JPH0323601A - Manufacture of nonlinear voltage resistor - Google Patents

Manufacture of nonlinear voltage resistor

Info

Publication number
JPH0323601A
JPH0323601A JP1156731A JP15673189A JPH0323601A JP H0323601 A JPH0323601 A JP H0323601A JP 1156731 A JP1156731 A JP 1156731A JP 15673189 A JP15673189 A JP 15673189A JP H0323601 A JPH0323601 A JP H0323601A
Authority
JP
Japan
Prior art keywords
temperature
oxide
voltage
pressure
voltage nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1156731A
Other languages
Japanese (ja)
Other versions
JPH0828286B2 (en
Inventor
Ritsu Sato
立 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1156731A priority Critical patent/JPH0828286B2/en
Publication of JPH0323601A publication Critical patent/JPH0323601A/en
Publication of JPH0828286B2 publication Critical patent/JPH0828286B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make elements highly dense and to enhance their nonlinearity and their voltage-impression life by a method wherein, in a manufacturing process in which a metal oxide is added to and mixed with a raw material composed mainly of zinc oxide and this mixture is baked, a temperature-raising process, a holding process of a highest temperature and a temperature-lowering process down to a specific temperature are executed in a reduced pressure state. CONSTITUTION:A metal oxide such as bismuth oxide, an antimony oxide or the like is added to and mixed with a raw material composed mainly of zinc oxide; this mixture is baked. In a heat-treatment schedule of this baking process, a temperature-raising process, a holding process of a highest temperature and a temperature-lowering process down to 1100 deg.C or lower are executed in a state that a pressure has been reduced to a prescribed value or lower. Thereby, it is possible to effectively remove that pores are produced inside an element by a vapor pressure of bismuth oxide or the like. The elements become highly dense and their nonlinearity and their voltage-impression life are enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化亜鉛を主成分とする電圧非直線抵抗体の製
造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a voltage nonlinear resistor containing zinc oxide as a main component.

(従来の技術) 酸化亜鉛を主成分とする電圧非直線抵抗体は、そのすぐ
れた非直線電圧一電流特性から電圧安定化あるいはサー
ジ吸収を目的とした避雷器やサージアブソーバに広く利
用されている.この電圧非直線抵抗体は、主或分の酸化
亜鉛に電圧非直線性を発現する少量の、ビスマス、アン
チモン、コバルト、マンガン等の金属酸化物を添加し、
混合、造.粒、戒形したのち焼成し好ましくは側面高抵
抗層を形成するため無機物質を側面に塗布した後焼戒し
、その焼戒体の両端面に電極を取り付けることにより構
或されている。
(Prior art) Voltage nonlinear resistors whose main component is zinc oxide are widely used in lightning arresters and surge absorbers for the purpose of voltage stabilization or surge absorption because of their excellent nonlinear voltage-current characteristics. This voltage nonlinear resistor is made by adding a small amount of metal oxide such as bismuth, antimony, cobalt, manganese, etc. that exhibits voltage nonlinearity to a certain amount of main zinc oxide.
Mixed, made. The grains are formed into shapes, fired, and preferably coated with an inorganic material on the side surfaces to form a high-resistance layer, then fired, and electrodes are attached to both end surfaces of the fired body.

このようにして得られた電圧非直線抵抗体を大きなサー
ジ吸収を目的とする避雷器に適用する場合には、電圧非
直線抵抗体の放電耐量は大きいことが望ましい。電圧非
直線抵抗体の放電耐量は、4/lOμsの波形のインパ
ルス電流を5分間隔で2回印加し、電圧非直線抵抗体が
破壊または沿面閃絡を起こすまで、電流値をステップア
ップしていったときの破壊または沿面閃絡を起こさない
最大電流値で表わすことができる. 電圧非直線抵抗体の放電耐量は焼結体中のボイドに依存
するものと考えられる。ずなわち、4/10μSの波形
のインパルス電流を印加したときの破壊は熱応力による
ものと考えられるので、ボイドをなくして焼結体の機械
的強度を高めれば、放電耐量の向上が期待される。また
、ボイドは、焼結体のボイド以外の部分と比べて誘電率
がiooo分の1程度であるから、インパルス電流印加
時に強電界がかかり、放電を生じやすい。ボイドから放
電を生じると、その放電が引き金となって電流集中を生
じ、局部的に大きな熱応力が発生するため、電圧非直線
抵抗体が破壊する.このため、焼結体の機械的強度を高
めるとともに、電流集中を生じにくくする目的で、ボイ
ドを除去することが望ましい.焼結体中からのボイドの
除去については、焼或工程の昇温工程中800゜C−1
150℃までを大気圧以下の減圧状態下で行う方法が、
特開昭58−28802号公報において開示されている
When applying the voltage nonlinear resistor thus obtained to a lightning arrester intended for large surge absorption, it is desirable that the voltage nonlinear resistor has a large discharge withstand capacity. The discharge withstand capacity of a voltage non-linear resistor is determined by applying an impulse current with a waveform of 4/lOμs twice at 5-minute intervals, and increasing the current value in steps until the voltage non-linear resistor is destroyed or creeping flash occurs. It can be expressed as the maximum current value that does not cause destruction or creeping flash when It is thought that the discharge capacity of a voltage nonlinear resistor depends on the voids in the sintered body. In other words, the breakdown when an impulse current with a waveform of 4/10 μS is applied is thought to be due to thermal stress, so if voids are eliminated and the mechanical strength of the sintered body is increased, it is expected that the discharge withstand capacity will be improved. Ru. Further, since the dielectric constant of the void is about 1/iooo of that of the portion of the sintered body other than the void, a strong electric field is applied when an impulse current is applied, and discharge is likely to occur. When a discharge occurs from a void, the discharge triggers current concentration and generates large local thermal stress, which destroys the voltage nonlinear resistor. Therefore, it is desirable to remove voids in order to increase the mechanical strength of the sintered body and to prevent current concentration from occurring. Regarding the removal of voids from the sintered body, 800°C-1 during the heating process of the sintering process.
The method of heating up to 150℃ under reduced pressure below atmospheric pressure is
It is disclosed in Japanese Patent Application Laid-Open No. 58-28802.

(発明が解決しようとする課題) しかしながら、特開昭58−28802号公報記載の製
造方法では、1200゜C近辺の実際の焼或温度領域は
素子の含有或分である酸化ビスマスの蒸気圧が高くなり
、素子内部に気孔の発生が起こる問題があるとともに、
昇温工程中800〜l150゜Cの範囲のみを減圧状態
としているが、この段階での素子の収縮は粒子の再配列
によるものであり、微小な粒界気孔は依然として取り残
される問題があった.そのため、いずれの場合も素子の
高密度化が達成できず、良好な非直線性および良好な課
電寿命を有する電圧非直線抵抗体が得られない問題があ
った。
(Problem to be Solved by the Invention) However, in the manufacturing method described in JP-A-58-28802, the actual firing temperature range around 1200°C is such that the vapor pressure of bismuth oxide contained in the element is low. This causes problems such as the formation of pores inside the device, and
During the temperature raising process, the pressure is reduced only in the range of 800 to 150°C, but the shrinkage of the element at this stage is due to the rearrangement of the particles, and there is a problem that small grain boundary pores are still left behind. Therefore, in either case, there was a problem in that high density of the element could not be achieved, and a voltage nonlinear resistor having good nonlinearity and a good energized life could not be obtained.

さらに、昇温工程途中で大気圧に戻すと、素子表面にガ
スを取り込み易くなり、表面付近がボーラスとなる問題
もあった。
Furthermore, if the temperature is returned to atmospheric pressure during the heating process, gas is likely to be taken into the element surface, resulting in a bolus near the surface.

本発明の目的は上述した5iJを解消して、素子の高密
度化を達或することにより、良好な非直線性および良好
な課電寿命を得ることができる電圧非直線抵抗体の製造
法を提供しようとするものである. (課題を解決するための手段) 本発明の電圧非直線抵抗体の製造法は、酸化亜鉛を主成
分とする原料に、酸化ビスマス、酸化アンチモン等の金
属酸化物を添加、混合、焼成して得られる電圧非直線抵
抗体の製造法において、前記焼成工程のうち、昇温工程
、最高温度の保持工程および少なくとも1100℃まで
の降温工程を減圧状態とすることを特徴とするものであ
る。
The purpose of the present invention is to provide a method for manufacturing a voltage nonlinear resistor that can obtain good nonlinearity and a good life when charged by eliminating the above-mentioned 5iJ and increasing the density of the element. This is what we are trying to provide. (Means for Solving the Problems) The method for manufacturing a voltage nonlinear resistor of the present invention involves adding metal oxides such as bismuth oxide and antimony oxide to a raw material containing zinc oxide as a main component, mixing it, and firing it. The method for manufacturing the voltage nonlinear resistor obtained is characterized in that among the firing steps, the temperature raising step, the maximum temperature holding step, and the temperature lowering step to at least 1100° C. are performed under reduced pressure.

(作 用) 上述した構或において、焼或工程の熱処理スケジェール
のうち、昇温工程、最高温度の保持工程および少なくと
も1100℃、好ましくは950℃までの降温工程中の
酸化ビスマスの蒸気圧が低下するまでの工程を、好まし
くはlQQ torr以下の減圧状態としているため、
酸化ビスマスの蒸気圧が高くなることによる素子内部の
気孔発生を有効に除去することができ、素子の高密度化
を達威できる.ここで、降温工程中1100℃以下、好
ましくは950℃未満を大気圧に戻すのは、950℃未
満を減圧状態にすると、酸化ビスマスが液相から固相へ
と転移して微小気孔が埋められず取り残されたままとな
るため、高密度化が達威できないためである.また、降
温工程中の1100℃以下、好ましくは950℃未満の
雰囲気は大気であれば良いが、好ましくは大気よりも酸
化雰囲気すなわち酸素濃度が20vo l%以上である
と、より特性が安定するため好適である. (実施例) 酸化亜鉛を主成分とする電圧非直線抵抗体を得るには、
まず所定の粒度に調整した酸化亜鉛原料と所定のね度に
調整した酸化ビスマス、酸化コバルト、酸化マンガン、
酸化アンチモン、酸化クロム、好ましくは非晶質の酸化
ケイ素、酸化ニッケル、酸化ホウ素、酸化銀等よりなる
添加物の所定量を混合する.なお、この場合酸化銀、酸
化ホウ素の代わりに硝酸銀、ホウ酸を用いてもよい。好
ましくは銀を含むホウケイ酸ビスマスガラスを用いると
よい.また、添加物をgoo −iooo℃で仮焼した
後粉砕し、所定粒度に調整したものと酸化亜鉛原料を混
合してもよい。この際、これらの原料粉末に対して所定
量のポリビニルアルコール水溶液等を加える。
(Function) In the above structure, the vapor pressure of bismuth oxide decreases during the temperature raising step, the maximum temperature holding step, and the temperature lowering step to at least 1100° C., preferably 950° C., in the heat treatment schedule of the sintering step. The process up to this point is preferably carried out under reduced pressure below 1QQ torr.
It is possible to effectively eliminate the generation of pores inside the device due to the high vapor pressure of bismuth oxide, and it is possible to achieve higher density of the device. Here, the reason why the temperature is returned to atmospheric pressure below 1100°C, preferably below 950°C during the cooling process is because when the pressure is reduced below 950°C, bismuth oxide transitions from the liquid phase to the solid phase and fills the micropores. This is because densification cannot be achieved because many people are left behind. In addition, the atmosphere at temperatures below 1100°C, preferably below 950°C during the cooling step may be air, but it is preferable to use an oxidizing atmosphere, that is, an oxygen concentration of 20 vol% or more, as the properties will be more stable. It is suitable. (Example) To obtain a voltage nonlinear resistor whose main component is zinc oxide,
First, zinc oxide raw material adjusted to a specified particle size, bismuth oxide, cobalt oxide, manganese oxide, adjusted to a specified consistency,
A predetermined amount of additives such as antimony oxide, chromium oxide, preferably amorphous silicon oxide, nickel oxide, boron oxide, silver oxide, etc. are mixed. In this case, silver nitrate or boric acid may be used instead of silver oxide or boron oxide. Preferably, bismuth borosilicate glass containing silver is used. Alternatively, the additive may be calcined at goo-iooo°C and then pulverized and adjusted to a predetermined particle size and mixed with the zinc oxide raw material. At this time, a predetermined amount of polyvinyl alcohol aqueous solution or the like is added to these raw material powders.

次に好ましくは200 MHJI以下の真空度で減圧脱
気を行い、混合泥漿の水分量は30〜35−L%程度に
、またその混合泥漿の粘度は100±50cpとするの
が好ましい.次に得られた混合泥漿を噴霧乾燥装置に供
給して平均粒径50〜150uII1、好ましくは80
〜120μ一で、水分量が0.5〜2.0 wt%、よ
り好ましくは0.9〜1.5 wt%の造粒扮を造粒す
る.次に得られた造粒粉を、或形工程において、威形圧
力800〜1000kg/cya”の下で所定の形状に
或形する。
Next, vacuum degassing is preferably performed at a vacuum level of 200 MHJI or less, and the water content of the mixed slurry is preferably about 30-35-L%, and the viscosity of the mixed slurry is preferably 100±50 cp. Next, the obtained mixed slurry is fed to a spray dryer to obtain an average particle size of 50 to 150 uII1, preferably 80 uII1.
-120μ and a moisture content of 0.5 to 2.0 wt%, more preferably 0.9 to 1.5 wt%. Next, the obtained granulated powder is shaped into a predetermined shape in a shaping process under a shaping pressure of 800 to 1000 kg/cya''.

次に、その戒形体を昇降温速度10〜50゜C /hr
温度400〜700℃で有機威分を飛散除去し脱脂体を
得る。
Next, the precept-shaped body is heated and cooled at a rate of 10 to 50°C/hr.
The organic components are removed by scattering at a temperature of 400 to 700°C to obtain a degreased body.

次に、脱脂体の側面に高抵抗層を形戒する。本例ではB
iz03+ Sb=0=, ZnO. Sing等の所
定量に有機結合剤としてエチルセルロース、プチルカル
ビトール、酢酸nブチル等を加えた絶縁被覆用混合物ペ
ーストを、60〜300μ鵬の厚さに脱脂体の側面に塗
布する. 次に、これを昇降温速度20〜100℃/hr)最高保
持温度1000〜l300℃好ましくは1050−12
50℃13〜7時間という条件で本焼或する.本発明で
は、この本焼戒工程のうち、昇温工程、最高温度の保持
工程および少なくとも1100℃、好ましくは950゜
Cまでの降温工程を好ましくは100 torr以下の
減圧雰囲気とするとともに、1100゜C以下、好まし
くは950℃以下を大気圧で好ましくは酸素濃度20v
ol%以上の酸化雰囲気中で焼成する。
Next, a high resistance layer is formed on the side surface of the degreased body. In this example, B
iz03+ Sb=0=, ZnO. An insulating coating mixture paste prepared by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as an organic binder to a predetermined amount of Sing et al. is applied to the side surface of the degreased body to a thickness of 60 to 300 μm. Next, this is heated at a temperature raising/lowering rate of 20-100°C/hr) a maximum holding temperature of 1000-1300°C, preferably 1050-12
Final firing was performed at 50°C for 13 to 7 hours. In the present invention, the temperature raising step, the maximum temperature holding step, and the temperature lowering step to at least 1100° C., preferably 950° C., are preferably performed in a reduced pressure atmosphere of 100 torr or less, and at 1100° C. ℃ or less, preferably 950℃ or less at atmospheric pressure, preferably oxygen concentration 20V
Calcinate in an oxidizing atmosphere of ol% or more.

なお、ガラス粉末に有機結合剤としてエチルセルロース
、プチルカルビトール、酢酸nブチル等を加えたガラス
ペーストを前記側面の高抵抗層上に100〜300μ蒙
の厚さに塗布し、空気中で昇降温速度50〜200’C
/hr, 400 〜900℃保持時間0.5〜4時間
という条件で熱処理することによりガラス層を形戒する
と好ましい. その後、得られた電圧非直線抵抗体の両端面をSiC,
^hO,,ダイヤモンド等の1400〜2000相当の
研磨剤により水好ましくは油を研磨液として使用して研
磨する。次に、研磨面を洗浄後、研磨した両端面に例え
ばアルニξウム等によって電極を例えば溶射により設け
て電圧非直線抵抗体を得る。
A glass paste prepared by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as an organic binder to glass powder was applied to a thickness of 100 to 300 μm on the high-resistance layer on the side surface, and the temperature was raised and lowered in air. 50~200'C
/hr, 400 to 900°C for a holding time of 0.5 to 4 hours to form the glass layer. After that, both end faces of the obtained voltage nonlinear resistor were bonded to SiC,
Polishing is performed with an abrasive equivalent to 1400 to 2000, such as ^hO, diamond, using water, preferably oil, as the polishing liquid. Next, after cleaning the polished surfaces, electrodes are provided on both polished end surfaces using, for example, aluminum ξium, etc., by thermal spraying, to obtain a voltage nonlinear resistor.

以下、実際に本発明の範囲内および範囲外の電圧非直線
抵抗体において、各種特性を測定した結果について説明
する。
Hereinafter, the results of actually measuring various characteristics of voltage nonlinear resistors within and outside the scope of the present invention will be described.

某1目糺よ 上述した方法に従って、BizOi 1.0モル%.C
O:lOJ 0.5モル%, MnOt o.sモル%
, SbgOs 1−0モル%, CrzOs 0.5
モル%, Ni0 0.5モル%,A1tOs O.0
05モル%,SiOz1〜2モル%および残部がZnO
からなる原料に、ホウケイ酸ビスマスガラスを外配で0
.1 wt%添加し、昇温速度44℃/hr、最高温度
の保持工程を12lO℃X5br、降温速度60”C/
hrの条件で、第1表に示す降温工程中の温度までI 
XIO” torrの減圧下で焼成して、直径47閣、
l’t サ22.5+ma (7)形状テハリスタ電圧
(L−a)が169〜206 V/mmの第1表に示す
本発明例および比較例の電圧非直線抵抗体を準備した。
According to the method described above, 1.0 mol % of BizOi was added. C
O: lOJ 0.5 mol%, MnOt o. smol%
, SbgOs 1-0 mol%, CrzOs 0.5
mol%, Ni0 0.5 mol%, A1tOs O. 0
05 mol%, SiOz 1-2 mol% and the balance ZnO
The raw material consists of borosilicate bismuth glass and
.. 1 wt% was added, the heating rate was 44°C/hr, the maximum temperature holding step was 12lO°C x 5br, and the cooling rate was 60"C/hr.
hr condition to the temperature during the cooling step shown in Table 1.
Fired under reduced pressure of XIO” torr, diameter 47 mm,
l't sa 22.5+ma (7) Shape: Voltage nonlinear resistors of the present invention examples and comparative examples shown in Table 1 having voltages (L-a) of 169 to 206 V/mm were prepared.

そして、得られた電圧非直線抵抗体に対し、電圧非直線
指数α、気孔率および雷サージ限界放電耐量を測定し、
そて写真撮影後、その写真から画像解析装置により気孔
面積占有率(気孔面積/素子面積)を測定し、気孔率と
した。さらに、雷サージ放電耐量破壊率は、IOOK^
. IIOKA, 120KA. 130K^の電流を
4/10/73の電流波形で2回繰り返し印加した後に
破壊した割合として求めた。
Then, for the voltage nonlinear resistor obtained, the voltage nonlinearity index α, porosity, and lightning surge limit discharge withstand capacity were measured,
After taking a photograph, the pore area occupancy rate (pore area/element area) was measured from the photograph using an image analysis device, and this was determined as the porosity. Furthermore, the lightning surge discharge withstand breakdown rate is IOOK^
.. IIOKA, 120KA. It was determined as the percentage of breakdown after repeatedly applying a current of 130 K^ twice with a current waveform of 4/10/73.

における電流0.1mAと1mAとの測定値より求めた
It was determined from the measured values of currents of 0.1 mA and 1 mA.

ここで、■よ電流、■は電圧、Cは定数である。Here, ■ is a current, ■ is a voltage, and C is a constant.

また、気孔率の測定は試料を研磨後Sr!Mで観察し第
1表の結果から、降温時の減圧を1100’Cまでとし
た本発明の試験kl〜4は、1150゜Cおよび950
゜C未満まで減圧した比較例試験Nαl〜5および減圧
せず常圧焼戒を実施した比較例試験NllL6と比較し
て、電圧非直線指数α、雷サージ限界放電耐量破壊率の
いずれにおいても良好な特性を得ることができた.なお
、本発明のなかでも降温時の減圧を1100゜Cまでし
か実施しなかった本発明試験Nα1では、他の本発明例
と較べて気孔率が高く、若干雷サージ限界放電耐量が悪
化していることがわかる. 亥m 減圧時の真空度の影響を調べるため、第2表に示す種々
の真空度で実施例1と同様の条件で降温時1000゜C
までを減圧状態として得た電圧非直線抵抗体に対して、
実施例1と同様に気孔率および雷サージ限界放電耐量破
壊率を求めるとともに、超音波探傷試験における合格率
を求めた。結果を第2表に示す. 第2表の結果から、所定の範囲を減圧状態とした本発明
試験Nal〜6は、減圧にせず常圧の比較例と比べて気
孔率、超音波深傷合格率、雷サージ限界放電耐量のいず
れも良好であり、減圧の有効性が確認できるとともに、
真空度が100 torr以下の試験NI12〜6が5
00 torrの試験Na 1に比べて各種特性が良好
であることがわかる。
In addition, the porosity was measured using Sr! after polishing the sample. From the results in Table 1 observed at M, test kl~4 of the present invention, in which the reduced pressure during temperature cooling was up to 1100'C, was 1150°C and 950°C.
Compared to comparative test Nαl~5 in which the pressure was reduced to less than °C and comparative test NllL6 in which normal pressure burning was performed without reducing the pressure, both the voltage nonlinearity index α and the lightning surge limit discharge withstand breakdown rate were better. We were able to obtain the following characteristics. In addition, in the present invention test Nα1, in which the pressure was reduced only to 1100°C during the temperature drop, the porosity was higher than other examples of the present invention, and the lightning surge limit discharge capacity was slightly deteriorated. I know that there is. In order to investigate the influence of the degree of vacuum during depressurization, the temperature was lowered to 1000°C under the same conditions as in Example 1 at various degrees of vacuum shown in Table 2.
For the voltage nonlinear resistor obtained under reduced pressure up to
In the same manner as in Example 1, the porosity and lightning surge limit discharge withstand breakdown rate were determined, and the pass rate in the ultrasonic flaw detection test was determined. The results are shown in Table 2. From the results in Table 2, it can be seen that the present invention test Nal~6 in which the predetermined range was in a reduced pressure state had lower porosity, ultrasonic deep damage pass rate, and lightning surge limit discharge capacity than the comparative example in which the pressure was not reduced and the pressure was normal. All of them were good, confirming the effectiveness of decompression, and
Test NI12-6 with vacuum degree below 100 torr is 5
It can be seen that various characteristics are better than the test Na 1 at 00 torr.

(発明の効果) 以上の説明から明らかなように、本発明の電圧非直線抵
抗体の製造法によれば、焼或工程の熱処理スケジュール
のうち昇降工程、最高温度保持工程および少なくともl
100゜Cまでの工程を減圧状態としているため、酸化
ビスマスの蒸気圧が高くなることによる素子内部の気孔
発生を有効に除去することができ、素子の高密度化を達
或でき、その結果良好な非直線性、放電耐量および良好
な課電寿命を有する電圧非直線抵抗体を得ることができ
る。
(Effects of the Invention) As is clear from the above description, according to the method of manufacturing a voltage nonlinear resistor of the present invention, the lifting step, the maximum temperature holding step, and at least
Since the process up to 100°C is under reduced pressure, it is possible to effectively eliminate the generation of pores inside the device due to the high vapor pressure of bismuth oxide, and it is possible to achieve high density of the device, resulting in good results. It is possible to obtain a voltage nonlinear resistor having good nonlinearity, discharge withstand capacity, and good energized life.

Claims (1)

【特許請求の範囲】[Claims] 1.酸化亜鉛を主成分とする原料に、酸化ビスマス、酸
化アンチモン等の金属酸化物を添加、混合、焼成して得
られる電圧非直線抵抗体の製造法において、前記焼成工
程のうち、昇温工程、最高温度の保持工程および少なく
とも1100℃までの降温工程を減圧状態とすることを
特徴とする電圧非直線抵抗体の製造法。
1. In the method for manufacturing a voltage nonlinear resistor obtained by adding, mixing, and firing a metal oxide such as bismuth oxide or antimony oxide to a raw material containing zinc oxide as a main component, the firing step includes a heating step, A method for manufacturing a voltage nonlinear resistor, characterized in that the step of holding the maximum temperature and the step of lowering the temperature to at least 1100° C. are performed in a reduced pressure state.
JP1156731A 1989-06-21 1989-06-21 Method of manufacturing voltage non-linear resistor Expired - Lifetime JPH0828286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1156731A JPH0828286B2 (en) 1989-06-21 1989-06-21 Method of manufacturing voltage non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1156731A JPH0828286B2 (en) 1989-06-21 1989-06-21 Method of manufacturing voltage non-linear resistor

Publications (2)

Publication Number Publication Date
JPH0323601A true JPH0323601A (en) 1991-01-31
JPH0828286B2 JPH0828286B2 (en) 1996-03-21

Family

ID=15634100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1156731A Expired - Lifetime JPH0828286B2 (en) 1989-06-21 1989-06-21 Method of manufacturing voltage non-linear resistor

Country Status (1)

Country Link
JP (1) JPH0828286B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828802A (en) * 1981-08-13 1983-02-19 株式会社東芝 Method of producing voltage non-linear resistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828802A (en) * 1981-08-13 1983-02-19 株式会社東芝 Method of producing voltage non-linear resistor

Also Published As

Publication number Publication date
JPH0828286B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
KR970005747B1 (en) Voltage non-linear resistor & method of producing the same
JPH0323601A (en) Manufacture of nonlinear voltage resistor
JP5337073B2 (en) Current-voltage nonlinear resistor and method for manufacturing the same
JPH0251072A (en) Inspection of loaded power for voltage non-linear resistor
JPH03142802A (en) Manufacture of voltage-dependent nonlinear resistor
JP2560851B2 (en) Voltage nonlinear resistor
JPH02142101A (en) Manufacture of voltage nonlinear resistor and high-density voltage nonlinear resistor
JP2692210B2 (en) Zinc oxide varistor
JP2793578B2 (en) Method for manufacturing voltage non-linear resistor and sagger used for the same
JPH09205006A (en) Nonlinear voltage resistor and its manufacturing method
JPH01222404A (en) Manufacture of voltage dependent non-linear resistor
JPH036801A (en) Voltage-dependent nonlinear resistor
JP2619129B2 (en) Method for manufacturing voltage non-linear resistor and sagger used for the same
JPH0555008A (en) Voltage-dependent nonlinear resistor
JPH02220402A (en) Voltage non-linear resistor and its manufacture
JP2559838B2 (en) Voltage nonlinear resistor
JPH02210803A (en) Manufacture of voltage nonlinear resistor
JPH0686322B2 (en) Zinc oxide raw material for voltage nonlinear resistors
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH03181102A (en) Manufacture of nonlinearly voltage-dependent resistor
JPH07249505A (en) Manufacture of nonlinear resistor
JPH0555009A (en) Voltage-dependent nonlinear resistor
JPH08273905A (en) Manufacture of voltage nonlinear resistor
JPH0412007B2 (en)
JPH04253301A (en) Manufacture of non-linear varistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100321

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100321

Year of fee payment: 14