JPS60225405A - Heat-treatment of amorphous magnetic alloy - Google Patents

Heat-treatment of amorphous magnetic alloy

Info

Publication number
JPS60225405A
JPS60225405A JP59081444A JP8144484A JPS60225405A JP S60225405 A JPS60225405 A JP S60225405A JP 59081444 A JP59081444 A JP 59081444A JP 8144484 A JP8144484 A JP 8144484A JP S60225405 A JPS60225405 A JP S60225405A
Authority
JP
Japan
Prior art keywords
thin film
liquid
film strip
alloy thin
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59081444A
Other languages
Japanese (ja)
Inventor
Kazuhide Hotai
保田井 和秀
Akira Urai
浦井 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59081444A priority Critical patent/JPS60225405A/en
Publication of JPS60225405A publication Critical patent/JPS60225405A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire

Abstract

PURPOSE:To improve work efficiency by simplifying and ensuring the removal of inductive magnetic anisotropic by a method wherein an amorphous magnetic alloy thin film strip is performed quenching continuously and rapidly, after rapid heating more than Curie temperature Tc. CONSTITUTION:An amorphous magnetic alloy thin film strip 1 is moved from a suppling roll 2 to an winding roll 3. On the way of moving, liquid 5 is accommodated and a tub 7 is installed which is possessed of heating means 6 to heat this liquid 5 at high temperature, and at side of the latter part, a tub 10 accommodating a cooling liquid 9 is installed separated by a heat insulator 8. An alloy thin film strip 1 passes, by means of guide rollers 4, heating liquid 5 inside the tub 7, then through cooling liquid 9 inside the tub 10. As the heating liquid 5, for example, NaCl molten-salt is used and pure water is used as the cooling liquid. The quenching speed is faster than the generation of the inductive magnetic anisotropic in the alloy thin film strip 1 during cooling. In such a manner, soft magnetic characteristics, especially permeability in low frequency region, is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非晶質磁性合金の熱処理方法、特に非晶質磁
性合金薄膜帯の作製のままでの状態で生じている誘導磁
気異方性を消失ないしは減少させて軟磁気特性の向上、
特に低周波域での透磁率を向上させる熱処理方法に係わ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat treatment method for an amorphous magnetic alloy, and in particular to a method for treating induced magnetic anisotropy occurring in an as-prepared amorphous magnetic alloy thin film strip. Improving soft magnetic properties by eliminating or reducing
It particularly relates to a heat treatment method for improving magnetic permeability in the low frequency range.

背景技術とその問題点 非晶質磁性合金は、例えば加熱溶融状態の磁性合金を高
速回転された冷却ロール上に滴下させてこれを急冷させ
ることによって非晶質磁性合金薄膜帯として得る液体急
冷法によるとか、或いはスパッタリング法、メッキ法等
によって作製される。
BACKGROUND TECHNOLOGY AND PROBLEMS Amorphous magnetic alloys can be obtained by liquid quenching, for example, where a magnetic alloy in a heated molten state is dropped onto a cooling roll rotated at high speed and rapidly cooled to form an amorphous magnetic alloy thin film band. or by sputtering, plating, or the like.

このようにして得た非晶質磁性合金薄膜帯は、その作製
のままの状態では軟磁気特性、特に低周波数域での透磁
率が低い、しかしながら、この非晶質磁性合金薄膜帯の
透磁率は、この*m帯の製造後の熱処理による誘導磁気
異方性の除去によって大幅に改善できることが知られて
いる。−この熱処理の代表的なものとしては、大気中で
の加熱、したがうて比較的徐々にその加熱をなし、この
加熱温度に例えば300秒間保持し、その後水中急冷を
行うという方法が知られている。しかしながらこの場合
の水中急冷法は、非晶質磁性合金が結晶化することがな
いように、その加熱温度Taは結晶化温度Tx以下に、
しかも磁気異方性を除去できるようにキエーリ一温度T
c以上に、すなわちTc< Ta< Txに選ばれる必
要があり、これがためTc<↑Xの組成のものにのみ通
用されるものであった。
The amorphous magnetic alloy thin film strip thus obtained has soft magnetic properties, especially low magnetic permeability in the low frequency range, in the as-prepared state.However, the magnetic permeability of this amorphous magnetic alloy thin film strip It is known that this can be significantly improved by removing the induced magnetic anisotropy by heat treatment after manufacturing the *m band. - As a typical method of this heat treatment, it is known that heating is performed in the atmosphere, therefore, the heating is performed relatively gradually, and this heating temperature is maintained for, for example, 300 seconds, and then quenching is performed in water. . However, in the underwater quenching method in this case, the heating temperature Ta is kept below the crystallization temperature Tx so that the amorphous magnetic alloy does not crystallize.
Moreover, in order to eliminate magnetic anisotropy, the Chieri temperature T
c or more, that is, Tc<Ta<Tx, and for this reason, it was applicable only to compositions where Tc<↑X.

すなわち、非晶質磁性合金は、Fe、 Coのような磁
性金属元素と、St、 Hのようなガラス化のためのガ
ラス形成元素、いわゆるメタロイドとの合金によるもの
であるが、この場合、磁性金属とメタロイドとの比が8
0:20(原子比)程度を境としてメタロイドの含有量
に応じて、この非晶質磁性合金のキュリ一温度Tcと結
晶化温度TIとの関係が、メタロイードが多い場合はT
c< Tx、少い場合はTc> Txとなるとされてい
る。そして、上述した異方性除去の水中急冷法の手法は
、Tc< Txの組成の非晶質磁性合金についてのみ適
用されるものであった。
In other words, an amorphous magnetic alloy is an alloy of magnetic metal elements such as Fe and Co and glass-forming elements for vitrification such as St and H, so-called metalloids. The ratio of metal to metalloid is 8
Depending on the metalloid content, the relationship between the Curie temperature Tc and the crystallization temperature TI of this amorphous magnetic alloy changes from about 0:20 (atomic ratio) to T when the metalloid content is large.
It is said that c<Tx, and when it is small, Tc>Tx. The above-described underwater quenching method for removing anisotropy was applied only to amorphous magnetic alloys having a composition where Tc<Tx.

これに対し、T’c’< Txであるか、Tc>Txで
あるかを問わず、異方性除去を行うことができる熱処理
方法として、例えば回転磁場中で結晶化温度Tx以下で
の熱処理による方法が知られている。しかしながら、こ
のような回転磁場等の磁場中熱処理による異方性除去の
方法は、その装置が大型且つ煩雑で、その作業も面倒で
量産上必ずしも満足できるものではない。
On the other hand, as a heat treatment method that can remove anisotropy regardless of whether T'c'< Tx or Tc > Tx, for example, heat treatment at a temperature below the crystallization temperature Tx in a rotating magnetic field is A method is known. However, this method of removing anisotropy by heat treatment in a magnetic field such as a rotating magnetic field requires a large and complicated apparatus, and the work is troublesome, so that it is not necessarily satisfactory for mass production.

発明の目的 本発明は、上述した非晶質磁性合金薄膜帯に対する誘導
磁気異方性の除去を、その材料組成を問わずに簡単且つ
確実に行うことができ、しかもこの異方性除去の作業を
、非晶質磁性合金薄膜帯の長手方向に沿って連続的にこ
の薄膜帯を移行させつつ行うことができるようにして作
業性を格段に向上させることのできる非晶質磁性合金の
熱処理法を提供するものである。
Purpose of the Invention The present invention is capable of easily and reliably removing induced magnetic anisotropy from the above-mentioned amorphous magnetic alloy thin film strip, regardless of its material composition, and moreover, it is capable of removing this anisotropy. A heat treatment method for an amorphous magnetic alloy that can be carried out while continuously moving the amorphous magnetic alloy thin film strip along the longitudinal direction, thereby significantly improving workability. It provides:

発明の概要 本発明は、非晶質磁性合金薄膜帯を、そのキュリ一温度
Tc以上に急速加熱した後、連続して直ちに急冷するも
のである。
SUMMARY OF THE INVENTION The present invention involves rapidly heating an amorphous magnetic alloy thin film strip to a temperature above its Curie temperature Tc, and then rapidly cooling it continuously.

実施例 第1図を参照して本発明の詳細な説明する0図において
(11は、誘導磁気異方性の除去を行わんとする非晶質
磁性合金薄膜帯で、この非晶質磁性合金薄膜帯(1)は
、冒頭に述べた液体急冷法等の任意の方法で作られる。
Embodiment 0 A detailed explanation of the present invention is given with reference to FIG. The thin film strip (1) is produced by any method such as the liquid quenching method mentioned at the beginning.

(2)はこの合金薄膜帯(1)が巻込まれていて、これ
を送り出す合金薄膜帯の供給ロールを示す。また(3)
は、熱処理された非晶質磁性合金薄膜帯(1)を巻取る
巻取りロールを示す。(4)はガイドローラーを示す、
非晶質磁性合金薄膜帯(1)は、その供給ロール(2)
から巻取りロール(3)へと移行されるが、この移行途
上において急速加熱と急速冷却とが行われる。これがた
め、合金薄膜帯(1)の移行途上に、液体(5)が収容
され、この液体(5)を高温に加熱する加熱手段(6)
を具備する槽(ηが設けられ、その後段側に、熱遮蔽体
(8)によって熱的に分離されて冷却液(9)が収容さ
れた槽(2)が設けられ、合金薄膜帯(1)が、ガイド
ローラー(aによって槽(η中の加熱液体(6)中を通
り、続いて槽(II中の冷却液(9)中を通過するよう
になされる。
(2) shows the supply roll of the alloy thin film strip around which the alloy thin film strip (1) is wound and from which it is sent out. Also (3)
1 shows a winding roll for winding up a heat-treated amorphous magnetic alloy thin film strip (1). (4) indicates a guide roller,
The amorphous magnetic alloy thin film strip (1) is fed to its supply roll (2)
The material is then transferred to the winding roll (3), and during this transfer, rapid heating and rapid cooling are performed. Therefore, a liquid (5) is accommodated in the middle of the transition of the alloy thin film band (1), and a heating means (6) for heating this liquid (5) to a high temperature is provided.
A tank (η) comprising a tank (η) is provided, and a tank (2) containing a cooling liquid (9) that is thermally separated by a heat shield (8) is provided on the downstream side, and ) is made to pass through the heating liquid (6) in the tank (η) and subsequently into the cooling liquid (9) in the tank (II) by means of a guide roller (a).

加熱液体(5)としては、例えばNaC1溶融塩が用い
られ、冷却液は純水が用いられる。ここに急冷速度は冷
却中に合金薄膜帯(1)に誘導磁気異方性が生ずるより
も早い速度となるようにする。
As the heating liquid (5), for example, NaCl molten salt is used, and as the cooling liquid, pure water is used. Here, the quenching rate is set to be faster than the rate at which induced magnetic anisotropy occurs in the alloy thin film band (1) during cooling.

実施例1 液体急冷法によって得た (Pe4.4y CoTo、5a)vs 5iz2Bs
 Cr4の組成の非晶質磁性合金薄膜帯を第1図で説明
した装置によって急熱急冷処理した。この場合、加熱温
度T=410℃、実質的加熱時間t=3秒間とした。こ
のようにして′熱処理した非晶質磁性合金薄膜帯をリン
グに打ち抜き、周波数f = I KHzで透磁率μの
測定を行ったところμ= 6700であった。そして、
この実施例1において、その加熱温度Tを変化させて熱
処理した場合の同様の透磁率μを測定した結果は、第2
図中曲線(11)の通りである。尚、実施例1において
、その加熱保持時間t=10秒とした場合は、同図中曲
線(12)で示す結果が得られた。これに比し、実施例
1と同様の組成の磁性合金薄膜帯に対して冒頭に述べた
従来の水中急冷法による場合、すなわち、大気中で徐々
に加熱し、熱処理温度Tで300秒間保持して後、水中
冷却したものにおいては、第2図中曲線(13)に示す
結果が得られた。これら曲線(11)及び(12)と、
(13)とを比較することによって透磁率μが急激に低
下する結果をもたらす処理温度は、本発明方法による場
合、従来方法による場合に比し大幅に上昇している。つ
まり、本発明方法の急熱、短時間によるときは、同一組
成でも実質的にその結晶化が生じる温度が上昇している
。云い換えれば見掛上Txが上昇するものであり、本発
明方法においては加熱温度をTc以上で且つ見掛上の結
晶化温度Tx未満に選定する。
Example 1 (Pe4.4y CoTo, 5a) vs. 5iz2Bs obtained by liquid quenching method
An amorphous magnetic alloy thin film strip having a composition of Cr4 was rapidly heated and rapidly cooled using the apparatus described in FIG. In this case, the heating temperature T was 410° C., and the actual heating time t was 3 seconds. The thus heat-treated amorphous magnetic alloy thin film strip was punched out into a ring, and the magnetic permeability μ was measured at a frequency f = I KHz, and it was found to be μ = 6700. and,
In this Example 1, the results of measuring the magnetic permeability μ in the case where the heating temperature T was changed and the heat treatment was performed are as follows.
This is shown by curve (11) in the figure. In Example 1, when the heating holding time t=10 seconds, the results shown by curve (12) in the figure were obtained. In contrast, when a magnetic alloy thin film strip having the same composition as in Example 1 is subjected to the conventional underwater quenching method described at the beginning, that is, it is gradually heated in the atmosphere and held at the heat treatment temperature T for 300 seconds. After cooling in water, the results shown in curve (13) in FIG. 2 were obtained. These curves (11) and (12),
(13), the processing temperature that causes the magnetic permeability μ to drop rapidly is significantly higher in the method of the present invention than in the conventional method. In other words, when the method of the present invention uses rapid heating for a short time, the temperature at which crystallization occurs substantially increases even if the composition is the same. In other words, the apparent Tx increases, and in the method of the present invention, the heating temperature is selected to be higher than Tc and lower than the apparent crystallization temperature Tx.

尚、上述した例では、非晶質磁性合金薄膜帯(1)を加
熱液体(5)中と冷却液体(9)中とを通過させること
によって急熱、短時間熱処理、急冷を行うようにした場
合であるが、その他の種々の構成を採ることができる0
例えば第3図に示すように、供給ロール(2)から巻取
りロール(3)に移行する非晶質磁性合金薄膜帯(1)
の移行途上に、夫々この薄膜帯(1)を挾み込んで回転
する夫々複数の加熱ロール(14)によって加熱急熱短
時間処理を行い、冷却ロール(15)によって急冷処理
を行うようにすることもできる。
In the above example, rapid heating, short-time heat treatment, and rapid cooling were performed by passing the amorphous magnetic alloy thin film strip (1) through a heating liquid (5) and a cooling liquid (9). However, various other configurations can be adopted.
For example, as shown in FIG. 3, an amorphous magnetic alloy thin film strip (1) is transferred from a supply roll (2) to a take-up roll (3).
During the transition, a heating rapid heating process is performed for a short time by a plurality of rotating heating rolls (14) that sandwich the thin film band (1), and a rapid cooling process is performed by a cooling roll (15). You can also do that.

発明の効果 上述したように本発明の急熱短時間加熱及び急冷による
熱処理によれば、見掛上結晶化温度を高める効果が得ら
れるので、充分高温の熱処理が可能となり、その軟磁気
特性、特に低周波域での透磁率を高めることができ、更
にその組成範囲を拡げることができるので、使用目的に
応じた、例えば磁気へラドコア材、トランスのコア材と
して好適な組成の選定を行うことができるのみならず使
途の拡大がはかられる。
Effects of the Invention As described above, according to the heat treatment of the present invention by rapid short-time heating and rapid cooling, the effect of increasing the apparent crystallization temperature can be obtained, making it possible to perform heat treatment at a sufficiently high temperature, thereby improving the soft magnetic properties, In particular, it is possible to increase the magnetic permeability in the low frequency range and further expand the composition range, so select a composition suitable for the purpose of use, such as magnetic helad core material or transformer core material. Not only can it be used, but its uses can be expanded.

また、本発明方法による場合、急熱、短時間加熱、急冷
によるので、第1図及び第3図で説明したようにこれら
処理を非晶質磁性合金薄膜帯に対して連続的に行うこと
ができ、習頭に述べた回転磁界による磁気異方性の除去
方法等に比し、作業性が著しく高く、装置の簡易化、取
扱いの簡便化がはかられ、工業的に利するところは甚大
である。
Furthermore, since the method of the present invention involves rapid heating, short-time heating, and rapid cooling, these treatments cannot be performed continuously on the amorphous magnetic alloy thin film strip as explained in FIGS. 1 and 3. Compared to the method of removing magnetic anisotropy using a rotating magnetic field mentioned in the introduction, this method has significantly higher workability, simplifies equipment and eases handling, and has enormous industrial advantages. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図は本発明による非晶質磁性合金の熱処
理方法を実施する装置の例を示す構成図、第2図は熱処
理温度と透磁率の関係の測定結果を示す図である。 (1)は非晶質磁性合金薄膜帯、(2)及び(3)はそ
の供給ロール及び巻取りロール、(5)は加熱液体、(
9)は冷却液である。
FIGS. 1 and 3 are block diagrams showing an example of an apparatus for carrying out the method of heat treatment of an amorphous magnetic alloy according to the present invention, and FIG. 2 is a diagram showing measurement results of the relationship between heat treatment temperature and magnetic permeability. (1) is an amorphous magnetic alloy thin film strip, (2) and (3) are its supply roll and take-up roll, (5) is a heated liquid, (
9) is a cooling liquid.

Claims (1)

【特許請求の範囲】[Claims] 非晶質磁性合金薄膜帯を、そのキエリ一温度以上に急速
加熱した後、連続して直ちに急冷する非晶質磁性合金の
熱処理方法。
A method for heat treatment of an amorphous magnetic alloy, in which a thin film strip of an amorphous magnetic alloy is rapidly heated to a temperature higher than its Chieri temperature, and then rapidly cooled continuously.
JP59081444A 1984-04-23 1984-04-23 Heat-treatment of amorphous magnetic alloy Pending JPS60225405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081444A JPS60225405A (en) 1984-04-23 1984-04-23 Heat-treatment of amorphous magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081444A JPS60225405A (en) 1984-04-23 1984-04-23 Heat-treatment of amorphous magnetic alloy

Publications (1)

Publication Number Publication Date
JPS60225405A true JPS60225405A (en) 1985-11-09

Family

ID=13746565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081444A Pending JPS60225405A (en) 1984-04-23 1984-04-23 Heat-treatment of amorphous magnetic alloy

Country Status (1)

Country Link
JP (1) JPS60225405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877464A (en) * 1986-06-09 1989-10-31 Allied-Signal Inc. Rapid magnetic annealing of amorphous metal in molten tin
JP2016162947A (en) * 2015-03-04 2016-09-05 Necトーキン株式会社 Soft magnetic material, soft magnetic powder, powder magnetic core, and manufacturing methods thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877464A (en) * 1986-06-09 1989-10-31 Allied-Signal Inc. Rapid magnetic annealing of amorphous metal in molten tin
JP2016162947A (en) * 2015-03-04 2016-09-05 Necトーキン株式会社 Soft magnetic material, soft magnetic powder, powder magnetic core, and manufacturing methods thereof

Similar Documents

Publication Publication Date Title
Arai et al. Rolled texture and magnetic properties of 3% silicon steel
MXPA04011077A (en) Method of continuous casting non-oriented electrical steel strip.
US2801942A (en) Method of rendering an aluminum-iron alloy ductile
US4482402A (en) Dynamic annealing method for optimizing the magnetic properties of amorphous metals
JPH032932B2 (en)
US4512824A (en) Dynamic annealing method for optimizing the magnetic properties of amorphous metals
JPS5850295B2 (en) Manufacturing method of unidirectional silicon steel sheet with high magnetic flux density
Littmann Development of improved cube-on-edge texture from strand cast 3pct silicon-iron
JPS60225405A (en) Heat-treatment of amorphous magnetic alloy
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
JPS61157631A (en) Introducing method of strain for improving iron loss of directional electromagnetic steel strip
RU2105074C1 (en) Method for production of tape from magnetic steel and sheet
JPS6332851B2 (en)
JPS5942069B2 (en) Method for manufacturing amorphous alloy with high effective magnetic permeability
SU1731830A1 (en) Method and apparatus for heat treatment of strip from amorphous magnetically-soft alloys
JPS6261660B2 (en)
JPS6360264A (en) Production of amorphous co alloy
RU2701599C1 (en) Production method of high-permeable anisotropic electrical steel
JPS6021328A (en) Production of light-gauge high silicon steel strip having (100) &lt;oki&gt; texture
JPH01309922A (en) Production of grain-oriented magnetic steel sheet having low iron loss
JPS5855211B2 (en) (h,k,o) Manufacturing method for unidirectional electrical steel sheet with crystals in [001] orientation and excellent iron loss
JPS5825433A (en) Directional property silicon steel band
KR100391903B1 (en) Method for producing austenite stainless steel strip in twin roll strip caster
JPS5867825A (en) Preparation of high silicon steel thin strip
JPS6256204B2 (en)