JPH03257715A - 酸化物超電導線材及びその製造方法 - Google Patents

酸化物超電導線材及びその製造方法

Info

Publication number
JPH03257715A
JPH03257715A JP2054198A JP5419890A JPH03257715A JP H03257715 A JPH03257715 A JP H03257715A JP 2054198 A JP2054198 A JP 2054198A JP 5419890 A JP5419890 A JP 5419890A JP H03257715 A JPH03257715 A JP H03257715A
Authority
JP
Japan
Prior art keywords
wire
nickel
oxide
wire rod
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2054198A
Other languages
English (en)
Inventor
Masahiro Kiyofuji
雅宏 清藤
Yuji Ishigami
石上 雄二
Michiya Okada
道哉 岡田
Toshimi Matsumoto
松本 俊美
Katsuzo Aihara
勝蔵 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP2054198A priority Critical patent/JPH03257715A/ja
Publication of JPH03257715A publication Critical patent/JPH03257715A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超電導マグネット用コイル等に適用可能な、
酸化物超電導材料を用いた超電導線材及びその製造方法
に関するものである。
[従来の技術] 近時、常電導状態から超電導状態に遷移する臨界温度(
Tc)が液体窒素温度(77K )以上の高い値を示す
酸化物超電導材料が種々発表されている。
そのような酸化物超電導体を用いた線材としては、超電
導特性を示す酸化物の粉末を、例えば銀のバイブ中に充
填し、これに押出し、スウエージャ、引抜き、圧延等の
減面加工を施した後、焼結熱処理を行なって金属被覆線
材とすることが行われている。
このような方法によって得られた線材の液体窒素温度で
の臨界電流密度(J c)は、Y −Ba −Cu−〇
系で3.000〜4.000A / cシ、Bl −P
b −Sr −Ca−Cu−0系で12.00OA /
 (4、TI −Ba/ Sr −Ca −Cu系でi
o、300A / cgf等が報告されている。これら
のデータはいずれも零磁場での特性であり、磁場中では
特性が急激に低下する傾向を示し、実用に向けては更に
特性の向上が望まれている。
ところで、前記のような超電導線材をコイル状に成形し
て使用する場合、線材の表面に絶縁層を設ける必要があ
るが、酸化物超電導体は堅くて脆いため、コイルの成形
にあたっては主として巻線後に焼結熱処理する方法が採
用される。したがって、絶縁材としては、ガラス質のフ
ァイバやテープのような焼結熱処理に耐えられるものを
使用することが考えられる。
[発明か解決しようとする課題] 前記のように、絶縁層にガラスファイノ(等を用いる方
式では絶縁層の厚さが数100μm以上と厚くなること
、またガラス材質と超電導体が反応してしてしまう恐れ
等がある。
また、酸化物超電導線材のJc特性は、線材がテープ状
の場合、厚さが100μm以下で向上が見られ、丸線状
の場合でも径が小さい方が特性が良いこと等を考えると
、絶縁層が厚いことは絶縁線材としてオーバーオールの
電流密度(Jcall)を極度に低下させてしまう恐れ
がある。
本発明の目的は、前記した従来技術の欠点を解消し、高
いJc特性が得られる酸化物超電導絶縁線材を提供する
ことにある。
[課題を解決するための手段] 本発明の要旨は、酸化物超電導体を金属で被覆してなる
線材の表面に、ニッケル酸化物の薄い被膜を設け、この
被膜を絶縁層とした点にある。
ニッケル(Ni)酸化物と同様の金属酸化物の絶縁層と
しては、アルミナ(^1□03)、マグネシア(MgO
)等も考えられるが、これらの物質の場合、A1または
Mgでは、最終の焼結熱処理時に線材のマトリックスを
構成するAg等や芯部を構成する酸化物超電導体と反応
してしまい、酸化物超電導体の特性を大11に低下、あ
るいは絶縁体に変化させてしまう。特にAl2O3の場
合はその劣化が顕著である。またAl2O3やMgOの
層を形成するために線材の表面に金属A1またはMgを
クラッドしたのでは、Ag等の金属層に拡散し、その比
抵抗を悪くしてしまい、安定化材としての効果が期待で
きなくなる。この点、ニッケル酸化物であれば、旧とA
g等との反応は少なく、酸化物超電導体との反応もなく
、特性を劣化させる心配がない。更に厚さが2〜3μm
程度のニッケル酸化膜の場合、酸化物超電導体の特性に
影響を及ぼす酸素もある程度拡散でき、高特性の絶縁線
材が得られる。また、その形成方法として、金属被覆線
材の表面にニッケルを被覆しておき、線材の最終焼結熱
処理時に金属Nlを酸化物に変える手法であれば、コイ
ル巻線し、WAR法でコイル体(パンケーキ状あるいは
ソレノイド状)を容易に得ることもできるメリットがあ
る。
なお、線材の主体をなす酸化物超電導材料としでは、T
I −11a −Ca −Cu −0、TI −Ba/
 Sr −Ca −CuO等のT1系、Bi −Sr 
−Ca −Cu −0、旧/Pb−9rCa−Cu−0
等の旧糸は勿論のこと、Y −Ba −Cu−〇、Y 
−Ha −Ca −Cu −0等のY系や、Y系のYを
E「、Ilo等の磁性元素(Ln)で置換したLn−B
a−Cu−0等踵々の酸化物超電導体が使用できる。
また、そのような酸化物超電導体を被覆する金属として
は、Ag1^g合金に限定されず、^u、 pt、Cu
及びそれらの合金等であってもよく、それらの組み合わ
せてあってもよい。超電導の安定化材の意味からは虫型
導性の材料であることが望ましい。
そのニッケル酸化物の絶縁層を形成する方法としては、
前記したように、熱処理前の金属被覆線材の表面に、電
気メツキ、無電解メツキ、金属溶射、真空メツキ、気相
メツキ、圧延等の方法によってニッケル又はその合金を
薄く被覆しておき、その線材を酸素雰囲気や大気中で熱
処理する方法が望ましい。この場合の熱処理は、芯部の
酸化物超電導体を最終的に焼結する熱処理が望ましいが
、焼結熱処理とは別であっても、焼結熱処理の一部であ
ってもよい。このような酸化処理の場合、ニッケルは酸
素拡散係数が小さいため、ニッケル又はニッケル合金で
全表面を被覆すると、熱処理時に酸化物超電導体への酸
素の供給が不足し、酸化物超電導体の特性に影響を及ぼ
す可能性があるので、酸化物超電導体によってはニッケ
ル又はその合金の被覆を部分的に設けることが望ましい
。勿論、ニッケル又はその合金の被膜はその全部を酸化
物とする必要はなく、表面側だけが酸化物となっていて
も差し支えない。
[実 施 例] 以下に、TI −Ba/ Sr −Ca −Cu −0
の粉末を原料とした銀被覆線材の例について説明する。
原料として超電導特性を示すTI −Ba/ Sr −
Ca −Cu −0(2:2:2:3組成)の粉末を準
備した。その粉末は平均粒径が5〜6μmで、交流磁化
率法によりその臨界温度(Tc)が120 Kであるこ
とを確認した。
その微粉末を外径6m11の銀パイプ中に充填し、それ
をスウエージャ及びダイス引きにより外径1.2ueの
銀被覆シングル線材とした。次にその線材の複数本を外
径1hmの銀バイブの中に組み込んでスウェージャ及び
ダイス引きにより減面塑性加工を施して外径2mmの銀
被覆サブマルチ線材とした。次にそのサブマルチ線材の
複数本を銀バイブ中に組み込んで再度減面塑性加工して
外径2−m136芯の銀被覆マルチ線材とした。
その後、そのマルチ線材を圧延によって厚さ0、b++
mのテープ状線材に加工し、そのテープ状線材の表面に
電気メツキ(ワット浴)により厚さ 3〜5μInの純
ニッケル層を形成した。その後、そのテープ状線材を酸
素雰囲気中において845℃で2時間熱処理し、銀被覆
内のT1系超電導体を焼結させると共に、表面のニッケ
ル層を酸化させ、表面にニッケル酸化物の薄い絶縁層を
もった酸化物超電導線材とした。
製作した線材の構成略図を第1図に示す。
線材は銀のマトリックス2中に36芯のTl系酸化物超
電導体のフィラメント1が埋め込まれており、その線材
の表面にはニッケル酸化物からなる薄い絶縁層3が形成
されている。
以上により作成した線材の特性をみると、ニッケルの被
膜を設けずに熱処理した線材の線材としての臨界電流密
度がJ c−5,000A/c−であるのに対し、本発
明による線材の絶縁層3を含めた値はJ Call−4
,545A/cシであった。この値は、ニッケル酸化物
の絶縁層3の代わりに厚さ100μmのガラステープを
用いたものの絶縁層を含めた値がJ c  all=1
.[i70 A/cシであることを考えると、実施例の
線材は特性が大きく改善されていることがわかる。
このように本発明によれば、薄い絶縁層が使用できるメ
リットがある。したがって、ニッケルメッキ層をもった
焼結熱処理前の線材をコイル状に巻線し、その後酸素の
存在する雰囲気中で焼結熱処理を行うことで、電流密度
の高い線材コイルを作成することができる。
第2図は、部分的にニッケルメッキを施して部分的にニ
ッケル酸化物の絶縁層3を形成した線材の例を示してい
る。
このように部分的に絶縁層3のできない箇所を作ってお
くことにより、Y系超電導材料のように特性に影響する
酸素の出入りを良くするメリットがある。
尚、図示例ではテープ状線材を示したが、線材の断面形
状は円形であっても、他の形状でもあってもよく、特に
限定されるものではない。
[発明の効果] 以上から明らかなように、本発明によれば、薄くて強固
な絶縁層を容易に形成できることから、絶縁層を含めた
線材の電流密度を向上できると共に、これにより作成さ
れたコイルは剛性が高く、良好な特性のものを得ること
ができる。
コイルの形態としてはパンケーキ状、ソレノイド状があ
るが、本発明のメリットは、細線を用いて作成するソレ
ノイド状コイルにおいて期待することができる。
【図面の簡単な説明】
第1及び第2図は夫々本発明に係る超電導線材の例を示
す横断面図である。 1:金属のマトリックス、 2:酸化物超電導体、 3:ニッケル酸化物絶縁層。 冗 の 苑

Claims (5)

    【特許請求の範囲】
  1. 1.酸化物超電導体を金属で被覆してなる線材の表面に
    ニッケル酸化物による絶縁層を設けてなることを特徴と
    する酸化物超電導線材。
  2. 2.線材がコイル状に成形されている、前記第1項記載
    の線材。
  3. 3.ニッケル酸化物の絶縁層がニッケル又はその合金の
    被膜に酸化処理を施したものである、前記第1項又は第
    2項記載の線材。
  4. 4.酸化物超電導体を金属で被覆してなる線材の表面に
    ニッケル又はその合金の被膜を形成する工程と、ニッケ
    ル又はその合金の被膜が形成された線材を酸素の存在す
    る雰囲気中で熱処理し、ニッケル又はその合金の被膜の
    少なくとも表層部を酸化させる工程を含むことを特徴と
    する酸化物超電導線材の製造方法。
  5. 5.酸化物超電導体に金属を被覆してなる線材の表面に
    ニッケル又はその合金の被膜を形成する工程と、ニッケ
    ル又はその合金の被膜が形成された線材をコイル状に巻
    線する工程と、コイル状に成形された線材を酸素の存在
    する雰囲気中で熱処理し、ニッケル又はその合金の被膜
    の少なくとも表層部を酸化させる工程を含むことを特徴
    とする酸化物超電導線材の製造方法。
JP2054198A 1990-03-06 1990-03-06 酸化物超電導線材及びその製造方法 Pending JPH03257715A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2054198A JPH03257715A (ja) 1990-03-06 1990-03-06 酸化物超電導線材及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2054198A JPH03257715A (ja) 1990-03-06 1990-03-06 酸化物超電導線材及びその製造方法

Publications (1)

Publication Number Publication Date
JPH03257715A true JPH03257715A (ja) 1991-11-18

Family

ID=12963845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2054198A Pending JPH03257715A (ja) 1990-03-06 1990-03-06 酸化物超電導線材及びその製造方法

Country Status (1)

Country Link
JP (1) JPH03257715A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165342A (ja) * 2004-12-08 2006-06-22 Tohoku Univ 超伝導コイルの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165342A (ja) * 2004-12-08 2006-06-22 Tohoku Univ 超伝導コイルの製造方法

Similar Documents

Publication Publication Date Title
US4988669A (en) Electrical conductor in wire or cable form composed of a sheathed wire or of a multiple-filament conductor based on a ceramic high-temperature superconductor
JPH0419918A (ja) Nb↓3Al系超電導線材の製造方法並びに製造装置
US4153986A (en) Method for producing composite superconductors
JPH03257715A (ja) 酸化物超電導線材及びその製造方法
US3676577A (en) Superconductors containing flux traps
JP4423708B2 (ja) 酸化物超電導線および酸化物超電導多芯線の製造方法
JP4001996B2 (ja) 超電導前駆複合線材および超電導複合線材の製造方法
JP2604379B2 (ja) セラミックス系超電導線の製造方法
JPS63284720A (ja) 超電導線
JP2719155B2 (ja) 超電導撚線の製造方法
JPS6460918A (en) Manufacture of ceramic supercondutive wire
JP2520877B2 (ja) 化合物超電導線材の製造方法
JPS602728B2 (ja) 化合物複合超電導体の製造方法
JPH01143108A (ja) セラミックス系超電導線の製造方法
JPH05266726A (ja) 酸化物超電導線
JPH01144524A (ja) セラミックス系超電導線の製造方法
JP2599138B2 (ja) 酸化物系超電導線の製造方法
JPH01149316A (ja) セラミックス系超電導線の製造方法
JPH01149318A (ja) セラミックス系超電導線の製造方法
JPH01321605A (ja) 酸化物系セラミックス超電導体コイルの製造方法
JP2573506B2 (ja) セラミックス系超電導線の製造方法
JPH03102717A (ja) 電流リード用導体の製造方法
JPH0554741A (ja) 化合物超電導線の製造方法
WO1996036484A1 (en) Methods for producing hts components using porous and expanded metal reinforcement, and components produced
JPH03158203A (ja) セラミックス超電導導体の製造方法