JPH0325508B2 - - Google Patents

Info

Publication number
JPH0325508B2
JPH0325508B2 JP60209839A JP20983985A JPH0325508B2 JP H0325508 B2 JPH0325508 B2 JP H0325508B2 JP 60209839 A JP60209839 A JP 60209839A JP 20983985 A JP20983985 A JP 20983985A JP H0325508 B2 JPH0325508 B2 JP H0325508B2
Authority
JP
Japan
Prior art keywords
ion plating
crucible
electron beam
evaporation source
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60209839A
Other languages
Japanese (ja)
Other versions
JPS6270576A (en
Inventor
Masao Iguchi
Ujihiro Nishiike
Yasuhiro Kobayashi
Kazuhiro Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20983985A priority Critical patent/JPS6270576A/en
Publication of JPS6270576A publication Critical patent/JPS6270576A/en
Publication of JPH0325508B2 publication Critical patent/JPH0325508B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は長尺物の被処理板、特に一方向性珪素
鋼板にイオンプレーテイング処理を施すための大
量蒸気流発生用蒸発源装置に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an evaporation source device for generating a large amount of steam flow for applying ion plating treatment to a long plate to be treated, particularly a unidirectional silicon steel plate. It is.

<従来技術とその問題点> 一方向性珪素鋼板の電気・磁気的特性改善、な
かでも鉄損の低減に係る極限的な要請を満たそう
とする近年の目覚ましい開発努力は、逐次その実
を上げつつあるが、その実施に伴う重大な幣害と
して、一方向性珪素鋼板の使用に当たつての加
工、組立てを経たのち、いわゆるひずみ取り焼鈍
が施された場合に、特性劣化の随伴を不可被的に
生じて、使途についての制限を受ける不利が指摘
される。
<Prior art and its problems> In recent years, remarkable development efforts to improve the electrical and magnetic properties of unidirectional silicon steel sheets, especially to meet the extreme requirements of reducing iron loss, are gradually bearing fruit. However, as a serious damage caused by the implementation, when unidirectional silicon steel sheets are subjected to so-called strain-relief annealing after processing and assembly, they will not suffer from deterioration of characteristics. It has been pointed out that there are disadvantages due to restrictions on how it can be used.

この明細書では、ひずみ取り焼鈍のような高温
熱履歴を経ると否に関わらず、上記要請を有利に
充足しうる新たな製造設備、特にイオンプレーテ
イングの際の大量蒸着を行う設備に関連して以下
に述べる。
This specification relates to new manufacturing equipment that can advantageously meet the above requirements, whether or not after undergoing a high temperature thermal history such as strain relief annealing, particularly equipment for bulk deposition during ion plating. This is explained below.

さて一方向性珪素鋼板はよく知られているとお
り、製品の2次再結晶粒を(110)〔001〕すなわ
ちGoss方位に集積させたもので主として変圧器
その他の電気機器の鉄心として使用され、電気、
磁気的特性としての製品の磁束密度(B10値で代
表される)が高く、鉄損(W17/50値で代表され
る)の低いことが要求される。
As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are integrated in the (110) [001], or Goss, orientation, and are mainly used as iron cores for transformers and other electrical equipment. electricity,
As for magnetic properties, products are required to have high magnetic flux density (represented by B 10 value) and low iron loss (represented by W 17/50 value).

この一方向性珪素鋼板は複雑多岐にわたる工程
を経て製造されるが、今までにおびただしい発
明、改善が加えられ、今日では板厚0.3mmの製品
の磁気特性がB10:1.90T以上、W17/50:1.05W/
Kg以下、また板厚0.23mmの製品の磁気特性が
B10:1.89T以上、W17/50:0.90W/Kg以下の超低
鉄損一方向性珪素鋼板が製造されるようになつて
来ている。
This unidirectional silicon steel plate is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today products with a thickness of 0.3 mm have magnetic properties of B 10 : 1.90T or more, W 17 /50 : 1.05W/
Kg or less, and the magnetic properties of products with a plate thickness of 0.23 mm are
Ultra-low core loss unidirectional silicon steel sheets with B 10 : 1.89T or more and W 17/50 : 0.90W/Kg or less are being manufactured.

特に最近では省エネの見地から電力損失の低減
を至上とする要請が著しく強まり、殴米では損失
の少ない変圧器を造る場合に鉄損減少分を金額に
換算して変圧器価格に上積みする「ロス、エバリ
ユエーシヨン」(鉄損評価)制度が普及している。
In particular, recently there has been a marked increase in the demand for reducing power loss as a top priority from the standpoint of energy conservation. The ``evaluation'' (iron loss evaluation) system is becoming widespread.

このような状況化において最近、一方向性珪素
鋼板の仕上焼鈍後の鋼板表面に圧延方向にほぼ直
角方向でのレーザー照射により局部微小ひずみを
導入して磁区を細分化し、もつて鉄損を低下させ
ることが提案されている(特公昭59−2252号、特
公昭57−53419号、特公昭58−26405号および特公
昭58−26406号公報参照)。
Under these circumstances, recently, research has been conducted to introduce micro-strain locally by irradiating the surface of a unidirectional silicon steel sheet after final annealing with a laser in a direction approximately perpendicular to the rolling direction to subdivide the magnetic domains and thereby reduce iron loss. (See Japanese Patent Publication No. 59-2252, Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 58-26405, and Japanese Patent Publication No. 58-26406).

この磁区細分化技術はひずみ取り焼鈍を施さな
い積鉄心向けトランス材料として効果的である
が、ひずみ取り焼鈍を施す主として巻鉄心トラン
ス材料においては、レーザー照射によつて折角導
入された局部微小ひずみが焼鈍処理により開放さ
れて磁区幅が広くなるため、レーザー照射効果が
失われるという欠点がある。
This magnetic domain refining technology is effective for transformer materials for laminated cores that are not subjected to strain relief annealing, but in materials for wound core transformers that are subjected to strain relief annealing, the local minute strain introduced by laser irradiation is Since the annealing process opens the magnetic domain width and widens it, there is a drawback that the laser irradiation effect is lost.

最近、本発明者らは上記の高温処理での特性劣
化を伴うことのない超低鉄損一方向性珪素鋼板の
製造に成功した(特願昭67−1381号)。すなわち
この製造方法は仕上焼鈍済みの方向性珪素鋼板表
面上の酸化物を除去した後あるいはさらに研磨を
施して鏡面状態にした後、イオンプレーテイング
よりTi、Zr、V、Nb、Ta、Cr、Mo、W、Mn、
Co、Ni、Al、BおよびSiの窒化物および/また
は炭酸物並びにAl、Ni、Cu、W、SiおよびZnの
酸化物のうちから選んだ少なくとも1種からなる
極薄張力被膜を形成させることにより、一方向性
珪素鋼板の鉄損低減が可能であることを発見した
ものである。
Recently, the present inventors have succeeded in manufacturing an ultra-low core loss unidirectional silicon steel sheet that does not suffer from the deterioration of properties during the above-mentioned high temperature treatment (Japanese Patent Application No. 1381/1981). In other words, this manufacturing method involves removing oxides on the surface of a grain-oriented silicon steel sheet that has been finish annealed, or polishing it to a mirror-like state, and then ion plating Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn,
Forming an ultra-thin tensile coating made of at least one selected from nitrides and/or carbonates of Co, Ni, Al, B, and Si and oxides of Al, Ni, Cu, W, Si, and Zn. It was discovered that it is possible to reduce iron loss in unidirectional silicon steel sheets.

本発明は長尺広幅の被処理板、特に上記の方法
に基いて仕上焼鈍済みの方向性珪素鋼板表面上の
酸化物を除去した後、あるいはさらに連続ライン
を用いて鋼板表面を研磨により鏡面状態にした
後、直ちにイオンプレーテイングにより上記炭化
物、窒化物および酸化物の極薄張力被膜を形成さ
せる一連の連続処理設備に関するものである。
The present invention deals with long and wide plates, particularly after removing oxides on the surface of a grain-oriented silicon steel plate that has been finish annealed based on the above-mentioned method, or by polishing the steel plate surface using a continuous line to create a mirror-like surface. The present invention relates to a series of continuous processing equipment that immediately forms ultra-thin tensile coatings of the carbides, nitrides, and oxides by ion plating after the oxidation process.

従来、鋼板表面上に連続ラインでZn等を真空
蒸着する方法は特開昭57−158379号公報に開示さ
れている。通常幅広の板状被蒸着物に均一に蒸着
するには、それぞれに対応したるつぼを用いる必
要があるが、その蒸発面を温度分布的に均一にし
ておかないと、蒸発量の位置変化を生じ特に板巾
方向にわたつて均一な蒸着膜が得られない。また
溶解物の蒸発に関しては従来蒸気圧の高いZn、
Al等の融点の低い物質に限られ、融点が高く、
蒸気圧の低いTi等の金属の蒸着に関しては全く
開発されていなかつた。特に被処理板が広幅で、
比較的速いラインスピードで連続的にイオンプレ
ーテイングをする技術は永く研究課題として残さ
れて来た。
Conventionally, a method for vacuum-depositing Zn, etc. on the surface of a steel plate in a continuous line is disclosed in Japanese Patent Application Laid-Open No. 158379/1983. Normally, in order to uniformly evaporate a wide plate-shaped object, it is necessary to use a crucible corresponding to each crucible, but if the evaporation surface is not made uniform in terms of temperature distribution, the amount of evaporation may change in position. In particular, a uniform deposited film cannot be obtained across the width of the plate. In addition, regarding the evaporation of melted materials, Zn, which has a high vapor pressure,
Limited to substances with a low melting point such as Al, which have a high melting point,
There was no development at all regarding the vapor deposition of metals such as Ti, which have low vapor pressure. Especially when the plate to be treated is wide,
The technology for continuous ion plating at relatively high line speeds has remained a research topic for a long time.

本発明者らは鋼板表面上にTiN等の極薄張力
被膜を形成させることによる超低鉄損電磁鋼板を
連続ラインで製造するには鋼板表面上に大量の
Tiの蒸気流を発生させることが重要であるとの
認識に立つて数多くの研究実験を重ねた結果、超
低鉄損一方向性珪素鋼板を製造するためには次の
条件を満足することが必要であることを明らかに
した。
The present inventors have discovered that in order to manufacture ultra-low core loss electrical steel sheets on a continuous line by forming an ultra-thin tensile film such as TiN on the surface of the steel sheet, a large amount of
As a result of numerous research experiments based on the recognition that it is important to generate a Ti vapor flow, we have found that the following conditions must be met in order to manufacture ultra-low core loss unidirectional silicon steel sheets. made clear that it was necessary.

すなわちTiN等の極薄張力被膜(0.5μ厚)を連
続でイオンプレーテイングする際、ラインスピー
ド50m/minで形成させるとすると、被蒸着物幅
が2mとすると、蒸着速度が25μ/minと短時間で
大量に付着する必要がある。
In other words, when continuously ion plating an ultra-thin tension film (0.5 μ thick) such as TiN, if it is formed at a line speed of 50 m/min, if the width of the object to be deposited is 2 m, the deposition rate will be as short as 25 μ/min. It is necessary to adhere a large amount in time.

上記の基本事項に基いて種々検討を行つた結
果、従来法とは異なつた方法により張力被膜を形
成させることによつて超低鉄損一方向性珪素鋼板
の連続的大量製造が可能であることを見出し、本
発明を完成したものである。
As a result of various studies based on the above basic points, we found that it is possible to continuously mass-produce ultra-low core loss unidirectional silicon steel sheets by forming a tension coating using a method different from conventional methods. They discovered this and completed the present invention.

<発明の目的> したがつて、本発明の目的は上述した従来技術
の欠点を解消し、長尺広範の被処理物、特に一方
向性珪素鋼板に均一な蒸着被膜を形成させるため
の大量蒸気流発生用蒸発源装置を提供しようとす
るにある。
<Object of the Invention> Therefore, the object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a large amount of steam for forming a uniform vapor deposition film on a long and wide object to be treated, especially a unidirectional silicon steel plate. The present invention aims to provide an evaporation source device for stream generation.

<発明の構成> すなわち、本発明は、長尺広幅の被処理板表面
に連続的にイオンプレーテイング処理する高真空
イオンプレーテイング装置の蒸発源装置におい
て、該被処理板の板幅以上の長さを有する蒸発材
料収容るつぼを備え、このるつぼ中の溶解蒸発材
料をるつぼの長さにわたつて線状に同時に照射す
るエレクトロン・ビーム発生装置を少なくとも1
個備えることを特徴とする大量蒸気流発生用蒸発
源装置を提供するものである。
<Structure of the Invention> That is, the present invention provides an evaporation source device for a high vacuum ion plating apparatus that continuously performs ion plating on the surface of a long and wide plate to be processed. at least one electron beam generator for simultaneously irradiating the melted and evaporated material in the crucible linearly over the length of the crucible;
The present invention provides an evaporation source device for generating a large amount of vapor flow, which is characterized by comprising:

以下に本発明を添付図面につき詳細に説明す
る。
The invention will be explained in detail below with reference to the accompanying drawings.

第4図は通常の270゜偏向電子ビームを利用した
イオンプレーテイング法の模式図を示す{ジーク
フリート・シラーとウルリツヒ・ハイジツヒ共著
(訳者日本真空技術株式会社)、真空蒸着、1983年
5月1日発行、P.50参照}。
Figure 4 shows a schematic diagram of the ion plating method using a conventional 270° deflected electron beam {Co-authored by Siegfried Schiller and Ulrich Heisitzig (translated by Nippon Vacuum Technology Co., Ltd.), Vacuum Deposition, May 1, 1983. Publication date, see page 50}.

第4図において、40は蒸発材料るつぼ、41
はカソード、42は加速電極、43は電子ビー
ム、44は冷却手段、45は電極46、巻線47
およびコア48で構成される偏向マグネツト、4
9は蒸気流、50はN2ガス、51はサブストレ
イトである。
In FIG. 4, 40 is an evaporation material crucible, 41
is a cathode, 42 is an accelerating electrode, 43 is an electron beam, 44 is a cooling means, 45 is an electrode 46, and a winding 47
and a deflection magnet consisting of a core 48, 4
9 is a steam flow, 50 is N 2 gas, and 51 is a substrate.

この電子ビーム利用によるイオンプレーテイン
グ法ではバツチタイプの小型のサブストレイトに
蒸着する場合には最適であるが、連続ラインによ
る大量の蒸着で、しかも鋼板の板巾方向に均一に
蒸着することはできない。
This ion plating method using an electron beam is optimal for depositing on small batch-type substrates, but it requires a continuous line to deposit a large amount of material, and it is not possible to deposit uniformly across the width of the steel sheet.

このため第1図に示すような連続イオンプレー
テイング装置が開発されている。このような装置
を用いて長尺広範の被処理板に板幅方向に均一
で、しかも短時間でイオンプレーテイングするこ
とができる蒸発源装置を本発明は提供するもので
ある。
For this reason, a continuous ion plating apparatus as shown in FIG. 1 has been developed. The present invention provides an evaporation source device that can perform ion plating uniformly in the width direction of a long and wide plate to be processed using such a device and in a short time.

この第1図について簡単に説明すると、1は表
面上のMgOを除去した後の方向性珪素鋼仕上焼
鈍板のコイル、21はシヤー、3は酸洗槽、4は
洗浄槽、5は第1電解槽、6は第2電解槽、7は
洗浄槽、8は乾燥槽、9はルーパー、10は高真
空処理槽、11,11′,11″はイオンプレーテ
イング前の予備排気槽、12は高真空排気、13
はガス導入口、14,14′,14″はイオンプレ
ーテイング後の予備排気槽、15は蒸発源、16
は高温下のイオン化電極、18はイオンプレーテ
イング後のコイル、19はイオンボンバードと予
備加熱槽、20は超音波洗浄および乾燥槽を示
す。
To briefly explain this Fig. 1, 1 is a coil of grain-oriented silicon steel finish annealing plate after MgO on the surface has been removed, 21 is a shear, 3 is a pickling tank, 4 is a cleaning tank, 5 is a first Electrolytic tank, 6 is a second electrolytic tank, 7 is a cleaning tank, 8 is a drying tank, 9 is a looper, 10 is a high vacuum processing tank, 11, 11', 11'' is a preliminary evacuation tank before ion plating, 12 is a High vacuum exhaust, 13
is a gas inlet, 14, 14', 14'' is a preliminary exhaust tank after ion plating, 15 is an evaporation source, 16
18 is a coil after ion plating, 19 is an ion bombardment and preheating tank, and 20 is an ultrasonic cleaning and drying tank.

第1図の連続的にイオンプレーテイングする高
真空イオンプレーテイング装置においては鋼板を
垂直方向に通過させ、かつ鋼板の両側に蒸発源を
有し、鋼板両面を同時にイオンプレーテイングす
る方式であつても良い。蒸発材料の溶解には通常
270゜偏向電子ビームが用いられるが、このときに
溶解された蒸発物質の蒸気は等方的に発散するの
で鋼板に付着する蒸着原子がきわめて少なく、1
6のイオン化電極を用いて蒸着原子を加速しても
蒸着効率が低い。このためこのような連続イオン
プレーテイング装置においてはいかにして蒸発源
から大量の蒸着原子蒸気流を発生させ、通過板中
の鋼板の板幅方向わたつて均一にイオンプレーテ
イングするかが重要な課題である。
In the high vacuum ion plating apparatus shown in Fig. 1, which performs continuous ion plating, a steel plate is passed vertically, and evaporation sources are provided on both sides of the steel plate, so that ion plating is performed on both sides of the steel plate at the same time. Also good. Usually for dissolving evaporated materials
A 270° deflection electron beam is used, but since the vapor of the melted evaporated material is isotropically dispersed, very few evaporated atoms adhere to the steel plate, and 1
Even if the evaporation atoms are accelerated using the ionization electrode No. 6, the evaporation efficiency is low. Therefore, in such continuous ion plating equipment, the important issue is how to generate a large amount of evaporation atomic vapor flow from the evaporation source and uniformly plate ions across the width direction of the steel plate in the passing plate. It is.

第2図は第1図の連続イオンプレーテイング装
置15の蒸発源の模式図を示すが、鋼板の板幅方
向にこの板幅以上長い溶解物31を入れるるつぼ
32と、この溶解物から蒸気流を発生させるた
め、磁場を利用してるつぼの長さにわたつて線状
に同時に照射するエレクトロンビーム33を発生
する装置34を使用することによつて鋼板の板幅
方向に均一にイオンプレーテイングすることがで
きる。
FIG. 2 shows a schematic diagram of the evaporation source of the continuous ion plating apparatus 15 shown in FIG. In order to generate ion plating, uniform ion plating is performed in the width direction of the steel plate by using a device 34 that generates an electron beam 33 that simultaneously irradiates linearly over the length of the crucible using a magnetic field. be able to.

また通板中の鋼板に大量に蒸着させるためには
第3図の34a,34b,34cおよび34dに
示すように複数の線状に同時に照射するエレクト
ロンビーム発生装置を利用することによつて達成
できる。この線状に同時に照射する偏向ビームは
220〜280゜に偏向させることによつて蒸気流を
種々に変化させることが可能であるとともに、大
量の蒸気流の発生が可能となる。
In addition, in order to deposit a large amount on the steel plate being passed, it can be achieved by using an electron beam generator that simultaneously irradiates multiple linear electron beams, as shown at 34a, 34b, 34c, and 34d in Figure 3. . This linearly radiated polarized beam is
By deflecting from 220 to 280 degrees, it is possible to vary the steam flow and also to generate a large amount of steam flow.

このような連続イオンプレーテイングの中に本
発明になる大量蒸気流発生用蒸気源装置を新たに
導入することにより連続的に大量付着によるイオ
ンプレーテイング処理を施すことができる。
By newly introducing the steam source device for generating a large amount of steam flow according to the present invention into such continuous ion plating, it is possible to continuously perform ion plating treatment by mass deposition.

またこの大量の蒸気流を発生させる蒸発源の装
置は低炭素冷延鋼板、ステンレス鋼板等の一般の
セラミツクコーテイングにも利用可能である。
Further, this evaporation source device that generates a large amount of vapor flow can also be used for general ceramic coating of low carbon cold rolled steel sheets, stainless steel sheets, etc.

<実施例> 本発明の蒸発源装置使用による具体的実施例に
基づいて説明する。
<Example> A description will be given based on a specific example using the evaporation source device of the present invention.

一方向性珪素鋼板(0.23mm厚)の仕上焼鈍後の
MgOを除去したコイル(板巾1000mm、重量7ト
ン)を用いた。第1図の連続イオンプレーテイン
グを用いてラインスピード35m/minで鋼板表面
に0.8μm厚のTiN張力被膜を形成させた。このと
きのるつぼの溶融物収容部長さ1200mm、エレクト
ロンビームの線状の照射幅1200mm、260゜と280゜に
偏向して線状に同時に照射するエレクトロンビー
ム発生装置各2個合計4個を第3図と同様の方法
で使用した。
After finish annealing of unidirectional silicon steel plate (0.23mm thickness)
A coil (width 1000 mm, weight 7 tons) from which MgO was removed was used. Using continuous ion plating as shown in Figure 1, a 0.8 μm thick TiN tension film was formed on the surface of the steel plate at a line speed of 35 m/min. At this time, the length of the melt storage part of the crucible was 1200 mm, the linear irradiation width of the electron beam was 1200 mm, and a total of 4 electron beam generators were installed in the third It was used in the same way as in the figure.

被膜は鋼板長さ方向、幅方向とも均一であり、
そのときの磁気特性は次のようであつた。
The coating is uniform in both the length and width directions of the steel plate,
The magnetic properties at that time were as follows.

B10=1.92T、W17/50=0.63W/Kg <発明の効果> 本発明は被処理物の幅以上の長さを有する蒸発
材料収容るつぼを備え、このるつぼ中の溶解部を
るつぼの長さにわたつて線状に同時に照射するエ
レクトロンビーム発生装置を少なくとも1個有す
る長尺広幅の被処理物にイオンプレーテイングす
る装置を提供するものである。
B 10 = 1.92T, W 17/50 = 0.63W/Kg <Effects of the Invention> The present invention is equipped with a crucible for accommodating an evaporated material having a length greater than the width of the object to be processed, and the melting part in the crucible is The present invention provides an apparatus for ion plating a long and wide workpiece, which has at least one electron beam generating device that simultaneously irradiates linearly over its length.

この装置によれば、広幅処理物であつても、1
つの長いるつぼの長手方向にわたる複数の線状箇
所から蒸気が供給されるから、処理物の幅全体に
わたつて均一に蒸気が供給され、またエレクトロ
ンビーム発生装置のビーム偏光角あるいはその数
を調整することにより蒸気の量を自由に調節する
ことができる。
According to this device, even when processing a wide material, 1
Since steam is supplied from multiple linear locations along the length of the two long crucibles, steam is supplied uniformly over the entire width of the object to be processed, and the beam polarization angle of the electron beam generator or the number thereof can be adjusted. This allows the amount of steam to be adjusted freely.

この装置を一方向性珪素鋼板の蒸着に適用する
と、よりよい特性の一方向性珪素鋼板が得られ
る。
When this apparatus is applied to the vapor deposition of unidirectional silicon steel sheets, the unidirectional silicon steel sheets with better properties can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は連続のイオンプレーテイング連続ライ
ンの模式図である。第2図および第3図は本発明
の大量蒸気源発生用蒸発源の構成例を示す模式図
である。第4図は通常のイオンプレーテイング装
置の模式図である。 符号の説明 1,18…コイル、3…酸洗層、
4,7…洗浄層、5,6…電解層、8…乾燥層、
9,9′…ルーパー、10…高真空処理層、11,
11′,11″,14,14′,14″…予備排気
層、12…高真空排気、13…ガス導入口、15
…蒸発源、19…イオンボンバードと予備加熱
槽、16…イオン化電極、17…ガイドロール、
20…超音波洗浄および乾燥槽、21…シヤー、
31…溶解蒸発材料、32…るつぼ、33…電子
ビーム、34…電子ビーム発生装置、40…るつ
ぼ、41…カソード、42…加速電極、43…電
子ビーム、44…冷却装置、45…偏光マグネツ
ト、46…電極、47…巻線、48…コア、49
…蒸気流、50…N2ガス、51…サブストレイ
ト。
FIG. 1 is a schematic diagram of a continuous ion plating line. FIGS. 2 and 3 are schematic diagrams showing an example of the configuration of the evaporation source for generating a large amount of steam according to the present invention. FIG. 4 is a schematic diagram of a conventional ion plating apparatus. Explanation of symbols 1, 18...Coil, 3...Pickling layer,
4, 7... Washing layer, 5, 6... Electrolytic layer, 8... Drying layer,
9,9′...looper, 10...high vacuum processing layer, 11,
11', 11'', 14, 14', 14''...Preliminary exhaust layer, 12...High vacuum exhaust, 13...Gas inlet, 15
...Evaporation source, 19...Ion bombardment and preheating tank, 16...Ionization electrode, 17...Guide roll,
20... Ultrasonic cleaning and drying tank, 21... Shear,
31... Melting and evaporating material, 32... Crucible, 33... Electron beam, 34... Electron beam generator, 40... Crucible, 41... Cathode, 42... Accelerating electrode, 43... Electron beam, 44... Cooling device, 45... Polarizing magnet, 46... Electrode, 47... Winding wire, 48... Core, 49
...vapor flow, 50... N2 gas, 51...substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 長尺広幅の被処理板表面に連続的にイオンプ
レーテイング処理する高真空イオンプレーテイン
グ装置の蒸発源装置において、該被処理板の板幅
以上の長さを有する蒸発材料収容るつぼを備え、
このるつぼ中の溶解蒸発材料をるつぼの長さにわ
たつて線状に同時に照射するエレクトロン・ビー
ム発生装置を少なくとも1個備えることを特徴と
する大量蒸気流発生用蒸発源装置。
1. An evaporation source device of a high vacuum ion plating apparatus that continuously performs ion plating on the surface of a long and wide plate to be processed, comprising an evaporation material containing crucible having a length equal to or longer than the width of the plate to be processed,
An evaporation source device for generating a large amount of vapor flow, comprising at least one electron beam generator that simultaneously irradiates the melted and evaporated material in the crucible linearly over the length of the crucible.
JP20983985A 1985-09-21 1985-09-21 Evaporating source device for generating vapor flow in large volume Granted JPS6270576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20983985A JPS6270576A (en) 1985-09-21 1985-09-21 Evaporating source device for generating vapor flow in large volume

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20983985A JPS6270576A (en) 1985-09-21 1985-09-21 Evaporating source device for generating vapor flow in large volume

Publications (2)

Publication Number Publication Date
JPS6270576A JPS6270576A (en) 1987-04-01
JPH0325508B2 true JPH0325508B2 (en) 1991-04-08

Family

ID=16579469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20983985A Granted JPS6270576A (en) 1985-09-21 1985-09-21 Evaporating source device for generating vapor flow in large volume

Country Status (1)

Country Link
JP (1) JPS6270576A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653531U (en) * 1991-01-25 1994-07-22 前田建設工業株式会社 Belt conveyor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286117A (en) * 1963-01-07 1966-11-15 Stauffer Chemical Co Linearly expandable filament for electron gun structure
US3996469A (en) * 1975-01-06 1976-12-07 Jersey Nuclear-Avco Isotopes, Inc. Floating convection barrier for evaporation source
US4035574A (en) * 1974-10-11 1977-07-12 Jersey Nuclear-Avco Isotopes, Inc. Mixed phase evaporation source
DE3330092A1 (en) * 1983-08-20 1985-03-07 Leybold-Heraeus GmbH, 5000 Köln METHOD FOR ADJUSTING THE LOCAL EVAPORATION PERFORMANCE ON EVAPORATORS IN VACUUM EVAPORATION PROCESSES
JPS6194240A (en) * 1984-10-16 1986-05-13 Fuji Photo Film Co Ltd Preparation of magnetic recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286117A (en) * 1963-01-07 1966-11-15 Stauffer Chemical Co Linearly expandable filament for electron gun structure
US4035574A (en) * 1974-10-11 1977-07-12 Jersey Nuclear-Avco Isotopes, Inc. Mixed phase evaporation source
US3996469A (en) * 1975-01-06 1976-12-07 Jersey Nuclear-Avco Isotopes, Inc. Floating convection barrier for evaporation source
DE3330092A1 (en) * 1983-08-20 1985-03-07 Leybold-Heraeus GmbH, 5000 Köln METHOD FOR ADJUSTING THE LOCAL EVAPORATION PERFORMANCE ON EVAPORATORS IN VACUUM EVAPORATION PROCESSES
JPS6194240A (en) * 1984-10-16 1986-05-13 Fuji Photo Film Co Ltd Preparation of magnetic recording medium

Also Published As

Publication number Publication date
JPS6270576A (en) 1987-04-01

Similar Documents

Publication Publication Date Title
CN109804105B (en) Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
CA2139063C (en) Low-iron-loss grain-oriented electromagnetic steel sheet and method of producing the same
US4975127A (en) Method of producing grain oriented silicon steel sheets having magnetic properties
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JPH0248622B2 (en)
JPH0325508B2 (en)
JPH0222423A (en) Iron loss reduction continuous treating equipment for grain oriented silicon steel sheet
JPS6237367A (en) Iron loss decreasing device for grain oriented silicon steel sheet
JPH01298118A (en) Continuous iron loss reducing treatment apparatus for grain-oriented silicon steel sheet
JPH01147074A (en) Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing
JPS6269506A (en) Equipment for improving magnetic characteristics of grain oriented silicon steel plate
JPS6237368A (en) Iron loss decreasing device for grain oriented silicon steel sheet
JPH0248621B2 (en)
JPH0254753A (en) Preheating method in continuous dry plating treatment
JPH06100939A (en) Production of low core loss grain-oriented silicon steel sheet
JPH01309922A (en) Production of grain-oriented magnetic steel sheet having low iron loss
JPS6217132A (en) Manufacture of iron nitride magnetic material having superior corrosion resistance and high saturation magnetization
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPH024963A (en) Ion plating apparatus
JPS6318075A (en) Equipment for iron loss decreasing treatment for grain oriented silicon steel sheet
JPH0453084B2 (en)
JPS60225405A (en) Heat-treatment of amorphous magnetic alloy
JP2001200377A (en) Method for producing superlow core loss grain oriented silicon steel sheet and dry plating device
JPH0841602A (en) Grain-oriented silicon steel sheet excellent in magnetic property and its production
JPH02133564A (en) Production of ceramics-clad steel plate having excellent adhesive property and corrosion resistance