JPH03255966A - Withstanding voltage testing method for inspecting product of circuit board for hybrid integrated circuit - Google Patents

Withstanding voltage testing method for inspecting product of circuit board for hybrid integrated circuit

Info

Publication number
JPH03255966A
JPH03255966A JP5428690A JP5428690A JPH03255966A JP H03255966 A JPH03255966 A JP H03255966A JP 5428690 A JP5428690 A JP 5428690A JP 5428690 A JP5428690 A JP 5428690A JP H03255966 A JPH03255966 A JP H03255966A
Authority
JP
Japan
Prior art keywords
circuit board
circuit
conductor
insulating layer
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5428690A
Other languages
Japanese (ja)
Other versions
JPH0614092B2 (en
Inventor
Koji Okawa
光司 大川
Michihiko Yoshioka
吉岡 道彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP5428690A priority Critical patent/JPH0614092B2/en
Priority to GB9104718A priority patent/GB2242750B/en
Publication of JPH03255966A publication Critical patent/JPH03255966A/en
Publication of JPH0614092B2 publication Critical patent/JPH0614092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/129Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of components or parts made of semiconducting materials; of LV components or parts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To surely discriminate an insulation breakdown strength by measuring a local discharge in an insulated layer with impressing a specified voltage between a circuit conductor and metal base on a circuit board and discriminating the normal/defective state of insulation breakdown strength for the circuit board in accordance with the size of discharged electric charge. CONSTITUTION:The insulated layer 2 is provided on the metal base 1 which is used as a heat sink, and the copper circuit conductor 3 is provided further on this insulated layer. In this circuit board, the insulated layer 2 is constituted of a polymer film 21 such as a polyimide film, etc., and layers 22 of adhesive material such as a epoxy resin, etc. which are arranged on the upper and lower parts of the film. Further by a sealing part 4, the side and edge of conductor 3 are sealed with an insulating material to suppress a corona discharge from the edge part of conductor 3. The test can be performed in the air, since the corona discharge from the edge of conductor 3 is thus effectively suppressed by the sealing part 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は混成集積回路すなわちハイブリッドIC形成用
の回路基板について製品の耐電圧性の良否を判別する試
験方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a test method for determining the quality of voltage resistance of a circuit board for forming a hybrid integrated circuit, that is, a hybrid IC.

(従来の技術) 高密度実装或はハイパワーのハイブリッドIC用等の回
路基板として、ヒートシンクとなる金属ベース例えばア
ルミベースの上にエポキシ拘脂、ポリイミド等の有機絶
縁物より成る絶縁層もしくはガラスエポキシ等の有機絶
縁物を含む絶縁層を有し、更にこの上に回路導体を設け
た回路基板が多用されている。このような回路基板の耐
電圧性すなわち絶縁破壊強度をテストするルーチンの製
品検査では、専ら、回路基板の回路導体と金属ベースと
の間にAC2〜5四の電圧を1分間課電する試験方法が
採用され、この試験により絶縁破壊を生じるか否かによ
り製品の絶縁破壊強度の良否を判別している。
(Prior art) As a circuit board for high-density packaging or high-power hybrid ICs, an insulating layer made of an organic insulator such as epoxy resin, polyimide, or glass epoxy is placed on a metal base, such as an aluminum base, which serves as a heat sink. Circuit boards are often used, which have an insulating layer containing an organic insulator such as, for example, and further have a circuit conductor thereon. Routine product inspections to test the voltage resistance, or dielectric breakdown strength, of such circuit boards are exclusively conducted using a test method in which a voltage of 2 to 54 AC is applied for 1 minute between the circuit conductor of the circuit board and the metal base. is adopted, and the quality of the dielectric breakdown strength of the product is determined based on whether or not dielectric breakdown occurs through this test.

一方、30年或は40年以上という長期の匿頼性が要求
される高電圧ケーブル、電力用コンデンサ、変圧器等の
高電圧電気機器について、絶縁層中リポイド等による絶
縁層の内部放電す々わち部分放電を測定する部分放電測
定が知られている。この部分放電測定は電気機器の絶縁
性能の長期の信頼性を評価するのに有効であり、高電圧
用の電気機器の研究開発、認定試験等における絶縁性能
の長期信頼性の評価や長期使用中の電気機器の絶縁性能
の劣化度合の診断に利用されている。また、例えば電力
用ケーブルについて言えば、最近は60KV以上の高圧
ケーブルについては製品出荷前に行う製品検査において
も部分放電測定を行っているが、この場合も、部分放電
測定は絶縁性能の長期の信頼性をチエツクするものであ
り、製品の絶縁破壊強度の良否を判別する試験としては
、別に交流電圧破壊試験、直流衝撃電圧破壊試験を行っ
ている。
On the other hand, for high-voltage electrical equipment such as high-voltage cables, power capacitors, and transformers that require long-term reliability of 30 or 40 years or more, internal discharges in the insulating layer due to lipoids, etc. In other words, partial discharge measurement for measuring partial discharge is known. This partial discharge measurement is effective for evaluating the long-term reliability of the insulation performance of electrical equipment, and is useful for evaluating the long-term reliability of insulation performance in research and development of high-voltage electrical equipment, certification tests, etc. It is used to diagnose the degree of deterioration of the insulation performance of electrical equipment. In addition, for example, regarding power cables, recently partial discharge measurements are also performed during product inspections for high-voltage cables of 60KV or higher before product shipment. AC voltage breakdown tests and DC impact voltage breakdown tests are separately conducted to check reliability and to determine whether a product's dielectric breakdown strength is good or bad.

(発明が解決しようとする課題) 前記した金属ベース上に有機絶縁物より成る絶縁層もし
くは有機絶縁物を含む絶縁層を有し、更にその上に回路
導体を設けた回路基板にトランジスタ等の半導体素子、
抵抗、コンデンサ等を搭載して電子的機能をもつモジュ
ールまたはボード、いわゆる実装品を製造する場合に、
前述した耐電圧試験に合格した基板を使用しているにも
拘らず、実装品を製造する製造過程中に行われる耐電圧
試験或は実装品の製造後の耐電圧試験において回路基板
の絶縁層に絶縁破壊を生じることが少なくない。そこで
、金属ベースと回路導体との間に印加する電圧を高くし
て回路基板の耐電圧試験の試験条件をシビャにしても、
実装品の製造過程中もしくは製造後に行う耐電圧試験に
おいて回路基板の絶縁層に絶縁破壊を生じる頻度には変
化がないかもしくは却って悪化する。
(Problem to be Solved by the Invention) A semiconductor such as a transistor is mounted on a circuit board having an insulating layer made of an organic insulating material or an insulating layer containing an organic insulating material on the metal base described above, and further provided with a circuit conductor thereon. element,
When manufacturing modules or boards with electronic functions that include resistors, capacitors, etc., so-called mounted products,
Despite using a board that has passed the above-mentioned withstanding voltage test, the insulating layer of the circuit board may be damaged during the withstanding voltage test conducted during the manufacturing process of manufacturing the mounted product or the withstanding voltage test after the manufacturing of the mounted product. dielectric breakdown often occurs. Therefore, even if we increase the voltage applied between the metal base and the circuit conductor and make the test conditions for the withstand voltage test of the circuit board more severe,
The frequency with which dielectric breakdown occurs in the insulating layer of a circuit board during or after the manufacturing process of a mounted product does not change or even worsens.

この事実は、従来の耐電圧試験法では、回路基板の耐電
圧性すなわち絶縁破壊強度を充分に評価することができ
ないことを意味するものであり、実装品の製造過程中或
は製造後に行う耐電圧試験において絶縁破壊するような
回路基板を確実に判別し、排除できる新らしい夙験方法
を確立することが必要である。
This fact means that conventional withstand voltage testing methods cannot adequately evaluate the voltage withstand ability, that is, the dielectric breakdown strength, of circuit boards. It is necessary to establish a new testing method that can reliably identify and eliminate circuit boards that cause dielectric breakdown during voltage tests.

本発明はこの新らしい課題を解決しようとするものであ
る。
The present invention seeks to solve this new problem.

(課題を解決するための手段) 本発明の耐電圧試験方法は、金属ベース上に有機絶縁物
より成るもしくは有機絶縁物を含む絶縁物より成る絶縁
層を有し、更にその上に回路導体を有する混成集積回路
用回路基板について製品の絶縁破壊強度の良否を判別す
る試験方法であって、回路基板の回路導体と金属ベース
との間に所定電圧を印加して絶縁層中の部分放電を測定
し、放電電荷の大小により当該回路基板の絶縁破壊強度
の良否を判別することを特徴とするものである。
(Means for Solving the Problems) The withstand voltage testing method of the present invention has an insulating layer made of an organic insulator or an insulator containing an organic insulator on a metal base, and further has a circuit conductor on the insulating layer. This is a test method for determining whether the dielectric breakdown strength of a circuit board for a hybrid integrated circuit is good or bad, and the partial discharge in the insulating layer is measured by applying a predetermined voltage between the circuit conductor of the circuit board and the metal base. The present invention is characterized in that it determines whether the dielectric breakdown strength of the circuit board is good or bad based on the magnitude of the discharged charge.

放電電荷が所定値を越える大きさになる回路基板は、実
装品の製造中或は製造後の耐電圧試験において絶縁破壊
を生じる可能性が大きいものであり、これらは絶縁破壊
強度不良として製品から排除される。実際の検査におい
ては、放電電荷量の最大値を測定することは必すしも必
要ではなく、簡便に、所定電圧を印加したときに所定の
値を越える放電電荷の放電が有るか、無いかにより絶縁
破壊強度の良否を判別することもできる。
Circuit boards whose discharge charge exceeds a predetermined value have a high possibility of causing dielectric breakdown during the manufacturing of mounted products or during withstand voltage tests after manufacturing. be excluded. In actual inspection, it is not necessarily necessary to measure the maximum value of the amount of discharged charge, but it is simply possible to measure whether or not there is discharge of discharged charge exceeding a prescribed value when a prescribed voltage is applied. It is also possible to determine whether the dielectric breakdown strength is good or bad.

ここに言う放電電荷とは、所定電圧を印加したときに所
定の頻度数以上の発生頻度で生じる放電電荷を言い、所
定の頻度数としては10pps、20 pps、100
pps等を適宜に選ぶことができるが、通常は商用サイ
クル数に合わせて50ppa、60ppsに選ぶのが便
利である。
The discharge charge mentioned here refers to the discharge charge that occurs at a frequency of occurrence more than a predetermined frequency when a predetermined voltage is applied, and the predetermined frequency is 10 pps, 20 pps, 100 pps.
pps etc. can be selected as appropriate, but it is usually convenient to select 50 pps or 60 pps depending on the number of commercial cycles.

々お、上記本発明で言う回路導体は、絶縁層上の導体箔
をエツチングして武威した導体回路およびエツチング前
の導体箔の双方を含むものである。
The circuit conductor referred to in the present invention includes both a conductor circuit obtained by etching a conductor foil on an insulating layer and a conductor foil before etching.

(作用) 従来の耐電圧試験に合格した回路基板を使用しているに
も拘らず、実装品の製造過程中或は製造後の耐電圧試験
において絶縁破壊した回路基板につき、本願発明者が精
密に検討した所、絶縁破壊は回路基板の絶縁層中に存在
するボイドに起因している。実装品メーカにおける耐電
圧試験の繰り返し、或は回路基板の製品検査自体におけ
る高電圧の印加が回路基板の絶縁層中のボイドに放電を
生じさせて絶縁層の有機絶縁物を劣化させ、絶縁層の厚
さが極めて薄いという回路基板の特異性と相俟って、回
路基板の製品検査における耐電圧試験に合格した回路基
板でありながら、実装品の製造過程中或は製造後の耐電
圧試験において絶縁破壊を生じていたものと考えられる
。このことは、回路基板に対する従来の耐電圧試験にお
いて印加電圧を高め、耐電圧試験の条件をシビアにして
も、実装品製造過程中或は製造後の耐電圧試験において
回路基板に絶縁破壊を生じる頻度があまり変ら□いか或
は却って増大するという前述の結果ともよく符号する。
(Function) Despite using a circuit board that has passed a conventional withstand voltage test, the inventor of the present application has developed a precision According to research, dielectric breakdown is caused by voids existing in the insulating layer of the circuit board. Repeated withstand voltage tests by manufacturers of electronic components, or the application of high voltage during product inspection of circuit boards, can cause discharge in the voids in the insulating layer of the circuit board, deteriorating the organic insulating material in the insulating layer, and causing damage to the insulating layer. Coupled with the peculiarity of the circuit board that the thickness is extremely thin, even though the circuit board has passed the withstand voltage test in the product inspection of the circuit board, the withstand voltage test during the manufacturing process of the mounted product or after the manufacturing process is difficult. It is thought that dielectric breakdown occurred during the test. This means that even if the applied voltage is increased and the conditions of the withstand voltage test are made more severe in the conventional withstand voltage test for circuit boards, dielectric breakdown will occur in the circuit board during the withstand voltage test during the manufacturing process of the mounted product or after the withstand voltage test. This agrees well with the above-mentioned result that the frequency does not change much or even increases.

従って回路基板の絶縁破壊強度を充分に評価でき、実装
品の製造過程中或は製造後の耐電圧試験において絶縁破
壊するような絶縁破壊強度が不足する製品を完全に排除
できる試験としては、本発明のように、回路基板の絶縁
層中のボイドによる内部放電の状況を観測し、これに基
づいて良否を判定する試験を欠くことができないと考え
られる。
Therefore, this test is a test that can sufficiently evaluate the dielectric breakdown strength of circuit boards and completely eliminate products with insufficient dielectric breakdown strength that would cause dielectric breakdown during the manufacturing process of mounted products or during withstand voltage tests after manufacturing. As in the invention, it is considered essential to conduct a test that observes the state of internal discharge due to voids in the insulating layer of a circuit board and determines whether the circuit board is good or bad based on this.

部分放電測定は、絶縁層中リポイド等による内部放電を
観測する測定方法であり、放電開始電圧の測定、放電消
滅電圧の測定、コロナ平均電流の測定等の種々の試験方
法があるが、本発明においては回路導体と金属ペースと
の間に所定電圧を印加したときの絶縁層中の内部放電に
よる放電電荷を測定し、その大小により回路基板の絶縁
破壊強度の良否を判定する。より筒便には、所定電圧を
印加したとき、所定の値を越える放電電荷の放電の有無
を検出することにより回路基板の絶縁破壊強度の良否を
判定する。
Partial discharge measurement is a measurement method for observing internal discharge caused by lipoids in an insulating layer, and there are various test methods such as measurement of discharge starting voltage, measurement of discharge extinction voltage, and measurement of corona average current. In this method, when a predetermined voltage is applied between the circuit conductor and the metal paste, the discharge charge due to internal discharge in the insulating layer is measured, and the dielectric breakdown strength of the circuit board is judged based on the magnitude of the discharge charge. More specifically, when a predetermined voltage is applied, the quality of the dielectric breakdown strength of the circuit board is determined by detecting the presence or absence of discharge of a discharge charge exceeding a predetermined value.

これは放電電荷量が大きい程有機絶縁物を劣化させ、極
めて薄い回路基板絶縁層を絶縁破壊させるので、本発明
の課題に対し最も合目的的であること、試験の簡便さが
ルーチンワークとしての製品検査に適していることによ
る。
The larger the amount of discharged charge, the more it deteriorates the organic insulator and causes the dielectric breakdown of the extremely thin circuit board insulating layer. Therefore, this method is most suitable for the purpose of the present invention, and the simplicity of the test makes it suitable for routine work. Due to its suitability for product inspection.

回路基板の長時間耐電圧試験の結果と部分放電測定の結
果との相関を示す後記の実験例によっても、短時間で絶
縁破壊する回路基板を上記の部分放電測定によって判別
し、排除することができることが明らかである。
The experimental example shown below, which shows the correlation between the results of long-term withstand voltage tests of circuit boards and the results of partial discharge measurements, also shows that circuit boards that break down in a short period of time can be identified and eliminated by the above partial discharge measurements. It is clear that it can be done.

なお、前記したように高電圧電力用ケーブル等の電気機
器における製品検査において、交流電圧破壊試験、直流
衝撃電圧破壊試験と共に部分放電測定を行うことがある
が、これらの高電圧用の電気機器は充分な厚さの絶縁層
を備え、交流電圧破壊試験、直流衝撃電圧破壊試験に合
格したもつが、その後の使用中において短期間rこ絶縁
破壊するようなことは、その後の外傷、化学腐食等、特
別な事由が彦い限り生しないものであり、この場合の部
分放電測定は30年或は40年以上という長期の絶縁性
能の信頼性をみるものである。これに対し、本発明の試
験方法は製品の絶縁破壊強度の良否を判別するためのも
のであり、高電圧電力用ケーブルの製品検査の場合で言
えば交流電圧破壊試験、直流衝撃電圧破壊試験に相当す
るものであり、高電圧電力用ケーブル等における部分放
電測定とは、その目的、性格を異にする。
As mentioned above, partial discharge measurements are sometimes performed along with AC voltage breakdown tests and DC impact voltage breakdown tests in product inspections of electrical equipment such as high-voltage power cables. Although the insulation layer has a sufficient thickness and has passed the AC voltage breakdown test and DC impact voltage breakdown test, if the insulation breaks down for a short period of time during subsequent use, it may be due to subsequent trauma, chemical corrosion, etc. , which will not occur unless a special reason occurs, and partial discharge measurement in this case is to check the reliability of insulation performance over a long period of 30 or 40 years or more. In contrast, the test method of the present invention is for determining whether the dielectric breakdown strength of a product is good or bad, and in the case of product inspection of high-voltage power cables, it is suitable for AC voltage breakdown tests and DC impact voltage breakdown tests. This is equivalent to partial discharge measurement in high-voltage power cables, etc., and its purpose and characteristics are different.

(実施例) まず、本発明の試験方法の対象とする回路基板の具体例
について説明する。
(Example) First, a specific example of a circuit board targeted for the test method of the present invention will be described.

第1図(イ)←)(ハ)に)および(ホ)は、それぞれ
回路板の断面図を示すものであり、何れも、ヒートシン
クとなる金属ベース1の上に絶縁層2を有し、更にその
上に銅の回路導体3を有している。第1図(イ)および
(→の回路基板においては絶縁層2は、ポリイミドフィ
ルム等のポリマーフィルム21とその上下のエポキシ樹
脂等の接着材層22とにより構成されている。第1図←
→およびに)では、絶縁層2がエポキシ樹脂等の接着材
層であり、この接着材層には熱伝導性を向上させるため
に無機フィラーを混入することが多い。
Figures 1 (a) ←) (c) and (e) respectively show cross-sectional views of circuit boards, each of which has an insulating layer 2 on a metal base 1 that serves as a heat sink. Furthermore, a copper circuit conductor 3 is provided thereon. In the circuit boards shown in Fig. 1 (a) and (→), the insulating layer 2 is composed of a polymer film 21 such as a polyimide film and an adhesive layer 22 such as an epoxy resin above and below the polymer film 21. Fig. 1 ←
→ and 2), the insulating layer 2 is an adhesive layer made of epoxy resin or the like, and an inorganic filler is often mixed into this adhesive layer to improve thermal conductivity.

第1図(ホ)では、絶縁層2がガラスエポキシ層により
構成されている。回路導体3については、第1図(ホ)
では絶縁層2の上に張られた導体箔(エツチング前)が
示されており、第1図(イ)〜(ハ)においては、導体
箔をエツチングして回路を形成した回路導体が示されて
いる。4ば、エツチングされて回路を形状している回路
導体の側面およびエツジを封止する絶縁性或は半導電性
の材料による封止部で、該封止部は回路導体のエツジ部
からのコロナ放電を抑止する効果を有し、本願発明者等
が特願昭61−313969号において提案したもので
ある。
In FIG. 1(e), the insulating layer 2 is composed of a glass epoxy layer. Regarding circuit conductor 3, see Figure 1 (E).
1 shows the conductive foil (before etching) stretched over the insulating layer 2, and FIGS. 1(A) to 1(C) show the circuit conductors formed by etching the conductive foil to form a circuit. ing. 4. A sealing part made of an insulating or semiconductive material that seals the sides and edges of the circuit conductor that has been etched to form a circuit, and the sealing part prevents corona from the edge part of the circuit conductor. This has the effect of inhibiting discharge, and was proposed by the inventors of the present invention in Japanese Patent Application No. 313969/1983.

これらの回路基板の寸法の一例を示せば、金属ベースの
厚さが通常2〜31E1、回路導体の厚さが通常35μ
mであり、絶縁層の厚さi−を第1図(イ)および(ロ
)に示す回路基板の場合で通常50μm(ポリマークフ
ィルムの厚さが通常25μm)第1図(ハ)およびに)
に示す回路基板の場合で通常1100Pである。
To give an example of the dimensions of these circuit boards, the thickness of the metal base is usually 2 to 31E1, and the thickness of the circuit conductor is usually 35μ.
m, and the thickness i- of the insulating layer is usually 50 μm in the case of the circuit board shown in FIG. 1 (A) and (B) (the thickness of the polymeric film is usually 25 μm) and )
In the case of the circuit board shown in , it is usually 1100P.

第2図に鋼箔をエツチングして形成した導体回路の一例
を上面図により示している。図においては見易くするた
めに回路導体3にハツチングを付している。
FIG. 2 shows a top view of an example of a conductor circuit formed by etching steel foil. In the figure, the circuit conductor 3 is hatched for clarity.

第1図(イ)〜に)の何れの回路基板においても接着材
層22或は絶縁層またる接着材層を金属ベース、鋼箔、
ポリマーフィルム等に塗布する場合に接着材層中にボイ
ドが混入し易い。特に接着材が無機フィラー入りの場合
、或は接着材の1回の塗布厚さが比較的厚く30μm(
乾燥後の厚さ)を越えるような場合に接着材層中にボイ
ドが混在し易い。
In any of the circuit boards shown in FIG.
When applied to a polymer film, etc., voids are likely to be mixed into the adhesive layer. Particularly when the adhesive contains an inorganic filler, or when the thickness of one application of the adhesive is relatively thick, 30 μm (
voids are likely to be mixed in the adhesive layer.

従って第1図(ハ)およびに)に示したタイプの回路基
板であって絶縁JI2が無機フィラー入りの接着材より
成る回路基板は、絶縁層にボイドを混入し易く、従来の
耐電圧試験に合格した回路基板でありながら、実装品の
製造過程中或は製造後の耐電圧試験において回路基板の
絶縁Jii#こ絶縁破壊を生じるという現象が最も生じ
易い。
Therefore, circuit boards of the type shown in Figures 1 (c) and 2), in which the insulation JI2 is made of an adhesive containing an inorganic filler, tend to have voids in the insulation layer, and cannot be tested using conventional withstanding voltage tests. Even if the circuit board passes the test, it is most likely that the insulation breakdown of the circuit board will occur during the manufacturing process of the mounted product or during the withstand voltage test after manufacturing.

従ってこのような回路基板の製品検査において本発面の
試験方法は最も効果的である。
Therefore, the testing method of the present invention is most effective in product inspection of such circuit boards.

部分放電測定自体は、既によく知られているものであり
、本発明の方法における部分放電測定も市販されている
公知の部分放電測定器を用いて行うことができる。
Partial discharge measurement itself is already well known, and partial discharge measurement in the method of the present invention can also be performed using a commercially available known partial discharge measuring device.

部分放電(11Il定は、高電圧を印加したときに発生
する部分放電に基づく微少電圧を測定するものであるか
ら、各種雑音の影響を受は易い。従って試験回路の*戒
においては雑音の発生源女いしは侵入経路を断つ或は侵
入した雑音を除去する等の雑音対策が請じられるが、測
定対象たる回路基板についても、測定時に回路導体のエ
ツジ部等からのコpす放電等の雑音により測定が妨害さ
れないようにする必要がある。このため課電用電極は丸
味をもたせる等コロナ放電を生し離い構造、形状とし、
また回路基板を絶縁油中に浸漬して測定を行う、ガード
電極を設ける等の工夫、対策が必要である。
Partial discharge (11Il constant) measures minute voltages based on partial discharges that occur when high voltage is applied, so it is easily affected by various noises. Noise countermeasures are required, such as cutting off the intrusion route or removing intruding noise, but the circuit board that is the object of measurement must also be protected against electrical discharges from the edges of circuit conductors during measurement. It is necessary to prevent measurement from being disturbed by noise.For this reason, the charging electrode should be designed with a rounded structure and shape that will prevent corona discharge from occurring.
In addition, it is necessary to devise measures such as immersing the circuit board in insulating oil for measurement and installing guard electrodes.

この点において有利iのは第1図(ロ)および(→に示
している回路基板のように、回路導体の側面およびエツ
ジを絶縁性或は半導電性材料により封止した回路基板で
あり、この場合には回路導体のエツジからのコロナ放電
が封止部4により有効に抑止されるので、空気中におい
て試験を行うことができ、絶縁油中への浸漬、試験後の
回路基板からの絶縁油の除去といった面倒さがない。
What is advantageous in this respect is a circuit board in which the sides and edges of the circuit conductor are sealed with an insulating or semiconductive material, such as the circuit board shown in FIG. In this case, corona discharge from the edges of the circuit conductor is effectively suppressed by the sealing part 4, so the test can be performed in air, immersed in insulating oil, and insulated from the circuit board after the test. There is no need to worry about removing oil.

試験においては、例えば第2図に示す回路導体のように
数個の回路導体が互いに絶縁されて存在する場合には、
各導体それぞれに課電W極を接触させ、これらを−括し
て試験回路に接続する。また本発明の試験方法は製品検
査に適用するものであるから、例えば30fa等、多数
個の製品につき同時に試験するのが望ましく、被試験回
路基板それぞれの課電電極を一括して試験回路に接続す
る。
In the test, for example, when several circuit conductors are insulated from each other, such as the circuit conductor shown in Figure 2,
A energized W pole is brought into contact with each conductor, and these are collectively connected to a test circuit. Furthermore, since the test method of the present invention is applied to product inspection, it is desirable to test a large number of products at the same time, such as 30fa, and connect the energized electrodes of each circuit board under test to the test circuit at once. do.

回路導体と金属ベースの間に印加する電圧は、本発明の
場合、1〜3KVの範囲に選ぶのが適当であり、通常2
KVである。
In the case of the present invention, the voltage applied between the circuit conductor and the metal base is appropriately selected in the range of 1 to 3 KV, and usually 2 KV.
It is KV.

本発明においては部分放電測定で測定した放電電荷の大
小により回路基板の絶縁破壊強度の良否を判定するが、
その判定の基準とする放電電荷の大きさは、絶縁層の厚
さ、絶縁層の構成(内部放電による絶縁層の劣化の難易
等)、当該基板を使用する実装品の使用電圧等により異
なり、−概には言えないが、通常10〜20PC(ピコ
クーロン)程度に選ぶのが適当である。厳密には長時間
課電試験との対比等により定めるのが好ましい。
In the present invention, the dielectric breakdown strength of the circuit board is determined based on the magnitude of the discharge charge measured by partial discharge measurement.
The magnitude of the discharge charge used as the criterion for this judgment varies depending on the thickness of the insulating layer, the structure of the insulating layer (the difficulty of deterioration of the insulating layer due to internal discharge, etc.), the operating voltage of the mounted product using the board, etc. -Although it cannot be generalized, it is usually appropriate to select a value of about 10 to 20 PC (picocoulombs). Strictly speaking, it is preferable to determine this by comparing with a long-term energization test.

次に本発明の試験方法により試験した部分放電測定と長
時間耐電圧とを対比した実験例について述べる。
Next, an experimental example comparing partial discharge measurement and long-term withstand voltage tested using the test method of the present invention will be described.

(実験例) 厚さ35μmの銅箔を厚さ100μmの無機フィラー混
入エポキシ樹脂接着材層を介して厚す2.0 mのアル
ミニウムベース上に接着L タ基板の銅箔をエツチング
して回路導体を形成した混成集積回路用回路基板の試料
を絶縁油中に浸漬して回路導体とアルミニウムベースと
の間にAC2KVの電圧を印加し、三菱電線工業株式会
社製の部分放電測定器QM−20を用いて60ppsの
最大放電電荷を測定した。この測定結果から最大放電電
荷が大きい試料を5試料選び、また最大放電電荷が小さ
い試料を5試料選び、合計10試料について空気中で回
路導体とアルミニウムベースとの間にAC2KVを課電
する長時間課電試験を行った。各試料の最大放電電荷絶
縁破壊する迄の課電時間、絶縁破壊場所はそれぞれ表1
に示す通りであった。
(Experiment example) A 35 μm thick copper foil was bonded onto a 2.0 m thick aluminum base via a 100 μm thick inorganic filler-containing epoxy resin adhesive layer. The copper foil of the L-type board was etched to form a circuit conductor. A sample of the circuit board for a hybrid integrated circuit formed with the above was immersed in insulating oil, a voltage of AC 2 KV was applied between the circuit conductor and the aluminum base, and a partial discharge meter QM-20 manufactured by Mitsubishi Cable Industries, Ltd. was used. A maximum discharge charge of 60 pps was measured using the same method. Based on the measurement results, 5 samples with large maximum discharge charges were selected, and 5 samples with small maximum discharge charges were selected, for a total of 10 samples. AC 2 KV was applied between the circuit conductor and the aluminum base in air for a long period of time. A charging test was conducted. Table 1 shows the maximum discharge charge of each sample, the charging time until dielectric breakdown occurs, and the location of dielectric breakdown.
It was as shown in

表      1 表1から明らかなように放電電荷量が大きい試料は短時
間で絶縁破壊しており、しかも絶縁破壊場所が回路導体
の銅箔の下の絶縁層である。
Table 1 As is clear from Table 1, the samples with a large amount of discharged charge experienced dielectric breakdown in a short time, and the location of the dielectric breakdown was the insulating layer under the copper foil of the circuit conductor.

一方、放電電荷量が小さい試料は回路導体のエツジ部の
下で絶縁破壊している。この結果は、放電電荷が大きい
ものは絶縁層中に欠陥がありこのため短時間で破壊して
いることを示し、放電電荷が小さいものは絶縁層に欠陥
がなく、長時間HTIt中に導体回路エツジ部に生じた
コロナ放電により絶縁層が劣化し絶縁破壊に至っている
ことを示している。本発明に従って、放電電荷の大小に
より混成集積回路用回路基板の絶縁破壊強度の良否を判
別すれば、従来の1分間の耐電圧試験には合格してもそ
の後短時間で絶縁破壊するような製品を排除できること
が表1の結果によく示されている。
On the other hand, in the sample with a small amount of discharged charge, dielectric breakdown occurred under the edge of the circuit conductor. This result shows that those with a large discharge charge have defects in the insulating layer and are destroyed in a short time, while those with a small discharge charge have no defects in the insulating layer and the conductor circuit during long-term HTIt. This shows that the insulating layer deteriorates due to the corona discharge generated at the edge, leading to dielectric breakdown. According to the present invention, if the dielectric breakdown strength of a circuit board for a hybrid integrated circuit is determined based on the magnitude of discharged charge, products that pass a conventional one-minute withstand voltage test but break down in a short period of time can be removed. The results in Table 1 clearly show that the following can be eliminated.

(発明の効果) 上記説明した通り、従来の耐電圧試験では回路基板の絶
縁破壊強度が充分に評価できすに、耐電圧試験に合格し
た回路基板であっても、これを使用した実装品の製造過
程中或は製造後の耐電圧試験において回路基板の絶縁層
が絶縁破壊するというような事故が少なくなかったが、
本発明の試験方法によれば、このような事故の可能性を
もつ、絶縁破壊強度が充分てない製品を確実に判別でき
、出荷製品から排除することができる。
(Effects of the Invention) As explained above, the dielectric breakdown strength of a circuit board can be sufficiently evaluated in the conventional withstand voltage test, but even if the circuit board has passed the withstand voltage test, the There have been many accidents such as dielectric breakdown of the insulating layer of circuit boards during the manufacturing process or during withstand voltage tests after manufacturing.
According to the test method of the present invention, it is possible to reliably identify products that do not have sufficient dielectric breakdown strength and have the possibility of such an accident, and to exclude them from shipped products.

また、回路基板製品の絶縁破壊強度の良否判定を本発明
の試験方法により行い、従来の耐電圧試験を廃止する場
合には、本発明の試験方法では従来の耐電圧試験に較べ
て課電電圧を低くできる場合が多いので、この場合は試
験のための高電圧の課電による製品の絶縁劣化も少なく
なる。
In addition, when determining whether the dielectric breakdown strength of a circuit board product is good or bad using the test method of the present invention and abolishing the conventional withstand voltage test, the test method of the present invention can reduce the applied voltage compared to the conventional withstand voltage test. In many cases, the voltage can be lowered, so in this case, the insulation deterioration of the product due to the application of high voltage for testing will be reduced.

Claims (3)

【特許請求の範囲】[Claims] (1)金属ベース上に有機絶縁物より成るもしくは有機
絶縁物を含む絶縁物より成る絶縁層を有し、更にその上
に回路導体を有する混成集積回路用回路基板について製
品の絶縁破壊強度の良否を判別する試験方法であつて、
回路基板の回路導体と金属ベースの間に所定電圧を印加
して絶縁層中の部分放電を測定し、放電電荷の大小によ
り当該回路基板の絶縁破壊強度の良否を判別することを
特徴とする混成集積回路用回路基板の製品検査用耐電圧
試験方法。
(1) The quality of dielectric breakdown strength of the product regarding circuit boards for hybrid integrated circuits that have an insulating layer made of an organic insulator or an insulator containing an organic insulator on a metal base, and further have a circuit conductor thereon. A test method for determining
A hybrid device characterized by applying a predetermined voltage between the circuit conductor of the circuit board and the metal base, measuring the partial discharge in the insulating layer, and determining whether the dielectric breakdown strength of the circuit board is good or bad based on the magnitude of the discharged charge. A withstand voltage test method for product inspection of circuit boards for integrated circuits.
(2)混成集積回路用回路基板の絶縁層が無機フィラー
入りの接着材より成ることを特徴とする請求項(1)記
載の混成集積回路用回路基板の製品検査用耐電圧試験方
法。
(2) The withstand voltage test method for product inspection of a circuit board for a hybrid integrated circuit according to claim (1), wherein the insulating layer of the circuit board for a hybrid integrated circuit is made of an adhesive containing an inorganic filler.
(3)回路導体の側面およびエッジが電気絶縁性もしく
は半導電性の材料により封止されていることを特徴とす
る請求項(1)又は(2)記載の混成集積回路用回路基
板の製品検査用耐電圧試験方法。
(3) Product inspection of the circuit board for a hybrid integrated circuit according to claim (1) or (2), wherein the side surfaces and edges of the circuit conductor are sealed with an electrically insulating or semiconductive material. withstand voltage test method.
JP5428690A 1990-03-06 1990-03-06 Withstanding voltage test method for product inspection of circuit boards for hybrid integrated circuits Expired - Lifetime JPH0614092B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5428690A JPH0614092B2 (en) 1990-03-06 1990-03-06 Withstanding voltage test method for product inspection of circuit boards for hybrid integrated circuits
GB9104718A GB2242750B (en) 1990-03-06 1991-03-06 Method of testing for withstand voltage in inspection of circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5428690A JPH0614092B2 (en) 1990-03-06 1990-03-06 Withstanding voltage test method for product inspection of circuit boards for hybrid integrated circuits

Publications (2)

Publication Number Publication Date
JPH03255966A true JPH03255966A (en) 1991-11-14
JPH0614092B2 JPH0614092B2 (en) 1994-02-23

Family

ID=12966321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5428690A Expired - Lifetime JPH0614092B2 (en) 1990-03-06 1990-03-06 Withstanding voltage test method for product inspection of circuit boards for hybrid integrated circuits

Country Status (2)

Country Link
JP (1) JPH0614092B2 (en)
GB (1) GB2242750B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032457A (en) * 2008-07-31 2010-02-12 Hioki Ee Corp Insulation inspecting apparatus and technique

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907818B (en) * 2017-10-12 2020-07-31 中车青岛四方机车车辆股份有限公司 Experimental device and experimental method for detecting circuit board under multi-field effect
CN107884701B (en) * 2017-10-12 2020-06-16 中车青岛四方机车车辆股份有限公司 Experimental device and experimental method for circuit board to withstand overvoltage damage
CN107907817B (en) * 2017-10-12 2020-09-11 中车青岛四方机车车辆股份有限公司 Experimental device and experimental method for evaluating quality of circuit board in composite environment
CN107907755B (en) * 2017-10-12 2020-09-11 中车青岛四方机车车辆股份有限公司 Experimental device and experimental method for electric field damage resistance of circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032457A (en) * 2008-07-31 2010-02-12 Hioki Ee Corp Insulation inspecting apparatus and technique

Also Published As

Publication number Publication date
GB2242750B (en) 1994-03-30
GB2242750A (en) 1991-10-09
JPH0614092B2 (en) 1994-02-23
GB9104718D0 (en) 1991-04-17

Similar Documents

Publication Publication Date Title
Mason Enhancing the significance of PD measurements
Heider et al. Study of frequency variant tan delta diagnosis for MV cables insulation status assessment
Ritämaki et al. Differences in AC and DC large-area breakdown behavior of polymer thin films
JPH03255966A (en) Withstanding voltage testing method for inspecting product of circuit board for hybrid integrated circuit
Ji et al. Partial discharge investigation under humidity conditions via dissipation factor and insulation capacitance tip-up test
US7863922B2 (en) Evaluation method of insulating film and measurement circuit thereof
US6333633B1 (en) Method for inspecting a flexible printed circuit
US4583038A (en) Electrical testing
Phloymuk et al. The Dissipation Factor (tan δ) Monitoring of A Stator Winding Insulation of A Synchronous Machine
JPH075223A (en) Insulation property testing method of circuit board
Okumura et al. Proposal for Evaluation of Insulation Performance by Partial Discharge Characteristics of Resin Substrates Containing Micro-Sized Multiple Voids
CA1199969A (en) Electrical testing
JP6911875B2 (en) Power cable manufacturing method and power cable inspection method
JPH062518U (en) Power cable with tree detector
Mathes Electrical properties of insulating materials
Jaghannath Water-treeing in Polyethylene cables
Muslim et al. Breakdown Properties of Epoxy and Ceramic Substrates Embedded in Liquids at High Temperature
Timpe et al. Laboratory and field partial-discharge studies by a utility
JP2008128758A (en) Method for measuring insulating resistance of electrostatic countermeasure part
INSULATION Proposed Test Code for
Nimsanong et al. VLF Dielectric Response and HF Localized Dielectric Discharge Measurement for Rotating Machine Insulation Assessment
JPH0455771A (en) Semiconductor element and aging insulation breakdown testing method thereof
CN115356606A (en) Device and manufacturing method for withstand voltage test of isolation device and withstand voltage test method
Abou-Dakka et al. Polarization technique to assess the operating state of polymeric insulation
JPH06308189A (en) Method for detecting partial discharge of cable