶解しないものでも、酸、アルカリに溶解する化合物であれば、上記の亜鉛化合物と同様に用いることができる。   The method for producing zinc oxide of the present invention comprises mixing a zinc compound and a carboxylic acid and / or a salt thereof in an amount ranging from 0.001 to 0.01, expressed as a molar ratio of the zinc compound to zinc atoms. An amine compound is added to the aqueous solution to adjust the pH of the aqueous solution to 7 or higher to precipitate a precipitate, and then the aqueous solution is heated to 40 ° C. or higher. Any zinc compound can be used as long as it is water-soluble. For example, zinc sulfate, zinc nitrate, zinc chloride, zinc acetate, and the like can be used. Zinc sulfate is preferred because it is easy to obtain hexagonal columnar, particularly drum-shaped zinc oxide. Moreover, even if it does not melt | dissolve in neutral water, such as metallic zinc, a zinc oxide, and zinc hydroxide, if it is a compound which melt | dissolves in an acid and an alkali, it can be used similarly to said zinc compound.

前記のカルボン酸はカルボキシル基を有する化合物であり、制限なく用いることができるが、例えば、次のようなものを用いることができ、特にクエン酸及び/又はその塩を用いると鼓形状の酸化亜鉛を製造することができるため好ましい。
(1)ポリカルボン酸、特にジカルボン酸、トリカルボン酸、例えば、シュウ酸、フマル酸。
(2)ヒドロキシポリカルボン酸、特にヒドロキシジ−又はヒドロキシトリ−カルボン酸、例えばリンゴ酸、クエン酸又はタルトロン酸。
(3)(ポリヒドロキシ)モノカルボン酸、例えばグルコヘプトン酸又はグルコン酸。
(4)ポリ(ヒドロキシカルボン酸)、例えば酒石酸。
(5)ジカルボキシルアミノ酸及びその対応するアミド、例えばアスパラギン酸、アスパラギン又はグルタミン酸。
(6)ヒドロキシル化され又はヒドロキシル化されていないモノカルボキシルアミノ酸、例えばリジン、セリン又はトレオニン。
カルボン酸塩としては、どのような塩でも制限なく用いることができるが、例えばナトリウム、カリウム等のアルカリ金属塩、アンモニウム塩等を用いることができる。カルボン酸及びその塩の量は、亜鉛化合物の亜鉛原子に対するモル比で表して、0.001〜0.01の範囲の量が好ましく、0.001〜0.005の範囲がより好ましい。カルボン酸の量が0.01より多くすると、六角柱状、特に鼓形状の酸化亜鉛が得られにくいため好ましくない。
The carboxylic acid is a compound having a carboxyl group and can be used without limitation. For example, the following can be used, and particularly when citric acid and / or a salt thereof is used, a drum-shaped zinc oxide is used. Is preferable because it can be manufactured.
(1) Polycarboxylic acids, particularly dicarboxylic acids and tricarboxylic acids such as oxalic acid and fumaric acid.
(2) Hydroxypolycarboxylic acids, especially hydroxydi- or hydroxytri-carboxylic acids such as malic acid, citric acid or tartronic acid.
(3) (Polyhydroxy) monocarboxylic acid, such as glucoheptonic acid or gluconic acid.
(4) Poly (hydroxycarboxylic acid) such as tartaric acid.
(5) Dicarboxyl amino acids and their corresponding amides, such as aspartic acid, asparagine or glutamic acid.
(6) A hydroxylated or non-hydroxylated monocarboxyl amino acid such as lysine, serine or threonine.
As the carboxylate, any salt can be used without limitation. For example, alkali metal salts such as sodium and potassium, ammonium salts and the like can be used. The amount of the carboxylic acid and its salt is expressed in terms of a molar ratio of the zinc compound to the zinc atom, preferably in the range of 0.001 to 0.01, and more preferably in the range of 0.001 to 0.005. If the amount of carboxylic acid is more than 0.01, hexagonal columnar, particularly drum-shaped zinc oxide is difficult to obtain, which is not preferable.

前記のアミン化合物はアンモニア中の水素原子を炭化水素基で置換した化合物であって、その炭化水素基を水酸基、カルボキシル基、フェニル基、チオール基等で置換した誘導体を含む。具体的には第1アミン、第2アミン、第3アミンやそれらの誘導体であって、水溶性でありアルカリ性を呈するものが好ましく、第1アミン、第2アミン、それらの誘導体がより好ましい。例えば、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン等のアルキルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N,N−ジメチルエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、トリプロパノールアミン等のアルカノールアミンが好ましく、モノエタノールアミン、ジエタノールアミンがより好ましい。アミン化合物の添加量は、後述の亜鉛化合物水溶液のpHの設定に応じて適宜調整することができるが、亜鉛化合物の亜鉛原子に対するモル比で表して、2以上の範囲が好ましく、2.01〜7程度の範囲の量がより好ましい。アミン化合物の量を7より多くすると、沈殿物がアミン化合物により錯体となって再溶解し易くなり、収量が少なくなり易いため好ましくない。   The amine compound is a compound in which a hydrogen atom in ammonia is substituted with a hydrocarbon group, and includes a derivative in which the hydrocarbon group is substituted with a hydroxyl group, a carboxyl group, a phenyl group, a thiol group, or the like. Specifically, primary amines, secondary amines, tertiary amines and derivatives thereof which are water-soluble and exhibit alkalinity are preferable, and primary amines, secondary amines and derivatives thereof are more preferable. For example, alkylamines such as ethylamine, propylamine, butylamine and ethylenediamine, alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, N, N-dimethylethanolamine, monopropanolamine, dipropanolamine and tripropanolamine are preferred. Monoethanolamine and diethanolamine are more preferable. The addition amount of the amine compound can be appropriately adjusted according to the pH setting of the zinc compound aqueous solution described later, but is preferably in the range of 2 or more, expressed in terms of the molar ratio of the zinc compound to the zinc atom. An amount in the range of about 7 is more preferred. If the amount of the amine compound is more than 7, it is not preferable because the precipitate is easily complexed with the amine compound and redissolved, and the yield tends to decrease.

前記の亜鉛化合物とカルボン酸及び/又はその塩を溶解した水溶液を40℃以下に保持した後、撹拌下アミン化合物を添加して水溶液のpHは7以上となるようにして、沈殿物を析出させる。生成する沈殿物は亜鉛の水酸化物を主成分としたものである。亜鉛化合物溶液の温度が40℃よりも高いと、アミン化合物添加により部分的に酸化亜鉛が析出し不均一な状態となり易いため好ましくなく、好ましい温度は10〜40℃、より好ましい温度は10〜30℃である。撹拌は通常の混合撹拌の手段を用いることができ、例えば撹拌羽根を付けた撹拌機等で行うことができる。その撹拌機の運転条件は適宜設定することができる。例えば、回転数は20〜2000rpm程度で行うことができ、また、下記のレイノルズ係数で表して10以上程度が好ましく、10〜50000程度がより好ましい。
レイノルズ係数=(翼径)×撹拌速度×溶液密度/溶液粘度
アミン化合物の添加時間は適宜設定できるが、例えば1秒〜1時間程度が好ましく、1秒〜30分程度がより好ましい。アミン化合物の添加によりpHを7以上に調整するが、7よりも低いと所望の酸化亜鉛が得られない。好ましいpHは8〜13程度、より好ましくは9〜12程度、更に好ましくは9〜11程度である。所定のpHに調整して沈殿物を析出させた後、必要に応じて10分〜5時間程度そのpHを保持しても良い。その後、撹拌しながら、前記の水溶液を40℃以上、好ましくは60〜250℃程度、より好ましくは80〜110℃程度に加温して、沈殿物を酸化亜鉛に変化させる。所定の温度に加温した後、必要に応じて10分〜5時間程度その温度を保持しても良い。
After keeping the aqueous solution in which the zinc compound and the carboxylic acid and / or salt thereof are dissolved at 40 ° C. or lower, the amine compound is added with stirring so that the pH of the aqueous solution becomes 7 or higher to precipitate the precipitate. . The generated precipitate is mainly composed of zinc hydroxide. If the temperature of the zinc compound solution is higher than 40 ° C., it is not preferable because zinc oxide is likely to be partially deposited due to the addition of the amine compound, resulting in a non-uniform state. ° C. Stirring can be carried out by using ordinary mixing and stirring means, for example, with a stirrer equipped with stirring blades. The operating conditions of the stirrer can be set as appropriate. For example, the rotational speed can be about 20 to 2000 rpm, and is preferably about 10 or more, more preferably about 10 to 50000, expressed by the following Reynolds coefficient.
Reynolds coefficient = (blade diameter) 2 × stirring speed × solution density / solution viscosity The addition time of the amine compound can be set as appropriate, but is preferably about 1 second to 1 hour, and more preferably about 1 second to 30 minutes. Although pH is adjusted to 7 or more by addition of an amine compound, if it is lower than 7, desired zinc oxide cannot be obtained. The preferred pH is about 8 to 13, more preferably about 9 to 12, and still more preferably about 9 to 11. After adjusting to predetermined pH and depositing a deposit, you may hold | maintain the pH for about 10 minutes-5 hours as needed. Thereafter, while stirring, the aqueous solution is heated to 40 ° C. or higher, preferably about 60 to 250 ° C., more preferably about 80 to 110 ° C. to change the precipitate into zinc oxide. After heating to a predetermined temperature, the temperature may be maintained for about 10 minutes to 5 hours as necessary.

亜鉛化合物とカルボン酸及び/又はその塩とアミン化合物との混合水溶液には更に、塩化ナトリウム、硫酸ナトリウム、硝酸ナトリウム、塩化カリウム、硫酸カリウム、硝酸カリウム、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム等の塩類を混合しても良く、アルカリ化合物と混合する前の亜鉛化合物水溶液に塩類を添加するのが好ましい。塩類の添加量は、亜鉛化合物の亜鉛原子に対するモル比で表して、0.0001以上の範囲が好ましく、0.001〜10程度がより好ましい。   Further mixed with an aqueous solution of a zinc compound and a carboxylic acid and / or a salt thereof and an amine compound is a salt such as sodium chloride, sodium sulfate, sodium nitrate, potassium chloride, potassium sulfate, potassium nitrate, ammonium chloride, ammonium sulfate, or ammonium nitrate. It is also possible to add salts to the aqueous zinc compound solution before mixing with the alkali compound. The amount of the salt added is preferably in the range of 0.0001 or more, and more preferably about 0.001 to 10 in terms of the molar ratio of the zinc compound to the zinc atom.

このようにして得られた酸化亜鉛は、必要に応じて濾過・洗浄して固液分離し、乾燥、乾式粉砕を行うと、酸化亜鉛粉末が得られる。固液分離には、フィルタープレス、ロールプレス等の通常工業的に用いられる濾過器を用いることができる。乾燥にはバンド式ヒーター、バッチ式ヒーター、噴霧乾燥機等が、乾式粉砕にはハンマーミル、ピンミル等の衝撃粉砕機、ローラーミル、パルペライザー、解砕機等の摩砕粉砕機、ロールクラッシャー、ジョークラッシャー等の圧縮粉砕機、ジェットミル等の気流粉砕機等を用いることができる。乾燥温度は適宜設定することができるが、80〜200℃程度が適当である。また、必要に応じて前記の酸化亜鉛粉末を200〜800℃程度の温度で焼成しても良く、結晶性を更に高めることができるため好ましい。焼成は通常、空気、酸素、窒素等の雰囲気下で行うことができ、焼成時間は10分〜10時間程度が適当である。   The zinc oxide obtained in this manner is filtered and washed as necessary to separate into solid and liquid, and dried and dry pulverized to obtain zinc oxide powder. For solid-liquid separation, a filter that is usually used industrially, such as a filter press or a roll press, can be used. Band-type heaters, batch-type heaters, spray dryers, etc. are used for drying. Impact-type crushers such as hammer mills and pin mills, roller mills, pulverizers, crushers, etc. For example, a compression pulverizer such as a jet mill or an airflow pulverizer such as a jet mill can be used. Although a drying temperature can be set suitably, about 80-200 degreeC is suitable. Moreover, the said zinc oxide powder may be baked at the temperature of about 200-800 degreeC as needed, and since crystallinity can be improved further, it is preferable. Firing can usually be performed in an atmosphere of air, oxygen, nitrogen, etc., and the firing time is suitably about 10 minutes to 10 hours.

本発明の酸化亜鉛は、その粒子表面に必要に応じてケイ素、チタン、アルミニウム、ジルコニウム、スズ等の酸化物あるいはそれらのリン酸塩等の無機化合物の被覆層を設けることもできる。また、溶媒、塗料やプラスチックス等への分散性を付与するなどの目的で、有機化合物を被覆しても良く、前記の無機化合物と有機化合物の両者を被覆しても良い。有機化合物としては、例えば、(1)有機ケイ素化合物((a)オルガノポリシロキサン類(ジメチルポリシロキサン、メチル水素ポリシロキサン、メチルメトキシポリシロキサン、メチルフェニルポリシロキサン、ジメチルポリシロキサンジオール、ジメチルポリシロキサンジハイドロジェン等又はそれらの共重合体)、(b)オルガノシラン類(アミノシラン、エポキシシラン、メタクリルシラン、ビニルシラン、メルカプトシラン、クロロアルキルシラン、アルキルシラン、フルオロアルキルシラン等又はそれらの加水分解生成物)、(c)オルガノシラザン類(ヘキサメチルシラザン、ヘキサメチルシクロトリシラザン等)、(2)有機金属化合物((a)有機チタニウム化合物(アミノアルコキシチタニウム、リン酸エステルチタニウム、カルボン酸エステルチタニウム、スルホン酸エステルチタニウム、チタニウムキレート、亜リン酸エステルチタニウム錯体等)、(b)有機アルミニウム化合物(アルミニウムキレート等)、(c)有機ジルコニウム化合物(カルボン酸エステルジルコニウム、ジルコニウムキレート等)等)、(3)ポリオール類(トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール等)、(4)アルカノールアミン類(モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、トリプロパノールアミン等)又はその誘導体(酢酸塩、シュウ酸塩、酒石酸塩、ギ酸塩、安息香酸塩等の有機酸塩等)、(5)高級脂肪酸類(ステアリン酸、ラウリン酸、オレイン酸等)又はその金属塩(アルミニウム塩、亜鉛塩、マグネシウム塩、カルシウム塩、バリウム塩等)、(6)高級炭化水素類(パラフィンワックス、ポリエチレンワックス等)又はその誘導体(パーフルオロ化物等)が挙げられる。これらの有機化合物は1種を用いても、2種以上を積層又は混合して用いても良い。化粧料に用いる場合は、オルガノポリシロキサン類、高級脂肪酸類を用いるのが好ましい。無機化合物、有機化合物の被覆量は、酸化亜鉛に対し、0.1〜50重量%の範囲が好ましく、0.1〜30重量%の範囲が更に好ましい。酸化亜鉛の粒子表面に前記の無機化合物や有機化合物を被覆させるには、酸化亜鉛の水性スラリー中で、無機化合物あるいは有機化合物を添加し中和するなどして被覆することができる。また、有機化合物を被覆するには別の方法として、前述の乾式粉砕の際に有機化合物を添加し混合することもできる。   The zinc oxide of the present invention can be provided with a coating layer of an oxide such as silicon, titanium, aluminum, zirconium and tin or an inorganic compound such as a phosphate thereof on the particle surface as necessary. Further, for the purpose of imparting dispersibility to solvents, paints, plastics, and the like, an organic compound may be coated, or both the inorganic compound and the organic compound may be coated. Examples of organic compounds include (1) organosilicon compounds ((a) organopolysiloxanes (dimethylpolysiloxane, methylhydrogen polysiloxane, methylmethoxypolysiloxane, methylphenylpolysiloxane, dimethylpolysiloxanediol, dimethylpolysiloxanedi). Hydrogen or the like or copolymers thereof), (b) organosilanes (aminosilane, epoxysilane, methacrylsilane, vinylsilane, mercaptosilane, chloroalkylsilane, alkylsilane, fluoroalkylsilane, etc. or their hydrolysis products) (C) organosilazanes (hexamethylsilazane, hexamethylcyclotrisilazane, etc.), (2) organometallic compounds ((a) organotitanium compounds (aminoalkoxytitanium, phosphoric acid ester titanium) , Carboxylic acid ester titanium, sulfonic acid ester titanium, titanium chelate, phosphite titanium complex, etc.), (b) organoaluminum compound (aluminum chelate, etc.), (c) organozirconium compound (carboxylate ester zirconium, zirconium chelate) Etc.), (3) polyols (trimethylolpropane, trimethylolethane, pentaerythritol, etc.), (4) alkanolamines (monoethanolamine, diethanolamine, triethanolamine, monopropanolamine, dipropanolamine, triol) Propanolamine etc.) or derivatives thereof (acetate, oxalate, tartrate, formate, benzoate, etc. organic acid salts), (5) higher fatty acids (stearic acid, lauric acid, oleic acid) ) Or a metal salt thereof (aluminum salt, zinc salt, magnesium salt, calcium salt, barium salt, etc.), (6) higher hydrocarbons (paraffin wax, polyethylene wax, etc.) or derivatives thereof (perfluorinated products, etc.). These organic compounds may be used singly or in combination of two or more, and when used in cosmetics, it is preferable to use organopolysiloxanes and higher fatty acids. The coating amount of the organic compound is preferably in the range of 0.1 to 50% by weight, more preferably in the range of 0.1 to 30% by weight with respect to zinc oxide. In order to coat the compound, it can be coated in an aqueous slurry of zinc oxide by adding an inorganic compound or an organic compound and neutralizing the organic compound. As another method for coating the compound, an organic compound can be added and mixed in the dry pulverization described above.

本発明の酸化亜鉛は、日焼け止め化粧料、基礎化粧料等の化粧料に適量配合して用いられる。例えば、前記の酸化亜鉛以外に、通常化粧料の用いられる公知の成分、例えば、(1)溶媒(水、低級アルコール類等)、(2)油剤(高級脂肪酸類、高級アルコール類、オルガノポリシロキサン類(シリコーンオイル)、炭化水素類、油脂類等)、(3)界面活性剤(アニオン性、カチオン性、両性、非イオン性等)、(4)保湿剤(グリセリン類、グリコール等のポリオール系、ピロリドンカルボン酸類等の非ポリオール系等)(5)有機紫外線吸収剤(ベンゾフェノン誘導体、パラアミノ安息香酸誘導体、サリチル酸誘導体等)、(6)酸化防止剤(フェノール系、有機酸又はその塩、酸アミド系、リン酸系等)、(7)増粘剤、(8)香料、(9)着色剤(顔料、色素、染料等)、(10)生理活性成分(ビタミン類、ホルモン類、アミノ酸類等)、(11)抗菌剤等が配合されていても良い。化粧料の様態は、固形状、液状、ジェル状等特に制限なく、液状やジェル状の場合、その分散形態も油中水型エマルジョン、水中油型エマルジョン、油型等のいずれでも良い。化粧料中の酸化亜鉛の配合量は、0.1〜50重量%の範囲が好ましい。   The zinc oxide of the present invention is used by blending an appropriate amount in cosmetics such as sunscreen cosmetics and basic cosmetics. For example, in addition to the above-mentioned zinc oxide, known components commonly used in cosmetics, for example, (1) solvents (water, lower alcohols, etc.), (2) oil agents (higher fatty acids, higher alcohols, organopolysiloxanes) (Silicone oil), hydrocarbons, fats and oils), (3) surfactants (anionic, cationic, amphoteric, nonionic, etc.), (4) moisturizers (glycerins, polyols such as glycols) (5) Organic UV absorbers (benzophenone derivatives, paraaminobenzoic acid derivatives, salicylic acid derivatives, etc.), (6) antioxidants (phenolic, organic acids or salts thereof, acid amides) System, phosphate system, etc.), (7) thickener, (8) fragrance, (9) colorant (pigment, pigment, dye, etc.), (10) physiologically active ingredients (vitamins, hormones, Mino acids), (11) an antibacterial agent or the like may be blended. The form of the cosmetic is not particularly limited, such as solid, liquid, or gel. In the case of liquid or gel, the dispersion may be any of a water-in-oil emulsion, an oil-in-water emulsion, and an oil type. The blending amount of zinc oxide in the cosmetic is preferably in the range of 0.1 to 50% by weight.

以下に本発明の実施例を示すが、本発明はこれらに制限されるものではない。   Examples of the present invention are shown below, but the present invention is not limited thereto.

実施例1
硫酸亜鉛0.3モルとクエン酸0.001モルを150ccの純水に溶解した。次に2Lの四つ口フラスコに純水500ccを入れ、その中に前記の硫酸亜鉛水溶液を添加し、翼径12cmの2枚羽根の撹拌機を用いて回転数200rpmで撹拌下、室温で0.9モルのモノエタノールアミンを含む350ccの水溶液を添加し、水溶液のpHを10.0に調整し、30分間保持して沈殿物を析出させた。その後、100℃に昇温し1時間熟成した後、冷却し、濾過・水洗・乾燥して、本発明の酸化亜鉛粉末(試料A)を得た。
この試料Aは、X線回折の結果、結晶性の良い酸化亜鉛であることを確認した。また、電子顕微鏡写真(図1、図2)から、六角柱の形状(鼓形状)を有し、その柱の平均短軸径が1.4μmであり、平均長軸径が2.2μmであった。
Example 1
Zinc sulfate 0.3 mol and citric acid 0.001 mol were dissolved in 150 cc of pure water. Next, 500 cc of pure water is put into a 2 L four-necked flask, and the aqueous zinc sulfate solution is added to the flask. A 350 cc aqueous solution containing 9.9 moles of monoethanolamine was added, the pH of the aqueous solution was adjusted to 10.0, and maintained for 30 minutes to precipitate a precipitate. Then, after heating up to 100 degreeC and ageing | curing | ripening for 1 hour, it cooled, filtered, washed with water, and dried, and obtained the zinc oxide powder (sample A) of this invention.
As a result of X-ray diffraction, this sample A was confirmed to be zinc oxide with good crystallinity. Further, from the electron micrographs (FIGS. 1 and 2), it has a hexagonal column shape (the drum shape), the average minor axis diameter of the column is 1.4 μm, and the average major axis diameter is 2.2 μm. It was.

実施例2
実施例1において使用したクエン酸に代えて、クエン酸ナトリウム0.001モルを使用したこと以外は、実施例1と同様にして、本発明の酸化亜鉛粉末(試料B)を得た。
この試料Bは、X線回折の結果、結晶性の良い酸化亜鉛であることを確認した。また、電子顕微鏡写真(図3)から、六角柱の形状(鼓形状)を有し、その柱の平均短軸径が2.2μmであり、平均長軸径が5.3μmであった。
Example 2
A zinc oxide powder (sample B) of the present invention was obtained in the same manner as in Example 1 except that 0.001 mol of sodium citrate was used in place of the citric acid used in Example 1.
As a result of X-ray diffraction, this sample B was confirmed to be zinc oxide with good crystallinity. Moreover, from the electron micrograph (FIG. 3), it had the shape of a hexagonal column (the drum shape), the average minor axis diameter of the column was 2.2 μm, and the average major axis diameter was 5.3 μm.

比較例1
実施例1においてクエン酸を用いず、かつモノエタノールアミンに代えて水酸化ナトリウム0.7モルを用いてpHを13.0に調整すること以外は実施例1と同様にして、酸化亜鉛粉末(試料C)を得た。
この試料Cは、電子顕微鏡写真(図4、図5)から形状及び粒径のばらつきが大きい薄片状の酸化亜鉛であった。
Comparative Example 1
In the same manner as in Example 1 except that citric acid is not used and pH is adjusted to 13.0 using 0.7 mol of sodium hydroxide instead of monoethanolamine, zinc oxide powder ( Sample C) was obtained.
Sample C was flaky zinc oxide having a large variation in shape and particle size from electron micrographs (FIGS. 4 and 5).

実施例1の試料A、実施例2の試料B、比較例1の試料CのX線回折強度(図6)を比較すると、実施例1、2の試料は比較例の試料に比べ約2倍程度あり、本発明の酸化亜鉛は結晶性の良い酸化亜鉛であった。
また、実施例2の試料Bと比較例1の試料Cをそれぞれハンマーミルで粉砕し、かさ密度を測定したところ、試料Bのかさ密度は1ml/gであったが、試料Cは7ml/gであり、本発明の酸化亜鉛はかさ密度が低く、充填性が良いことがわかった。
また、実施例1の試料Aを直接肌にのせてこすった際の感触を評価したところ、のびは良好であり、化粧料に配合すると分散性が良く肌へのすべり感が良くなることがわかった。
Comparing the X-ray diffraction intensities (FIG. 6) of the sample A of Example 1, the sample B of Example 2, and the sample C of Comparative Example 1, the samples of Examples 1 and 2 are about twice as large as the samples of the comparative example. To some extent, the zinc oxide of the present invention was zinc oxide with good crystallinity.
Moreover, when the sample B of Example 2 and the sample C of the comparative example 1 were each grind | pulverized with a hammer mill and the bulk density was measured, the bulk density of the sample B was 1 ml / g, but the sample C was 7 ml / g. Thus, it was found that the zinc oxide of the present invention has a low bulk density and good filling properties.
Moreover, when the feel when the sample A of Example 1 was directly rubbed on the skin was evaluated, the spread was good, and it was found that when blended in cosmetics, the dispersibility was good and the feeling of slipping on the skin was improved. It was.

本発明は、特定の大きさを持つ六角柱の形状、特に、鼓に類似した形状を有する酸化亜鉛であり、種々の用途に利用することができる。   The present invention is zinc oxide having a hexagonal column shape having a specific size, in particular, a shape similar to a drum, and can be used for various applications.

実施例1で得られた酸化亜鉛(試料A)の電子顕微鏡写真である。2 is an electron micrograph of zinc oxide (sample A) obtained in Example 1. 実施例1で得られた酸化亜鉛(試料A)の電子顕微鏡写真である。2 is an electron micrograph of zinc oxide (sample A) obtained in Example 1. 実施例2で得られた酸化亜鉛(試料B)の電子顕微鏡写真である。4 is an electron micrograph of zinc oxide (sample B) obtained in Example 2. 比較例1で得られた酸化亜鉛(試料C)の電子顕微鏡写真である。2 is an electron micrograph of zinc oxide (Sample C) obtained in Comparative Example 1. 比較例1で得られた酸化亜鉛(試料C)の電子顕微鏡写真である。2 is an electron micrograph of zinc oxide (Sample C) obtained in Comparative Example 1. 実施例1、実施例2、比較例1で得られた酸化亜鉛(試料A、B、C)のX線回折チャートである。2 is an X-ray diffraction chart of zinc oxide (samples A, B, and C) obtained in Example 1, Example 2, and Comparative Example 1. FIG.

Claims (8)

六角柱の形状を有し、その柱の平均短軸径が0.5〜5.0μmであり、平均長軸径が0.5〜10.0μmであり、六角柱の柱の中央部の短軸径が、その両端部に比し小さい、酸化亜鉛。   It has a hexagonal column shape, the average minor axis diameter of the column is 0.5 to 5.0 μm, the average major axis diameter is 0.5 to 10.0 μm, and is short at the center of the hexagonal column. Zinc oxide whose shaft diameter is smaller than both ends. 六角柱の形状が鼓に類似した形状である請求項1に記載の酸化亜鉛。   The zinc oxide according to claim 1, wherein the hexagonal column has a shape similar to a drum. 亜鉛化合物と、その亜鉛化合物の亜鉛原子に対するモル比で表して、0.001〜0.01の範囲の量のカルボン酸及び/又はその塩とを混合した水溶液にアミン化合物を添加し水溶液のpHを7以上として沈殿物を析出させ、次いで、該水溶液を40℃以上に加熱することを特徴とする酸化亜鉛の製造方法。   The amine compound is added to an aqueous solution obtained by mixing a zinc compound and a molar ratio of the zinc compound to zinc atoms in an amount ranging from 0.001 to 0.01, and / or a salt thereof. A method for producing zinc oxide, comprising depositing a precipitate at a temperature of 7 or higher and then heating the aqueous solution to 40 ° C. or higher. アミン化合物の量が、亜鉛化合物の亜鉛原子に対するモル比で表して、2.01〜7の範囲であることを特徴とする請求項3に記載の酸化亜鉛の製造方法。   4. The method for producing zinc oxide according to claim 3, wherein the amount of the amine compound is in the range of 2.01 to 7 in terms of a molar ratio of the zinc compound to the zinc atom. 前記のカルボン酸及び/又はその塩がクエン酸及び/又はその塩であることを特徴とする請求項3に記載の酸化亜鉛の製造方法。   The said carboxylic acid and / or its salt are a citric acid and / or its salt, The manufacturing method of the zinc oxide of Claim 3 characterized by the above-mentioned. 前記の亜鉛化合物が硫酸亜鉛であることを特徴とする請求項3に記載の酸化亜鉛の製造方法。   The method for producing zinc oxide according to claim 3, wherein the zinc compound is zinc sulfate. 請求項3に記載の製造方法で得られた酸化亜鉛を200〜800℃の温度で焼成することを特徴とする酸化亜鉛の製造方法。   A method for producing zinc oxide, comprising firing the zinc oxide obtained by the production method according to claim 3 at a temperature of 200 to 800 ° C. 請求項1〜2のいずれか一項に記載の酸化亜鉛を含有する化粧料。   Cosmetics containing the zinc oxide as described in any one of Claims 1-2.
JP2007102226A 2007-04-09 2007-04-09 Zinc oxide, method for producing the same, and cosmetics using the same Expired - Fee Related JP5005414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102226A JP5005414B2 (en) 2007-04-09 2007-04-09 Zinc oxide, method for producing the same, and cosmetics using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007102226A JP5005414B2 (en) 2007-04-09 2007-04-09 Zinc oxide, method for producing the same, and cosmetics using the same

Publications (2)

Publication Number Publication Date
JP2008254992A JP2008254992A (en) 2008-10-23
JP5005414B2 true JP5005414B2 (en) 2012-08-22

Family

ID=39978939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102226A Expired - Fee Related JP5005414B2 (en) 2007-04-09 2007-04-09 Zinc oxide, method for producing the same, and cosmetics using the same

Country Status (1)

Country Link
JP (1) JP5005414B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9120681B2 (en) 2011-04-28 2015-09-01 Sakai Chemical Industry Co., Ltd. Method for production of zinc oxide particles
EP2703351B1 (en) 2011-04-28 2019-06-12 Sakai Chemical Industry Co., Ltd. Hexagonal-cylinder-shaped zinc oxide particles, production method for same, and cosmetic material, heat-dissipating filler, heat-dissipating resin composition, heat-dissipating grease, and heat-dissipating coating composition having same blended therein
JP6118568B2 (en) * 2013-01-31 2017-04-19 石原産業株式会社 Heat dissipation composition
JP6282909B2 (en) * 2014-03-20 2018-02-21 石原産業株式会社 Method for producing zinc oxide
CN105481263B (en) * 2015-11-17 2017-10-24 湘潭大学 A kind of preparation method of the mg-doped zinc-oxide film of positive six prismsby shape
WO2023190356A1 (en) * 2022-03-31 2023-10-05 株式会社フジミインコーポレーテッド Columnar zinc oxide manufacturing method and columnar zinc oxide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426514A (en) * 1990-05-18 1992-01-29 Lion Corp Production of plate-like conductive zinc oxide
JP2001163619A (en) * 1999-12-08 2001-06-19 Tosoh Corp Production process of powdery zinc oxide and intermediate for producing the same
JP3893457B2 (en) * 2002-11-14 2007-03-14 独立行政法人物質・材料研究機構 Method for producing zinc oxide nanobelts
JP4698192B2 (en) * 2004-09-28 2011-06-08 富士フイルム株式会社 Method for producing zinc oxide structure
JP4807569B2 (en) * 2006-02-27 2011-11-02 国立大学法人高知大学 Zinc oxide powder and method for producing the same
JP4899229B2 (en) * 2007-03-20 2012-03-21 独立行政法人産業技術総合研究所 ZnO whisker films and methods for producing them

Also Published As

Publication number Publication date
JP2008254992A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP2008254991A (en) Zinc oxide, method for producing the same, and cosmetic using the same
JP2008254990A (en) Zinc oxide, method for producing the same, and cosmetic using the same
JP5005414B2 (en) Zinc oxide, method for producing the same, and cosmetics using the same
CN101124166A (en) Method for production of nanoparticles with custom surface chemistry and corresponding colloids
JP2011136873A (en) Vanadium dioxide fine particles, manufacturing method and thermo-chromic film
JP2008254989A (en) Zinc oxide, method for producing the same, and cosmetic using the same
NZ566962A (en) Method for preparing surface-modified, nanoparticulate metal oxides, metal hydroxides and/or metal oxyhydroxides
JP2008111114A (en) Method of manufacturing dispersion of core-shell type metal oxide fine particle and dispersion thereof
KR20100127006A (en) Preparation method of composite silica microparticles with monodispersity
Sreedhar et al. Shape controlled synthesis of barium carbonate microclusters and nanocrystallites using natural polysachharide—gum acacia
KR20130139830A (en) Sheet-shaped cerium oxide and petal-shaped cerium oxide powder which is aggregate of the sheet-shaped cerium oxide, process for production of the sheet-shaped cerium oxide and the petal-shaped cerium oxide powder, coated sheet-shaped cerium oxide and petal-shaped cerium oxide powder which is aggregate of the coated sheet-shaped cerium oxide, and cosmetic
JP2019151507A (en) Strontium titanate powder, production method thereof and external additive for electric photograph toner
Yan et al. Effect of anionic PAMAM with amido groups starburst dendrimers on the crystallization of Ca10 (PO4) 6 (OH) 2 by hydrothermal method
Fernández et al. Wet-chemical preparation of TiO2-nanostructures using different solvents: Effect of CTAB concentration and tentative mechanism of particle formation
Zhu et al. Fabrication and characterization of superhydrophobicity ZnO nanoparticles with two morphologies by using stearic acid
JP5032879B2 (en) Zinc oxide, method for producing the same, and cosmetics using the same
JP2008254993A (en) Zinc oxide, method for producing the same, and cosmetic using the same
CN101302358B (en) Waterless nano-znic antimonite sol and preparation thereof
JP2008019106A (en) Method for producing metal oxide particle
KR102251155B1 (en) Needle-like strontium carbonate fine powder and method for producing same
JP2008297142A (en) Calcium titanate fine particle and toner for electrostatic recording
Calatayud et al. V-containing ZrO 2 inorganic yellow nano-pigments
JP6282909B2 (en) Method for producing zinc oxide
JP4256133B2 (en) Method for producing acicular titanium dioxide fine particles
JP2008273759A (en) Zinc oxide and method for producing the same and ultraviolet shielding composition using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5005414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees