JPS6261660B2 - - Google Patents

Info

Publication number
JPS6261660B2
JPS6261660B2 JP53039137A JP3913778A JPS6261660B2 JP S6261660 B2 JPS6261660 B2 JP S6261660B2 JP 53039137 A JP53039137 A JP 53039137A JP 3913778 A JP3913778 A JP 3913778A JP S6261660 B2 JPS6261660 B2 JP S6261660B2
Authority
JP
Japan
Prior art keywords
magnetic permeability
amorphous alloy
alloys
effective magnetic
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53039137A
Other languages
Japanese (ja)
Other versions
JPS54131527A (en
Inventor
Michio Hasegawa
Koichiro Inomata
Senji Shimanuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3913778A priority Critical patent/JPS54131527A/en
Publication of JPS54131527A publication Critical patent/JPS54131527A/en
Publication of JPS6261660B2 publication Critical patent/JPS6261660B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は高透磁率非晶質合金の製造方法に係
り、特に実効透磁率を向上させる製造方法に関す
る。 〔発明の技術的背景とその問題点〕 従来、磁気ヘツド、磁気シールド、変成器及び
その他の磁気装置に用いられる高透磁率金属材料
としては結晶構造を有するFe―Si合金、Fe―Ni
合金、Fe―Al合金、Fe―Si―Al合金などがあり
それぞれの特性に応じて使用されているが、これ
らの合金にはまだそれぞれ特性及び製造上に問題
を残している。 Fe―Si合金は変成器、モータ等のコアとして
使用されているが透磁率はせいぜい500ぐらいで
低い。 Fe―Ni合金においては特にNiを78原子%を有
するパーマロイは透磁率が高いが硬度が実用上充
分でないため磁気ヘツドとして使用する場合耐摩
耗性が問題となつている。又、磁気ヘツドとして
使用する場合、合成樹脂でモールドするがこれに
よつて透磁率は大幅に低下する欠点がある。 Fe―Al及びFe―Al―Si合金では高透磁率を有
する組成のものは脆いため塑性加工が非常に困難
で用途がきわめて限られている。 最近、結晶構造を持たない非晶質合金において
すぐれた磁気的及び機械的特性が見い出された。 非晶質合金とは通常の結晶質とは異なり、結晶
の周期性のない合金であり、種々の作製法により
得られる。現在までのところ蒸着法、電着法、無
電解メツキ法、スパツター法及び液体急冷法など
により非晶質合金が得られている。特に液体急冷
法により得られる非晶質合金は他の方法により得
られるものが薄膜であるのに対してバルク状であ
り機械的にすぐれた強度、硬さ及び柔軟性をもつ
ているため磁気ヘツド、コア及び磁気シールド用
非晶質合金として推賞されるものである。しかし
一般に急冷状態の非晶質合金の透磁率は低く、高
透磁率を得るには熱処理を必要とする。 例えば特開51−73923に示される如く、Fe系、
Co系の非晶質合金において、結晶化温度以下か
ら焼鈍する熱処理を磁場中で施すことにより直流
磁化特性における最大透磁率などを向上させるこ
とが知られているが、特に再生磁気ヘツド、微小
電流センサ等に要求される交流磁化特性である実
効透磁率の向上については何ら考慮されていなか
つた。 〔発明の目的〕 本発明は上記の点に鑑みCo系非晶質合金にお
いて、実効透磁率を向上させるための最適な製造
方法を提供することを目的とする。 〔発明の概要〕 本発明は、Coを主成分とする高透磁率非晶質
合金、特に(Co1-aFea1-xx、但しXはBまた
はB+Siの混合系(なおSiは25原子%以下)aは
0.04〜0.11,xは0.20〜0.28なる組成を有する組
成においてCoの一部をM(Nb,V,Ta,Ti,
Zr,Cr,Mo,Wのうちの少なくとも1種)で10
原子%以下置換したもの、あるいは、この組成に
おいてCoの一部を10原子%以下のNiおよび10原
子%以下のMで合計が10原子%以下置換したもの
を用い、直流磁場中において120℃〜270℃の範囲
内の温度より室温まで炉冷することによつて高い
実効透磁率を得るCo基非晶質合金の実効透磁率
改善方法である。 なお本発明における直流磁場中炉冷を開始する
温度の範囲の特定理由は以下の如くである。 直流磁場中炉冷を開始する温度の下限を120℃
としたのは、この温度が120℃未満の場合には、
磁場中炉冷処理の工程において非晶質合金の実効
透磁率改善の効果が得られず、270℃を越えると
磁場中炉冷処理後の最大透磁率は向上するものの
実効透磁率が低下するからである。 高透磁率非晶質合金における各成分の含有量を
限定した理由は以下の如くである。 特許請求の範囲第2項において aを0.04〜0.11と限定したのは、この範囲外に
おいては実効透磁率が低下するからであり、xを
0.20〜0.28かつSiの含有量を25原子%以下と限定
したのは、この範囲外においては非晶質合金の製
造が困難なばかりか、大きな実効透磁率が得られ
ないからである。 特許請求の範囲第3項において、MまたはMお
よびNi合計含有量を10原子%以下と限定したの
は、10原子%を超えると非常に脆くなり実用上使
用困難となり、さらに実効透磁率が急減するから
である。 〔発明の効果〕 つまり本発明によれば、直流磁化特性である最
大透磁率の向上とともに、交流磁化特性である実
効透磁率(ほぼ効透磁率に相当)を向上すること
のできる。例えば本発明により非晶質合金を磁気
ヘツドに用いたときは録音時に要求される最大透
磁率、再生時に要求される実効透磁率を兼ね備え
ているため好適である。又、実効透磁率が向上す
ることにより各種交流(例えば商用の50〜60Hz)
のもれ電流センサ等の微小電流センサとしても好
適な非晶質合金を得ることができる。 〔発明の実施例〕 以下、本発明を実施例を用いて詳細に説明す
る。 (実施例 1) 圧延急冷法によつて、すなわち4500rpmの回転
速度で高速回転する2つのロール間に、石英管ノ
ズルより溶融合金を1.6気圧のアルゴンガス圧に
よつて噴出させ急冷することによつて得た、幅2
mm厚さ40μm、長さ10mの
Co0.94Fe0.04Nb0.0275Si10B15非晶質合金リボンを
直径21mmのアルミナの巻枠に20回巻いた状態で真
空中450℃で10分間、歪取り熱処理を施こし、急
冷した後、直流磁場を印加するためのコイルを16
回巻いて、真空中おいて100℃,150℃,250℃,
300℃,350℃の各温度より50eの直流磁場を負荷
した状態で室温まで炉冷した。なお炉冷の冷却速
度は約60℃/時間であつた。本非晶質合金のキユ
リー温度を測定したところ350℃であつた。 実効透磁率および最大透磁率を測定しその結果
を表1に示す。 この結果表1から明らかな如く、最大透磁率
は、直流磁場中において非晶質合金の結晶化温度
以下から室温まで冷却することにより向上する
が、実効透磁率は結晶化温度以下の特定温度範囲
のみの熱処理により改善されることが明らかであ
る。
[Technical Field of the Invention] The present invention relates to a method for manufacturing a high magnetic permeability amorphous alloy, and particularly to a manufacturing method for improving effective magnetic permeability. [Technical background of the invention and its problems] Conventionally, high magnetic permeability metal materials used in magnetic heads, magnetic shields, transformers, and other magnetic devices include Fe--Si alloys and Fe--Ni alloys with crystal structures.
There are alloys, Fe--Al alloys, Fe--Si--Al alloys, etc., and each is used according to its characteristics, but each of these alloys still has problems with its characteristics and manufacturing. Fe-Si alloys are used as cores for transformers, motors, etc., but their magnetic permeability is low, around 500 at most. Among Fe--Ni alloys, permalloy containing 78 atomic percent Ni in particular has high magnetic permeability but insufficient hardness for practical use, so wear resistance is a problem when used as a magnetic head. Furthermore, when used as a magnetic head, it is molded with synthetic resin, but this has the disadvantage that the magnetic permeability is significantly reduced. Among Fe-Al and Fe-Al-Si alloys, those with high magnetic permeability are brittle, making plastic working very difficult, and their uses are extremely limited. Recently, excellent magnetic and mechanical properties have been discovered in amorphous alloys that do not have a crystalline structure. Amorphous alloys, unlike ordinary crystalline alloys, are alloys without periodicity of crystals, and can be obtained by various manufacturing methods. Up to now, amorphous alloys have been obtained by vapor deposition, electrodeposition, electroless plating, sputtering, liquid quenching, and the like. In particular, amorphous alloys obtained by the liquid quenching method are bulk-like, whereas those obtained by other methods are thin films, and have superior mechanical strength, hardness, and flexibility, making them suitable for magnetic heads. It is highly recommended as an amorphous alloy for cores and magnetic shields. However, the magnetic permeability of an amorphous alloy in a rapidly cooled state is generally low, and heat treatment is required to obtain high magnetic permeability. For example, as shown in JP-A-51-73923, Fe-based,
It is known that the maximum magnetic permeability of DC magnetization characteristics can be improved by annealing Co-based amorphous alloys in a magnetic field below the crystallization temperature. No consideration was given to improving effective magnetic permeability, which is an AC magnetization characteristic required for sensors and the like. [Object of the Invention] In view of the above points, an object of the present invention is to provide an optimal manufacturing method for improving the effective magnetic permeability of a Co-based amorphous alloy. [Summary of the Invention] The present invention relates to a high magnetic permeability amorphous alloy mainly composed of Co, particularly (Co 1-a Fe a ) 1-x X x , where X is B or a mixed system of B + Si (Si is 25 atomic% or less) a is
0.04 to 0.11, x is 0.20 to 0.28, and part of Co is M(Nb, V, Ta, Ti,
10 with at least one of Zr, Cr, Mo, W)
Using a material in which less than 1 atomic % of Co is substituted, or a part of Co in this composition is replaced with 10 atomic % or less of Ni and 10 atomic % or less of M, in a DC magnetic field at 120 ° C. This is a method for improving the effective magnetic permeability of a Co-based amorphous alloy, which obtains a high effective magnetic permeability by furnace cooling from a temperature within the range of 270°C to room temperature. The reason for specifying the temperature range for starting furnace cooling in a DC magnetic field in the present invention is as follows. Lower limit of temperature to start furnace cooling in DC magnetic field is 120℃
This is because if this temperature is less than 120℃,
The effect of improving the effective magnetic permeability of amorphous alloys cannot be obtained in the process of furnace cooling treatment in a magnetic field, and when the temperature exceeds 270℃, although the maximum magnetic permeability improves after furnace cooling treatment in a magnetic field, the effective magnetic permeability decreases. It is. The reason for limiting the content of each component in the high magnetic permeability amorphous alloy is as follows. The reason why a is limited to 0.04 to 0.11 in claim 2 is that the effective magnetic permeability decreases outside this range, and x is
The reason why the Si content is limited to 0.20 to 0.28 and 25 atomic % or less is that outside this range, not only is it difficult to produce an amorphous alloy, but also a large effective magnetic permeability cannot be obtained. In claim 3, the M or total M and Ni content is limited to 10 atomic % or less because if it exceeds 10 atomic %, it becomes extremely brittle and difficult to use in practice, and furthermore, the effective magnetic permeability decreases rapidly. Because it does. [Effects of the Invention] That is, according to the present invention, it is possible to improve the maximum magnetic permeability, which is a direct current magnetization characteristic, and to improve the effective magnetic permeability (approximately equivalent to the effective magnetic permeability), which is an alternating current magnetization characteristic. For example, when an amorphous alloy is used in the magnetic head according to the present invention, it is suitable because it has both the maximum magnetic permeability required for recording and the effective magnetic permeability required for reproduction. In addition, by improving the effective magnetic permeability, various types of alternating current (for example, commercial 50 to 60 Hz)
An amorphous alloy suitable for use as a microcurrent sensor such as a leakage current sensor can be obtained. [Examples of the Invention] The present invention will be described in detail below using Examples. (Example 1) The molten alloy was rapidly cooled by the rolling quenching method, that is, by jetting the molten alloy from a quartz tube nozzle with an argon gas pressure of 1.6 atmospheres between two rolls rotating at a high speed of 4500 rpm. Width 2
mm thickness 40μm, length 10m
Co 0 . 94 Fe 0 . _ _ After applying and quenching, 16 coils are used to apply a DC magnetic field.
Roll it up and store it in vacuum at 100℃, 150℃, 250℃,
The furnace was cooled from 300℃ and 350℃ to room temperature with a DC magnetic field of 50e applied. The cooling rate of the furnace was approximately 60°C/hour. The Curie temperature of this amorphous alloy was measured and was 350°C. The effective magnetic permeability and maximum magnetic permeability were measured and the results are shown in Table 1. As is clear from Table 1, the maximum magnetic permeability is improved by cooling the amorphous alloy from below the crystallization temperature to room temperature in a DC magnetic field, but the effective magnetic permeability is within a specific temperature range below the crystallization temperature. It is clear that this can be improved by only heat treatment.

【表】【table】

【表】 (実施例 2) 実施例1と同じ方法によつて得られた
(Co0.88Fe0.06Ni0.03Nb0.0375Si10B15非晶質合金リ
ボンについて実施例1と同じ方法で実施を行なつ
た。 その結果を第1図に示す。尚本非晶質合金のキ
ユリー点は330℃であつた。 第1図ではMとしてNbを例にとつて示したが
Mとして他の元素をとつた場合も同様の傾向を示
した。その結果を表2に示す。 この結果120〜270℃の範囲から室温まで炉冷し
た場合のみ実効透磁率の向上が著しいことが明確
である。
[Table] (Example 2) Conducted on a (Co 0 . 88 Fe 0 . 06 Ni 0 . 03 Nb 0 . 03 ) 75 Si 10 B 15 amorphous alloy ribbon obtained by the same method as in Example 1. The implementation was carried out in the same manner as in Example 1. The results are shown in FIG. The Curie point of this amorphous alloy was 330°C. In FIG. 1, Nb is used as an example of M, but similar trends were observed when other elements were used as M. The results are shown in Table 2. As a result, it is clear that the effective magnetic permeability is significantly improved only when furnace cooling is performed from the range of 120 to 270°C to room temperature.

【表】【table】

【表】 (実施例 3) 実施例1と同じ方法によつて得られた
(Co0.84Fe0.10Ni0.03Nb0.0375Si10B15非晶質合金リ
ボンについて実施例1と同じ方法で実験を行なつ
た。 結果を第2図に示す。 以上4つの実施例によつて示した如く、Co系
非晶質合金の実効透磁率は磁場中炉冷によつて著
しく改善され、最適な磁場中炉冷開始温度は、成
分組成によつて多少異なるが、120℃と270℃の間
の温度範囲内にあることが示された。 以上の如く本発明に係わる方法を用いれば、実
効透磁率において優れた高透磁率非晶質合金が得
られ、磁気ヘツド、微小電流センサ等の磁気装置
に極めて有効なものとなる。
[Table] (Example 3) Conducted on (Co 0 . 84 Fe 0 . 10 Ni 0 . 03 Nb 0 . 03 ) 75 Si 10 B 15 amorphous alloy ribbon obtained by the same method as in Example 1. The experiment was carried out in the same manner as in Example 1. The results are shown in Figure 2. As shown in the above four examples, the effective magnetic permeability of Co-based amorphous alloys is significantly improved by furnace cooling in a magnetic field, and the optimum starting temperature for furnace cooling in a magnetic field varies somewhat depending on the component composition. Although different, it was shown to be within the temperature range between 120°C and 270°C. As described above, by using the method according to the present invention, a high permeability amorphous alloy with excellent effective magnetic permeability can be obtained, which is extremely effective for magnetic devices such as magnetic heads and minute current sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(Co0.88Fe0.06Ni0.0375Si10B15非晶質
合金について磁場中炉冷開始温度と1KHzにおけ
る実効透磁率の関係を示した曲線図、第2図は
(Co0.84Fe0.10Ni0.03Nb0.0375Si10B15非晶質合金に
ついて磁場中炉冷開始温度と1KHzにおける実効
透磁率の関係を示した曲線図である。
Figure 1 is a curve diagram showing the relationship between the furnace cooling start temperature in a magnetic field and the effective magnetic permeability at 1 KHz for the (Co 0 . 88 Fe 0 . 06 Ni 0 . 03 ) 75 Si 10 B 15 amorphous alloy; The figure is a curve diagram showing the relationship between the furnace cooling start temperature in a magnetic field and the effective magnetic permeability at 1KHz for the ( Co0.84Fe0.10Ni0.03Nb0.03 ) 75Si10B15 amorphous alloy. be.

Claims (1)

【特許請求の範囲】 1 (Co1-a-bFeaMb1-xx 〔X;BまたはB+Si(Si25原子%以下)の混
合系 M;Ni,Nb,V,Ta,Ti,Zr,Cr,Mo,
W a=0.04〜0.11 b≦0.1 x=0.20〜0.28〕 で示される非晶質合金を、直流磁場中において
120〜270℃の範囲から室温まで炉冷することを特
徴とするCo系非晶質合金の実効透磁率改善方
法。 2 150℃を越え270℃以下の範囲から室温まで炉
冷することを特徴とする特許請求の範囲第1項記
載のCo系非晶質合金の実効透磁率改善方法。 3 200℃〜250℃の範囲から室温まで炉冷するこ
とを特徴とする特許請求の範囲第1項記載のCo
系非晶質合金の実効透磁率改善方法。 4 MはNb,V,Ta,Ti,Zr,Cr,Mo及びW
から選ばれた少なくとも一種であることを特徴と
する特許請求の範囲第1項記載のCo系非晶質合
金の実効透磁率改善方法。 5 MはNb,V,Ta,Ti,Zr,Cr,Mo及びW
から選ばれた少なくとも一種及びNiであること
を特徴とする特許請求の範囲第1項記載のCo系
非晶質合金の実効透磁率改善方法。
[Claims] 1 (Co 1-ab Fe a M b ) 1- x ,Cr,Mo,
W a = 0.04 to 0.11 b ≦ 0.1 x = 0.20 to 0.28] in a DC magnetic field.
A method for improving the effective magnetic permeability of a Co-based amorphous alloy, characterized by furnace cooling from a range of 120 to 270°C to room temperature. 2. A method for improving the effective magnetic permeability of a Co-based amorphous alloy according to claim 1, which comprises cooling in a furnace from a range exceeding 150°C and below 270°C to room temperature. 3. Co according to claim 1, characterized in that it is furnace cooled from a range of 200°C to 250°C to room temperature.
A method for improving the effective magnetic permeability of amorphous alloys. 4 M is Nb, V, Ta, Ti, Zr, Cr, Mo and W
2. A method for improving the effective magnetic permeability of a Co-based amorphous alloy according to claim 1, wherein the Co-based amorphous alloy is at least one selected from the following. 5 M is Nb, V, Ta, Ti, Zr, Cr, Mo and W
2. A method for improving the effective magnetic permeability of a Co-based amorphous alloy according to claim 1, characterized in that at least one selected from the following is used: and Ni.
JP3913778A 1978-04-05 1978-04-05 High-permeability amorphous alloy production Granted JPS54131527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3913778A JPS54131527A (en) 1978-04-05 1978-04-05 High-permeability amorphous alloy production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3913778A JPS54131527A (en) 1978-04-05 1978-04-05 High-permeability amorphous alloy production

Publications (2)

Publication Number Publication Date
JPS54131527A JPS54131527A (en) 1979-10-12
JPS6261660B2 true JPS6261660B2 (en) 1987-12-22

Family

ID=12544708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3913778A Granted JPS54131527A (en) 1978-04-05 1978-04-05 High-permeability amorphous alloy production

Country Status (1)

Country Link
JP (1) JPS54131527A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225803A (en) * 1985-03-30 1986-10-07 Toshiba Corp Magnet core and manufacture thereof
JPS62124703A (en) * 1985-11-25 1987-06-06 Mitsui Petrochem Ind Ltd Current sensor
JP2695927B2 (en) * 1989-07-17 1998-01-14 三井石油化学工業株式会社 Magnetic amorphous signs for vehicle guidance
IT230408Y1 (en) * 1993-09-17 1999-06-07 Prima Srl BACK TO BIND A DOSSIER
JP4758925B2 (en) * 2007-02-28 2011-08-31 セイコーエプソン株式会社 Co-based metallic glass alloy, magnetic core, electromagnetic transducer and watch

Also Published As

Publication number Publication date
JPS54131527A (en) 1979-10-12

Similar Documents

Publication Publication Date Title
US5252144A (en) Heat treatment process and soft magnetic alloys produced thereby
JPH044393B2 (en)
JPH01242755A (en) Fe-based magnetic alloy
JPH0774419B2 (en) Method for producing Fe-based soft magnetic alloy
JPWO2008133302A1 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP2008231533A5 (en)
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JP2008231534A5 (en)
JP4257629B2 (en) Fe-based amorphous alloy ribbon and magnetic component for nanocrystalline soft magnetic alloy
JPS6261660B2 (en)
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
JPH01247557A (en) Manufacture of hyperfine-crystal soft-magnetic alloy
US4834814A (en) Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability
JPS6038454B2 (en) Amorphous alloy with excellent effective magnetic permeability
JPS6052557A (en) Low-loss amorphous magnetic alloy
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPS6043899B2 (en) High effective permeability non-quality alloy
JPS61123119A (en) Co group magnetic core and heat treatment thereof
JPS6242981B2 (en)
JPH01142049A (en) Fe-based magnetic alloy
JPH0238520A (en) Manufacture of fe-base soft-magnetic alloy and magnetic core
JPS6151028B2 (en)
JPS6021328A (en) Production of light-gauge high silicon steel strip having (100) <oki> texture
JPS6044383B2 (en) Amorphous alloy for magnetic heads
JP3058654B2 (en) Ultra-microcrystalline alloy and method for producing the same