JPS6256204B2 - - Google Patents

Info

Publication number
JPS6256204B2
JPS6256204B2 JP20999081A JP20999081A JPS6256204B2 JP S6256204 B2 JPS6256204 B2 JP S6256204B2 JP 20999081 A JP20999081 A JP 20999081A JP 20999081 A JP20999081 A JP 20999081A JP S6256204 B2 JPS6256204 B2 JP S6256204B2
Authority
JP
Japan
Prior art keywords
ribbon
annealing
steel ribbon
silicon steel
rapidly cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20999081A
Other languages
Japanese (ja)
Other versions
JPS58113319A (en
Inventor
Hiroshi Shishido
Isao Ito
Hiroshi Shimanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20999081A priority Critical patent/JPS58113319A/en
Publication of JPS58113319A publication Critical patent/JPS58113319A/en
Publication of JPS6256204B2 publication Critical patent/JPS6256204B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、磁気特性の優れた高珪素薄帯の製造
方法に関し、特に本発明は、溶鋼からの直接製板
法によつて得られた珪素鋼薄帯に圧延ならびに焼
鈍を施すことによる磁気特性の優れた高珪素薄帯
の製造方法に関するものである。 一方向性珪素鋼帯は、{110}面を鋼帯の平行面
として、磁化容易軸である<001>方向が鋼帯長
手方向に揃つていることが特徴である。この為軟
磁気特性が極めて優れさらに低鉄損を有する為
に、電力用トランスや小型トランス、巻鉄芯等の
素材として大量に使用されている。従つて、実際
にトランス等に利用した場合のエネルギーロスが
少く、トランス等の使用者側からすれば、最近の
省エネルギー的見地と相俟つて、極めて望ましい
ことであるといえる。しかしながら製造者側にと
つて、その製造方法は、近代のより進んだ工業工
程をもつてしても複雑であり、コスト上昇はまぬ
がれ得ない処であり、この点での省エネルギーを
実現することも、国家的見地からも重要な課題で
ある。 他方、上記に示すエネルギー消費型製造方法に
代つて、最近溶鋼からの直接製板法によつて、珪
素鋼薄帯を製造する技術が開発され始めてきた。
この方法は、特定の成分を有する溶鋼を所定形状
の噴出口を有するノズルから、高速で移動する冷
却体の冷却面上に射出して急速冷却することによ
り、直ちに20〜500μm厚の鋼薄帯を製造するこ
とが出来る。この方法によれば、溶鋼から1工程
経ることによつて成品あるいは半成品を得ること
が可能である。このことは、先の複雑な工程によ
つて製造される一方向性珪素鋼帯に比べて、極め
て単純な工程であるので、コスト低下の点でも、
省エネルギーの観点からも、優れて有効な方法と
いうことができる。 しかしながら、上記方法によつて製造された薄
帯をそのまま使用した場合、用途によつては十分
であるが、低鉄損を要求する鉄芯素材として使用
する場合には、特性的に不十分である。 従来、溶鋼を急速冷却して、直接薄帯を製造す
る場合、{100}面が薄帯面に平行で、<001>方向
が薄帯の法線方向、すなわち薄帯厚み方向に平行
になつていることが知られている。勿論溶鋼の急
速冷却時の条件の相違、すなわち先述の射出溶鋼
の流量、流速や、冷却体の移動冷却面の移動速度
等によつて、薄帯の面、長手軸方向に対して、
{110}面<001>方向が約20゜位の角度の分散を
もつことはありうる。しかしこのような珪素鋼薄
帯をそのまま面内100である材料として用いて
もよいが、この材料の磁気特性は低級無方向性珪
素鋼帯の磁気特性と同等位にしかならないという
不利がある。 本発明の出願人は特開昭56−87627号により溶
鋼から直接製板法により得た薄帯を1050〜1300℃
の温度範囲内で焼鈍して磁気特性を向上させ、電
力トランス等の素材として使用することができる
ことを開示した。しかしながら電力トランス等の
エネルギーロスをさらに低減させるためには、上
記焼鈍後の集合組織を現行の一方向性珪素鋼板の
ように{110}<001>方位に集積させる必要があ
るが、従来このように集積させる手段は知られて
いなかつた。 本発明は、珪素鋼溶湯を冷却体の移動冷却面に
噴出させ急冷、凝固させてなる薄帯から{110}<
001>の集合組織を有する磁気特性の優れた薄帯
を製造する方法を提供することを目的とするもの
であり、特許請求の範囲記載の方法を提供するこ
とによつて、前記目的を達成することができる。 次に本発明を詳細に説明する。 本発明者らは製造工程を煩雑化しない範囲で必
要に応じて酸洗、圧延などの前処理の後に焼鈍を
組合せることによつて磁気特性向上を計ることが
出来ることを新規に知見した。すなわち薄帯の長
手方向に{110}<001>方位を揃えることのでき
る新規な手段を施すことによつて磁気特性を優れ
たものとすることができることを知見した。 本発明によれば、先述の方法によつて製造され
た珪素鋼急冷薄帯について、40〜80%の圧下率範
囲で圧延を施して薄帯長手方向に圧延集合組織を
形成することによつて可能とすることができる。
この場合、通常の冷間圧延を施した場合、比較的
低い圧下率で薄帯長手方向に{100}<110>を形
成してしまい、それ以上の圧延においては、上記
{100}<110>方位を圧延することと同じになつて
しまい、最終的な集合組織も{100}<110>のま
まで、引きつづき焼鈍してもそのままの方位で磁
気特性が大巾に向上するには至らない。しかしな
がら、上記初期方位をもつ素材に対して熱間〜温
間圧延を加えると、再結晶〜回復と相俟つて結晶
の辷りは、冷間圧延と異なつて最終圧延方位を40
〜95%の圧下率範囲で{112}<111>を主方位と
しわずかの{110}<001>を副方位とする集合組
織が形成される。このように、高い温度で圧延を
加えることにより、珪素鋼急冷薄帯の長手方向に
集合組織を生成することができる。しかしなが
ら、この圧延だけによつて磁気特性向上を十分に
計ることはできない。前記向上を達成するために
は{110}<001>方位の2次再結晶をなさしめる
必要がある。この為には1000〜1300℃の温度範囲
にて、仕上焼鈍を施す必要がある。ただし、この
焼鈍においては、焼鈍雰囲気を適切にすることが
重要である。すなわち雰囲気を減圧〜真空にする
ことによつて、上記2次再結晶を効率よく行うこ
とができる。又、従来の一方向性珪素鋼板を製造
する際に行われていた2次再結晶が起る前段階で
の1次再結晶粒成長を抑制することも重要であ
り、この為にボツクス焼鈍の場合、仕上焼鈍前に
珪素鋼薄帯に剥離剤を塗布し、この剥離剤に硫黄
等の粒界偏析し易い元素を添加して塗布した後、
1000〜1300℃で仕上焼鈍することも{110}<001
>方位の発達にはきわめて有効である。 なお、連続焼鈍の場合には、コイル状のまま行
う上記焼鈍方法とは異なり、いわゆる板同志の焼
き付きが起らないので、剥離剤の塗布は不要であ
る。従つて、連続焼鈍方法の場合、こうした公知
の処理は通常行わない。 次に本発明を製造工程順に説明する。 Si2〜8%の珪素鋼を溶鋼状態にしておいて、
円孔あるいは矩形スリツト状のノズルより射出
し、回転する双ロールあるいは単ロール面上とか
移動するベルト上において103℃/sec以上の速度
で急速冷却して20〜500μm厚の珪素鋼帯を生成
する。このとき薄帯の巾は、先述したノズルの形
状によつて任意の巾に調整することが出来る。こ
のままでも電磁鋼帯として使用することができる
が、その用途は著しく限定される。そこで上記の
方法によつて製造した急冷薄帯を1000〜1300℃の
温度範囲内で焼鈍することによつて、薄帯の結晶
粒径を粗大化させることにより磁気特性を改良す
ることができる。従来、この処理によつて優れた
磁気特性を示すことが知られるが、本発明者等は
さらに低鉄損を有する高級珪素鋼薄帯の製造方法
に想到して本発明を完成するに致つたのである。 上記方法によつて製造した薄帯に対して1000〜
1300℃の温度に加熱しながら40〜95%の範囲の圧
下率で圧延を施す。この圧延により圧延集合組織
を圧延方向に尖鋭化すると共に、Si4%以上と高
い珪素鋼帯であつても、その加工を容易にするこ
とができるという特徴が本発明にはある。 また圧下率は、溶鋼を急冷にして製造したとき
のデンドライト方位のずれによつて異なつてくる
が、薄帯の平面がほぼ100面で板面法線方向と
<101>軸とのずれがほぼ0度である場合で、圧
延時の温度にもよるが、大体60〜95%の圧下率で
あり、面法線方向の100軸のずれが45度に近い
場合、大体40〜85%の圧下率で{112}<111>を
主方位として{110}<001>を副方位とする圧延
集合組織を生成することが出来る。 以上に示すようにして2次再結晶にとつて必要
な条件をそなえた珪素鋼薄帯をコイル状にまいて
最終仕上焼鈍を施す。コイル状にまく場合、コイ
ル層間に剥離剤として、アルミナやMgOを塗布
することができる。 薄帯面に110面を揃える場合焼鈍雰囲気を減
圧下で行うことが有効である。すなわち第1図に
最終焼鈍後の再結晶集合組織の{110}面集積を
強化する焼鈍温度と雰囲気圧の関係を示す。焼鈍
雰囲気の真空度の上昇と共に、薄帯面を占める
{110}面の割合は増加することが分る。また、
{110}が50%以上占める焼鈍温度も真空度の上昇
と共に下降することが分る。 すなわち、本発明の主旨とする{110}面の集
積度を向上させるためには焼鈍温度は第1図中の
直線より高い温度に設定する必要がある。第1図
中の直線は、近似的にT=alogV+b(ここでT
は焼鈍温度(℃)、Vは真空度(Torr)を表わ
し、a,bは定数である)で表わされるが、第1
図からVの好適範囲(10-4≦V≦1)において、
T=50logV+1300(℃)となるので、本発明に
おいて好適な焼鈍温度TAはTA≧50logV+1300
で示される。 このときの磁気特性は、第2図に示すように保
磁力が焼鈍雰囲気の真空度の上昇と共に低下して
良くなることが分る。真空度は1×10-4以下にし
ても磁気特性はさほど有利になるわけではなく、
むしろ、製造コストを下げる点では不利になるば
かりである。 なお、第2図において、焼鈍温度が1100℃より
も1200℃の場合の方で保磁力Hcが改善されるの
は、1200℃では結晶粒の粗大化がより進んだため
であり、また焼鈍雰囲気(Torr)が低下すると
Hcが改善されるのは第3図に示すように{110}
面が増加するためである。 またさらに薄帯面に{110}面を揃える為に
は、最終焼鈍時の酸素ポテンシヤルを制御して焼
鈍することによつても可能である。最終焼鈍雰囲
気の露点を室温から低い方に変えて、1200℃で焼
鈍した場合の雰囲気中の酸素体積率と薄帯面のX
線強度との関係を第3図に示す。体心立方金属に
おいて、原子の並び方により{110}面と{100}
面とでは原子の稠密度が異なるため、例えば
Trans.Metall.Soc.AIME218(1960)914にて
WalterとDunnが示したように、{110}面と
{100}面とでは表面エネルギーが異なる。他方、
焼鈍雰囲気中の微量の酸素は、結晶面に吸着して
結晶面の表面エネルギーを低下させるように働
く。第3図は、この現象を示したもので、酸素体
積率が小さい場合は、多量の酸素分子が{100}
面に吸着して{100}面の結晶粒が増加するが、
酸素分子が多い場合は{110}面の結晶粒が増加
する。この結晶粒の数によりX線強度が異なる。
同図より1.6×10-3%以下の酸素体積率になると
{110}面強度は{100}面強度より強くなり、こ
の酸素体積率より酸素が多いと{110}面強度は
{100}面強度より弱くなることがわかる。従つて
{110}面を多く含む薄帯製造の為の焼鈍雰囲気は
1.6×10-3%以下で行うことが必要である。 このように、珪素鋼の急冷薄帯について高い温
度で加熱圧延することによつて、集合組織を圧延
方向に尖鋭化させ、雰囲気を選んで焼鈍すること
により、圧延方向に{110}<001>方位の2次再
結晶粒を集積させることによつて、優れた磁気特
性を有する電磁鋼板用薄帯を製造することが出来
る。 次に本発明を実施例について説明する。 実施例 Si6.5%、Mn0.1%、P0.05%、C0.001%を含有
し、残部Feよりなる溶鋼から300μm厚の薄帯を
直接急冷することによつて作り、この薄帯を980
℃に加熱しながら直ちに圧延した。圧延途中で、
温度が800℃以下に下降した場合には、980℃迄再
加熱を1分位で行ないながら100μm厚に圧延し
た。その後脱脂を行い、アルミナをスラリー状に
して鋼板に塗布して、約200℃で乾燥させて水分
を蒸発させる。その後ただちにコイル状に巻き込
んでBox炉中に入れて、1100℃及び1200℃で5時
間の真空焼鈍を施した。真空度を変えて焼鈍した
ときの保磁力(Bm測定磁束密度1.0Tのときの)
結果を下記の表に示す。
The present invention relates to a method for producing a high-silicon ribbon with excellent magnetic properties, and in particular, the present invention relates to a method for producing a high-silicon ribbon with excellent magnetic properties, and in particular, the present invention relates to a method for manufacturing a high-silicon steel ribbon with excellent magnetic properties. The present invention relates to a method for producing an excellent high-silicon ribbon. A unidirectional silicon steel strip is characterized in that the <001> direction, which is the axis of easy magnetization, is aligned in the longitudinal direction of the steel strip with {110} planes being parallel surfaces of the steel strip. Because of its excellent soft magnetic properties and low core loss, it is used in large quantities as a material for power transformers, small transformers, wound iron cores, etc. Therefore, when actually used in transformers and the like, energy loss is small, and from the viewpoint of users of transformers and the like, this is extremely desirable in conjunction with recent energy saving considerations. However, for manufacturers, the manufacturing method is complex even with modern, more advanced industrial processes, and costs are bound to rise, and it is difficult to realize energy savings in this regard. This is an important issue from a national perspective as well. On the other hand, instead of the energy-consuming manufacturing method described above, a technology has recently begun to be developed for manufacturing silicon steel ribbon by a direct sheet manufacturing method from molten steel.
In this method, molten steel having a specific composition is injected from a nozzle with a predetermined spout onto the cooling surface of a cooling body moving at high speed, and is rapidly cooled. can be manufactured. According to this method, a finished product or a semi-finished product can be obtained from molten steel through one process. This is an extremely simple process compared to the previously mentioned unidirectional silicon steel strip, which is manufactured using a complicated process, so it also reduces costs.
It can be said that this method is excellent and effective from the viewpoint of energy saving. However, when the ribbon produced by the above method is used as it is, it is sufficient for some uses, but when used as an iron core material that requires low core loss, its characteristics are insufficient. be. Conventionally, when molten steel is rapidly cooled to directly produce a ribbon, the {100} plane is parallel to the ribbon surface, and the <001> direction is parallel to the normal direction of the ribbon, that is, parallel to the ribbon thickness direction. It is known that Of course, due to differences in the conditions during rapid cooling of molten steel, that is, the flow rate and velocity of the injected molten steel mentioned above, the moving speed of the moving cooling surface of the cooling body, etc.,
It is possible that the {110} plane <001> direction has an angular dispersion of about 20°. However, although such a silicon steel ribbon may be used as it is as a material with in-plane 100, there is a disadvantage that the magnetic properties of this material are only comparable to those of a low-grade non-oriented silicon steel strip. The applicant of the present invention disclosed in Japanese Unexamined Patent Application Publication No. 56-87627 that a thin ribbon obtained from molten steel by a direct sheet manufacturing method was heated to 1050 to 1300℃.
It has been disclosed that the magnetic properties can be improved by annealing within the temperature range of 200 to 3000, and that it can be used as a material for power transformers and the like. However, in order to further reduce energy loss in power transformers, etc., it is necessary to make the texture after annealing accumulate in the {110} <001> direction, as in the current unidirectional silicon steel sheet. There was no known means of accumulating it. The present invention utilizes {110}<
The object of the present invention is to provide a method for manufacturing a thin ribbon having excellent magnetic properties and having a texture of be able to. Next, the present invention will be explained in detail. The present inventors have newly discovered that magnetic properties can be improved by combining pretreatment such as pickling and rolling with annealing as necessary without complicating the manufacturing process. In other words, it has been found that excellent magnetic properties can be achieved by applying a novel means that can align the {110}<001> orientation in the longitudinal direction of the ribbon. According to the present invention, the silicon steel quenched ribbon produced by the method described above is rolled at a reduction rate of 40 to 80% to form a rolling texture in the longitudinal direction of the ribbon. It can be made possible.
In this case, if normal cold rolling is performed, {100}<110> will be formed in the longitudinal direction of the ribbon at a relatively low rolling reduction, and in further rolling, the above {100}<110> will be formed. The orientation becomes the same as rolling, and the final texture remains {100} <110>, and even if it is continued annealed, the magnetic properties will not improve significantly with the same orientation. . However, when hot-to-warm rolling is applied to a material with the above initial orientation, crystal slippage occurs in combination with recrystallization and recovery, which is different from cold rolling and changes the final rolling orientation to 40.
In the rolling reduction range of ~95%, a texture with {112}<111> as the main orientation and a slight {110}<001> as the minor orientation is formed. In this manner, by applying rolling at a high temperature, a texture can be generated in the longitudinal direction of the silicon steel quenched ribbon. However, it is not possible to sufficiently improve the magnetic properties by this rolling alone. In order to achieve the above improvement, it is necessary to perform secondary recrystallization in the {110}<001> orientation. For this purpose, it is necessary to perform final annealing at a temperature range of 1000 to 1300°C. However, in this annealing, it is important to make the annealing atmosphere appropriate. That is, the secondary recrystallization can be efficiently performed by setting the atmosphere to a reduced pressure to vacuum. It is also important to suppress primary recrystallization grain growth in the stage before secondary recrystallization, which was performed in the production of conventional unidirectional silicon steel sheets, and for this purpose, box annealing is In this case, a release agent is applied to the silicon steel ribbon before final annealing, and an element that tends to segregate at grain boundaries, such as sulfur, is added to this release agent and then applied.
Finish annealing at 1000-1300℃ is also possible {110}<001
>Very effective for developing orientation. In addition, in the case of continuous annealing, unlike the above-mentioned annealing method in which the coils are annealed, so-called sticking of the plates to each other does not occur, so there is no need to apply a release agent. Therefore, in the case of continuous annealing methods, such known treatments are usually not carried out. Next, the present invention will be explained in order of manufacturing steps. Silicon steel with Si2 to 8% is made into a molten steel state,
Injected through a circular hole or rectangular slit nozzle and rapidly cooled at a rate of 10 3 °C/sec or more on rotating twin rolls or a single roll surface or a moving belt to produce a silicon steel strip with a thickness of 20 to 500 μm. do. At this time, the width of the ribbon can be adjusted to any desired width depending on the shape of the nozzle described above. Although it can be used as an electromagnetic steel strip as it is, its uses are extremely limited. Therefore, by annealing the quenched ribbon produced by the above method within a temperature range of 1000 to 1300°C, the magnetic properties can be improved by coarsening the crystal grain size of the ribbon. Conventionally, it has been known that this treatment exhibits excellent magnetic properties, but the present inventors came up with a method for producing high-grade silicon steel ribbon with even lower core loss, and completed the present invention. It is. 1000~ for the ribbon produced by the above method
Rolling is performed at a reduction rate in the range of 40 to 95% while heating to a temperature of 1300°C. The present invention is characterized in that the rolling texture is sharpened in the rolling direction by this rolling, and even a silicon steel strip with a high Si content of 4% or more can be processed easily. In addition, the rolling reduction rate varies depending on the misalignment of the dendrite orientation when the molten steel is rapidly cooled, but if the plane of the ribbon is approximately 100 planes, the misalignment between the normal direction of the plate surface and the <101> axis is approximately When the temperature is 0 degrees, the reduction rate is approximately 60 to 95%, depending on the temperature during rolling, and if the deviation of the 100 axis in the surface normal direction is close to 45 degrees, the reduction is approximately 40 to 85%. It is possible to generate a rolling texture with {112}<111> as the main orientation and {110}<001> as the minor orientation. A silicon steel ribbon having the necessary conditions for secondary recrystallization as described above is wound into a coil and subjected to final annealing. When coiled, alumina or MgO can be applied as a release agent between the coil layers. When aligning the 110 planes on the ribbon surface, it is effective to perform the annealing in a reduced pressure atmosphere. That is, FIG. 1 shows the relationship between the annealing temperature and atmospheric pressure that strengthens the {110} plane accumulation of the recrystallized texture after the final annealing. It can be seen that as the degree of vacuum in the annealing atmosphere increases, the proportion of {110} planes occupying the ribbon surface increases. Also,
It can be seen that the annealing temperature, where {110} accounts for 50% or more, also decreases as the degree of vacuum increases. That is, in order to improve the degree of integration of {110} planes, which is the gist of the present invention, it is necessary to set the annealing temperature higher than the straight line in FIG. The straight line in Figure 1 is approximated by T=alogV+b (where T
is the annealing temperature (°C), V is the degree of vacuum (Torr), and a and b are constants), but the first
From the figure, in the preferred range of V (10 -4 ≦V≦1),
Since T=50logV+1300 (℃), the suitable annealing temperature T A in the present invention is T A ≧50logV+1300
It is indicated by. It can be seen that the magnetic properties at this time become better as the coercive force decreases as the degree of vacuum in the annealing atmosphere increases, as shown in FIG. Even if the degree of vacuum is lower than 1 × 10 -4 , the magnetic properties will not be much advantageous.
In fact, it is only disadvantageous in terms of reducing manufacturing costs. In Figure 2, the reason why the coercive force Hc is improved when the annealing temperature is 1200°C than 1100°C is because the coarsening of crystal grains has progressed more at 1200°C, and also because the annealing atmosphere When (Torr) decreases
As shown in Figure 3, Hc is improved by {110}
This is because the surface area increases. Further, in order to align the {110} planes on the ribbon surface, it is also possible to perform annealing by controlling the oxygen potential during the final annealing. Oxygen volume fraction in the atmosphere and X of the ribbon surface when annealing is performed at 1200℃ with the dew point of the final annealing atmosphere changed from room temperature to a lower one.
The relationship with line strength is shown in Figure 3. In body-centered cubic metals, depending on the arrangement of atoms, there are {110} and {100} planes.
Since the dense density of atoms is different from the surface, for example,
In Trans.Metall.Soc.AIME218 (1960) 914
As shown by Walter and Dunn, the {110} and {100} planes have different surface energies. On the other hand,
A trace amount of oxygen in the annealing atmosphere acts to reduce the surface energy of the crystal planes by adsorbing them to the crystal planes. Figure 3 shows this phenomenon. When the oxygen volume fraction is small, a large amount of oxygen molecules {100}
The number of crystal grains on the {100} plane increases due to adsorption to the plane, but
When there are many oxygen molecules, the number of {110} plane crystal grains increases. The X-ray intensity varies depending on the number of crystal grains.
From the same figure, when the oxygen volume fraction is less than 1.6×10 -3 %, the {110} surface strength becomes stronger than the {100} surface strength, and when the oxygen content is higher than this oxygen volume fraction, the {110} surface strength becomes {100} surface strength. It can be seen that it becomes weaker than the strength. Therefore, the annealing atmosphere for manufacturing ribbon containing many {110} planes is
It is necessary to do this at 1.6×10 -3 % or less. In this way, by heating and rolling a silicon steel ribbon at a high temperature, the texture is sharpened in the rolling direction, and by annealing in a selected atmosphere, the texture becomes {110}<001> in the rolling direction. By accumulating oriented secondary recrystallized grains, it is possible to produce a ribbon for electrical steel sheets having excellent magnetic properties. Next, the present invention will be explained with reference to examples. Example A 300 μm thick ribbon was made by directly quenching molten steel containing 6.5% Si, 0.1% Mn, 0.05% P, and 0.001% C, with the balance being Fe. 980
It was immediately rolled while heating to ℃. During rolling,
When the temperature fell below 800°C, it was reheated to 980°C for about 1 minute and rolled to a thickness of 100 μm. After that, degreasing is performed, and the alumina is made into a slurry and applied to the steel plate, and dried at approximately 200 degrees Celsius to evaporate the moisture. Thereafter, it was immediately rolled into a coil, placed in a Box furnace, and vacuum annealed at 1100°C and 1200°C for 5 hours. Coercive force when annealing with different degrees of vacuum (when Bm measurement magnetic flux density is 1.0T)
The results are shown in the table below.

【表】 以上本発明によれば、磁気特性の優れた高珪素
薄帯を製造することができる。
[Table] According to the present invention, a high-silicon ribbon with excellent magnetic properties can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、焼鈍温度と焼鈍雰囲気を変えた場合
の110面形成の傾向を示す図、第2図は、1100
℃及び1200℃×5hrの焼鈍を施したときの焼鈍雰
囲気と保磁力の関係を示す図、第3図は、酸素体
積%と、110,100面のX線強度との関係を
示す図である。
Figure 1 is a diagram showing the tendency of 110 plane formation when annealing temperature and annealing atmosphere are changed, and Figure 2 is a diagram showing the tendency of 110 plane formation when annealing temperature and annealing atmosphere are changed.
Figure 3 shows the relationship between the annealing atmosphere and coercive force when annealing is performed at 1200°C and 5 hours. Figure 3 is a diagram showing the relationship between oxygen volume % and X-ray intensity of the 110,100 plane .

Claims (1)

【特許請求の範囲】 1 Si2〜8%を含み、残部実質的にFeよりなる
溶鋼をノズルより冷却体の移動冷却面上に射出さ
せ、急冷、凝固させて鋼薄帯を作成し、次いで焼
鈍を施す高珪素鋼薄帯の製造方法において、前記
急冷、凝固させてなる鋼薄帯に800〜1300℃の温
度範囲内で40〜95%の圧下率範囲内の等周速もし
くは異周速圧延を施した後に1000〜1300℃の温度
範囲内で、かつ下記(1)式で示す真空度のもとで、
(1)式で示す真空度より算出される下記(2)式で示す
温度にて、最終焼鈍を施すことを特徴とする
{100}<001>方位が結晶粒の最終方位として鋼薄
帯長手方向に集積した磁気特性の優れた高珪素鋼
薄帯の製造方法。 10-4≦V≦1(Torr) ……(1) TA≧50logV+1300(℃) ……(2) 但し、Vは真空度(Torr)を表わす。 2 Si2〜8%を含み、残部実質的にFeよりなる
溶鋼をノズルより冷却体の移動冷却面上に射出さ
せ、急冷、凝固させて鋼薄帯を作成し、次いで焼
鈍を施す高珪素鋼薄帯の製造方法において、前記
急冷、凝固させてなる鋼薄帯に800〜1300℃の温
度範囲内で40〜95%の圧下率範囲内の等周速もし
くは異周速圧延を施した後に、1.6×10-3(vol
%)以下の酸素分圧雰囲気のもとで1000〜1300℃
の温度範囲内で最終焼鈍を施すことを特徴とする
{100}<001>方位が結晶粒の最終方位として鋼薄
帯長手方向に集積した磁気特性の優れた高珪素鋼
薄帯の製造方法。
[Claims] 1 Molten steel containing 2 to 8% Si and the remainder substantially Fe is injected from a nozzle onto the moving cooling surface of a cooling body, rapidly cooled and solidified to create a steel ribbon, and then annealed. In the method for producing a high silicon steel ribbon, the rapidly cooled and solidified steel ribbon is rolled at a constant circumferential speed or at different circumferential speeds within a temperature range of 800 to 1300°C and a reduction rate of 40 to 95%. After applying, within the temperature range of 1000 to 1300℃ and under the degree of vacuum shown by the following formula (1),
The final annealing is performed at the temperature shown by the following equation (2), which is calculated from the degree of vacuum shown by equation (1). A method for manufacturing high-silicon steel ribbon with excellent magnetic properties that is integrated in the direction. 10 -4 ≦V≦1 (Torr) ... (1) T A ≧50logV + 1300 (℃) ... (2) However, V represents the degree of vacuum (Torr). 2 High-silicon steel thin steel containing 2 to 8% Si and the remainder substantially Fe is injected from a nozzle onto the moving cooling surface of a cooling body, rapidly cooled and solidified to create a steel thin strip, and then annealed. In the method for manufacturing a strip, the rapidly cooled and solidified steel ribbon is rolled at a constant circumferential speed or at different circumferential speeds within a temperature range of 800 to 1300°C and a rolling reduction range of 40 to 95%, and then rolled at 1.6 ×10 -3 (vol
%) under oxygen partial pressure atmosphere below 1000~1300℃
A method for producing a high-silicon steel ribbon with excellent magnetic properties in which the {100}<001> orientation is concentrated in the longitudinal direction of the steel ribbon as the final orientation of crystal grains, the method comprising performing final annealing within a temperature range of .
JP20999081A 1981-12-28 1981-12-28 Manufacture of high-silicon light-gauge steel strip superior in magnetic characteristic Granted JPS58113319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20999081A JPS58113319A (en) 1981-12-28 1981-12-28 Manufacture of high-silicon light-gauge steel strip superior in magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20999081A JPS58113319A (en) 1981-12-28 1981-12-28 Manufacture of high-silicon light-gauge steel strip superior in magnetic characteristic

Publications (2)

Publication Number Publication Date
JPS58113319A JPS58113319A (en) 1983-07-06
JPS6256204B2 true JPS6256204B2 (en) 1987-11-25

Family

ID=16582026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20999081A Granted JPS58113319A (en) 1981-12-28 1981-12-28 Manufacture of high-silicon light-gauge steel strip superior in magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS58113319A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179724A (en) * 1984-09-28 1986-04-23 Nippon Kokan Kk <Nkk> Manufacture of thin plate of high-silicon iron alloy
US10364477B2 (en) * 2015-08-25 2019-07-30 Purdue Research Foundation Processes for producing continuous bulk forms of iron-silicon alloys and bulk forms produced thereby

Also Published As

Publication number Publication date
JPS58113319A (en) 1983-07-06

Similar Documents

Publication Publication Date Title
JPS6250529B2 (en)
KR940008933B1 (en) Method of producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
JPH03219020A (en) Production of nonoriented silicon steel sheet
JPH08188824A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPS62240714A (en) Production of electrical steel sheet having excellent magnetic characteristic
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
Littmann Development of improved cube-on-edge texture from strand cast 3pct silicon-iron
JPH05306438A (en) Nonoriented electrical steel sheet extremely excellent in magnetic property and its manufacture
JPS6256204B2 (en)
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
US3586545A (en) Method of making thin-gauge oriented electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPS5853694B2 (en) Method for manufacturing in-plane non-oriented high silicon steel ribbon with excellent magnetic properties
JPS62180015A (en) Manufacture of grain oriented thin electrical sheet having low iron loss and high magnetic flux density
JP4320793B2 (en) Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method
JP2562259B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2002363646A (en) Method for producing specular grain oriented silicon steel sheet having no need of decarburizing annealing
JP2000309858A (en) Silicon steel sheet and its manufacture
JPH02301571A (en) Production of grain-oriented electrical steel sheet having uniform glassy coating film
JPS59104429A (en) Preparation of non-directional electromagnetic steel strip
JPH05279740A (en) Manufacture of high silicon nonoriented steel sheet excellent in magnetic property
JPS6050117A (en) Method for annealing hot rolled coil of nonoriented electrical steel
JP2724091B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties