JPH0325123B2 - - Google Patents

Info

Publication number
JPH0325123B2
JPH0325123B2 JP20330983A JP20330983A JPH0325123B2 JP H0325123 B2 JPH0325123 B2 JP H0325123B2 JP 20330983 A JP20330983 A JP 20330983A JP 20330983 A JP20330983 A JP 20330983A JP H0325123 B2 JPH0325123 B2 JP H0325123B2
Authority
JP
Japan
Prior art keywords
light
plant
concentration
illuminance
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20330983A
Other languages
Japanese (ja)
Other versions
JPS6094025A (en
Inventor
Akira Ikeda
Shigeki Nakayama
Kenji Ezaki
Toshiji Ishii
Isao Itakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20330983A priority Critical patent/JPS6094025A/en
Priority to CA000466401A priority patent/CA1269538A/en
Priority to US06/665,212 priority patent/US4817332A/en
Priority to DE8484113019T priority patent/DE3485108D1/en
Priority to AT84113019T priority patent/ATE67642T1/en
Priority to EP84113019A priority patent/EP0140361B1/en
Publication of JPS6094025A publication Critical patent/JPS6094025A/en
Priority to US07/266,610 priority patent/US5174793A/en
Publication of JPH0325123B2 publication Critical patent/JPH0325123B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は、人工環境のもとで植物の生長を促
進する植物育成方法および装置に関し、特に光お
よびCO2濃度に関するものである。 〔従来技術〕 植物の育成環境条件を制御することにより植物
の生長を促進し、植物を工業的に生産しようとす
る新しい植物育成方法およびそのシステムが工夫
されている。 植物は一般に、葉において水とCO2を基本と
し、光エネルギが加えられることにより有機物を
生産し(光合成)、その一部は個体維持のための
エネルギとして消費され、残りは葉や根などの器
官に分配、蓄積され、各器官は成長していく。こ
のような植物において、光、CO2濃度、温度など
の環境条件を制御してその生長を著しく促進する
ことが可能であり、その結果、土地の生産性が飛
躍的に向上するという効果がもたらされ、植物の
工場生産が可能になつた。 この場合、光源として太陽光を利用すれば省エ
ネルギになると考えられるが、季節的な気象変化
により光量が変動し、それに伴つて温度、湿度な
どの環境条件が変化するため、このような変動環
境下の植物の反応は複雑であり植物の周年的計画
生産が困難となる。また一定の環境条件を作るた
めに巨大な空調コストが必要となり、結局、経済
的でないという問題があつた。 そこで、周年的計画生産を目指して、太陽光の
代わりに一定強度の人工光源を用いて植物の生長
を促進しようとする工夫がなされている。この場
合、他の環境要因も一定条件に制御しやすいとい
う点があるが、照明電力が膨大となり経済的でな
いという問題があつた。 〔発明の概要〕 この発明は上記のような従来の方法の欠点を除
去するためになされたもので、植物体の上方から
のみ光を照射した場合の光飽和照度の1/7〜1/2の
低照度の光を、上記植物体の周方向から同時に照
射すると共に、CO2濃度を大気中濃度より高く保
つようにすることにより、極めて低照度で上記植
物体の生長を促進することができる植物育成方法
および装置を提供することを目的としている。 〔発明の実施例〕 以下、図を用いてこの発明をさらに詳しく説明
する。 植物の生長を促進する有効な方法として、育成
環境の光照度を高める事が周知されている。第1
図はサラダ菜を一例として、生長速度の指標とな
る見かけ光合成速度(相対値)と照度(Klux)
との関係を示したものである。これは植物体に光
を上方から照射したもので、温度は20℃、湿度は
80%、CO2濃度は1200ppm、日長は12時間での結
果である。図から明らかなように、植物には一般
に、照度を増大しても光合成度が増加しない限界
点(光飽和点)が存在し、生長を促進するために
は、この光飽和点付近の照度で照射するのが有効
と考えられる。従来のように光を上方から照射し
た場合、サラダ菜における光飽和照度は第1図か
ら20Klux程度となる。例えば、照度を20Klux、
日長を24時間、他の条件を上記第1図の条件と同
じとした場合、サラダ菜は10日間で約20倍の重量
に生長する。光を周方向から同時に照射すること
により、上記光飽和照度よりも低い照度で植物の
生長を促進しようというのがこの発明の主な目的
である。 植物の生長と環境要因との関係は複雑であり、
充分に明らかにされておらず、これらの関係を調
べる研究に努力が払われている。 植物は生長に伴い葉数および葉の大きさが増大
し、さらには群落葉を持つ状態となる。このよう
な状態において、従来のように植物体に光を上方
から照射した場合、葉の光吸収率が80〜90%と高
いため、群落内の光強度は著しい分布を持つ。特
に最下葉では光強度の低下により光合成が大幅に
低減し、ついには枯死していく。したがつて、こ
のような群落葉での生長に対して従来のように光
を上方から照射することは、植物の生産性から見
て光エネルギの利用効率が低く、有効でない。さ
らに、例えば葉の両面から光を照射した場合、群
落葉の生長がどのようになるかは推測の域を出な
いが、受光面積が増え、結果として光合成速度が
促進されるであろうと思われる。ゆえに、植物体
に光を全方向から照射することは、上記群落葉で
の生長に対して有効であると考えられる。 第2図はこの発明を実証する実験に用いた植物
育成装置を示す構成図である。図において、10
1は円筒形の植物育成室の外筒であり、内周が例
えばAlなどの反射材102で形成され、反射材
102に沿つて人工光源103が設置されてい
る。104はガラスで形成された内筒であり、外
筒101と共に2重円筒形の植物育成室を構成し
ている。植物体は内筒104内に固定して設置さ
れた栽培ポツト105に植えられ、人工光源10
3により照射されて生長する。この時、植物体に
は周方向から光が照射されることになり、円筒の
上端および下端をのぞいて円筒104内のあらゆ
る方向および場所で均一な照度が得られることが
確認された。人工光源103の放熱はクーラ10
6からの冷風によつて除去される。また、内筒1
04内に導かれる空気は、空調装置201により
予め所定の温度および湿度に調節されて、円筒1
04の下部から導入され上部から排出され、ブロ
ア1により再び空調装置201に戻るというよう
に循環する。CO2はCO2発生装置、例えばCO2
ンベ(図示せず)により循環通路の途中に設けら
れたCO2注入口2から注入される。また、循環通
路には新鮮空気取入れ口3および排出口4を設け
て循環空気の一部を更新する。この際、循環空気
中のCO2濃度を所定の値に保つようにCO2が供給
され、CO2濃度はCO2供給量によつて調節され
る。なお、空調装置201は冷却機202と、ス
プレーノズル203および充填層204を備えた
水スプレー部と、ヒータ205から構成され、空
調装置201に送入された空気は冷ブライン20
6を用いた冷却器202により冷却された後、ポ
ンプ5により貯留水槽207の水がスプレーノズ
ル203に送られ、充填層204で加湿され、そ
の後ヒータ205により加温されて、所定の温度
および湿度に調節される。一方、301は所定濃
度の栄養塩溶液であり、液恒温槽302により所
定の温度に保たれ、ポンプ6により栽培ポツト1
05に送られた後、タンク303に戻る。7は空
気ポンプであり、栄養溶液301はこの空気ポン
プ7によりエアレーシヨンされ、充分な溶存酸素
量が保たれる。 上記の植物育成装置を用い、サラダ菜を一例と
して、照度を3Kluxから15Kluxまで変化させ、
その重量(g)と育成日数(日)との関係を調べ
た。第3図にその結果を示す。この時、CO2濃度
は1200ppm 気温は20℃、栄養塩溶液301の液
温は21℃、相対湿度は80%、風速は0.5m/sec以
下、栄養塩濃度は1.2ミリモー、PH5〜6.5、日長
は24時間であつた。また、人工光源103として
蛍光灯と白熱灯を用いた。この図から明らかなよ
うに従来から予測される結果に反して3Kluxから
15Kluxにおける各照度での生長速度(サラダ菜
の重量と育成日数との関係)に差異が認められ
ず、それぞれ、サラダ菜は10日間で約20倍の重量
に生長することが見出された。この結果、この方
法によれば、上方から光を照射した場合の光飽和
照度(20Klux)の約1/7である3Kluxという低照
度でも従来と同様に植物の生長を促進できること
が見出され、植物の工場生産において最も大きな
問題であつた経済性の問題が解決され、植物の周
年的計画生産が可能となるなど実用上極めて大き
な効果が得られる。 なお、第3図の実験ではCO2濃度は1200ppmと
したが、大気中のCO2濃度(3000ppm前後)の数
倍の500〜2000ppmの範囲とするのが実用的であ
り、経済性と生長速度を考慮して選ぶとよい。 以上で、植物体に光を全方向から連続的に照射
し、炭酸ガス濃度を大気中のそれより高めること
により、常識外の低照度光でも高速栽培でき、結
果として省電力になることを示した。 ここで、さらに上記発明による効果を詳細に説
明する。表はサラダ菜の光合成速度を、光強度、
日長、炭酸ガス濃度を変えて、同様の実験により
調べた結果である。
[Technical Field of the Invention] The present invention relates to a plant growing method and apparatus for promoting plant growth in an artificial environment, and particularly relates to light and CO 2 concentration. [Prior Art] New plant growing methods and systems have been devised to promote plant growth and produce plants industrially by controlling plant growing environmental conditions. Plants generally produce organic matter (photosynthesis) based on water and CO2 in their leaves, and when light energy is added, part of which is consumed as energy for maintaining the individual, and the rest is used in leaves, roots, etc. It is distributed and accumulated in the organs, and each organ grows. It is possible to significantly promote the growth of these plants by controlling environmental conditions such as light, CO 2 concentration, and temperature, which has the effect of dramatically increasing land productivity. This made it possible to produce plants in factories. In this case, it would be possible to save energy by using sunlight as a light source, but the amount of light fluctuates due to seasonal weather changes, and environmental conditions such as temperature and humidity change accordingly. The reactions of plants below are complex, making year-round planned production of plants difficult. In addition, a huge amount of air conditioning costs were required to create certain environmental conditions, which resulted in the problem of being uneconomical. Therefore, with the aim of year-round planned production, efforts have been made to promote plant growth by using artificial light sources of constant intensity instead of sunlight. In this case, it is easy to control other environmental factors to a constant condition, but there is a problem that the lighting power is enormous and it is not economical. [Summary of the Invention] This invention was made to eliminate the drawbacks of the conventional methods as described above. By simultaneously irradiating low-intensity light from the circumferential direction of the plant and maintaining the CO 2 concentration higher than the atmospheric concentration, the growth of the plant can be promoted at extremely low illuminance. The purpose is to provide a method and apparatus for growing plants. [Embodiments of the Invention] Hereinafter, the present invention will be explained in more detail with reference to the drawings. It is well known that increasing the light intensity of the growing environment is an effective method for promoting plant growth. 1st
The figure shows the apparent photosynthetic rate (relative value) and illuminance (Klux), which are indicators of growth rate, using salad vegetables as an example.
This shows the relationship between This is a method in which the plant body is irradiated with light from above, and the temperature is 20°C and the humidity is
80%, CO 2 concentration is 1200 ppm, and photoperiod is 12 hours. As is clear from the figure, plants generally have a limit point (light saturation point) at which the photosynthesis rate does not increase even if the illuminance is increased, and in order to promote growth, the illuminance near this light saturation point must be maintained. Irradiation is considered to be effective. When light is irradiated from above as in the conventional method, the light saturation illuminance on salad vegetables is approximately 20 Klux, as shown in Figure 1. For example, set the illuminance to 20Klux,
When the day length is 24 hours and other conditions are the same as those shown in Figure 1 above, salad greens will grow approximately 20 times their weight in 10 days. The main purpose of this invention is to promote the growth of plants at an illuminance lower than the light saturation illuminance by simultaneously irradiating light from the circumferential direction. The relationship between plant growth and environmental factors is complex;
These relationships are not fully clarified, and efforts are being made to investigate these relationships. As plants grow, the number and size of their leaves increase, and they even become deciduous. Under these conditions, when the plant is irradiated with light from above as in the past, the light absorption rate of the leaves is as high as 80 to 90%, so the light intensity within the community has a significant distribution. Especially in the lowest leaves, photosynthesis is significantly reduced due to the decrease in light intensity, and eventually the plant dies. Therefore, the conventional method of irradiating light from above for growth in such clusters of fallen leaves is not effective in terms of the productivity of plants, as the efficiency of light energy use is low. Furthermore, for example, if light is irradiated from both sides of a leaf, it is only a matter of speculation how the growth of leaf clumps will occur, but it is likely that the light-receiving area will increase and the rate of photosynthesis will be accelerated as a result. . Therefore, it is considered that irradiating the plant body with light from all directions is effective for growth in the above-mentioned leaf litter. FIG. 2 is a configuration diagram showing a plant growing apparatus used in an experiment to demonstrate this invention. In the figure, 10
Reference numeral 1 denotes a cylindrical outer cylinder of a plant growing chamber, the inner circumference of which is formed of a reflective material 102 such as Al, and an artificial light source 103 is installed along the reflective material 102. Reference numeral 104 denotes an inner cylinder made of glass, which together with the outer cylinder 101 constitutes a double cylindrical plant growth chamber. The plant body is planted in a cultivation pot 105 fixedly installed in an inner cylinder 104, and an artificial light source 10
It grows when irradiated by 3. At this time, the plant body was irradiated with light from the circumferential direction, and it was confirmed that uniform illuminance was obtained in all directions and locations within the cylinder 104, except for the upper and lower ends of the cylinder. Heat dissipation of the artificial light source 103 is performed by the cooler 10
It is removed by cold air from 6. In addition, the inner cylinder 1
The air introduced into the cylinder 1 is adjusted in advance to a predetermined temperature and humidity by the air conditioner 201.
The air is introduced from the lower part of the air conditioner 04, discharged from the upper part, and returned to the air conditioner 201 by the blower 1, thereby circulating. CO 2 is injected from a CO 2 inlet 2 provided in the middle of the circulation path by a CO 2 generator, for example a CO 2 cylinder (not shown). The circulation passage is also provided with a fresh air inlet 3 and an outlet 4 to renew a portion of the circulating air. At this time, CO 2 is supplied so as to maintain the CO 2 concentration in the circulating air at a predetermined value, and the CO 2 concentration is adjusted by the amount of CO 2 supplied. The air conditioner 201 is composed of a cooler 202, a water spray section including a spray nozzle 203 and a packed bed 204, and a heater 205.
After being cooled by a cooler 202 using a water heater 6, water in a storage water tank 207 is sent to a spray nozzle 203 by a pump 5, humidified by a packed bed 204, and then heated by a heater 205 to maintain a predetermined temperature and humidity. adjusted to. On the other hand, 301 is a nutrient solution with a predetermined concentration, which is kept at a predetermined temperature by a liquid constant temperature bath 302, and is pumped into the cultivation pot 1 by a pump 6.
After being sent to 05, it returns to tank 303. 7 is an air pump, and the nutrient solution 301 is aerated by this air pump 7 to maintain a sufficient amount of dissolved oxygen. Using the above plant growing device, we change the illumination from 3 Klux to 15 Klux, taking salad vegetables as an example.
The relationship between the weight (g) and the number of growing days (days) was investigated. Figure 3 shows the results. At this time, the CO 2 concentration is 1200ppm, the air temperature is 20℃, the temperature of the nutrient solution 301 is 21℃, the relative humidity is 80%, the wind speed is 0.5 m/sec or less, the nutrient concentration is 1.2 mm, pH 5 to 6.5, day The longest time was 24 hours. Furthermore, a fluorescent lamp and an incandescent lamp were used as the artificial light source 103. As is clear from this figure, contrary to the conventionally predicted results, from 3Klux
It was found that no difference was observed in the growth rate (relationship between the weight of salad greens and the number of growing days) at each illuminance at 15 Klux, and the salad greens grew to approximately 20 times the weight in 10 days. As a result, it was found that this method can promote plant growth as well as in the conventional method even at a low illuminance of 3 Klux, which is approximately 1/7 of the light saturation illuminance (20 Klux) when irradiated with light from above. The economic problem, which was the biggest problem in factory production of plants, has been solved, and it has become possible to produce plants year-round in a planned production manner, resulting in extremely large practical effects. In the experiment shown in Figure 3, the CO 2 concentration was set at 1200 ppm, but it is practical to set it in the range of 500 to 2000 ppm, which is several times the CO 2 concentration in the atmosphere (around 3000 ppm), and is economical and growth rate. It is a good idea to consider this when choosing. The above shows that by continuously irradiating the plant with light from all directions and raising the carbon dioxide concentration higher than that in the atmosphere, high-speed cultivation can be achieved even with unconventional low-intensity light, resulting in power savings. Ta. Here, the effects of the above invention will be further explained in detail. The table shows the photosynthetic rate of salad vegetables, light intensity,
These are the results of a similar experiment with different day length and carbon dioxide concentration.

【表】 実用的な植物生産を考える場合、照明電力の効
率を第1に考慮しなければならないが、同時に生
長速度も重要になる。生長速度が低いと栽培日数
が長くなり、一定の生産量を上げようとすると、
栽培面積が大きくなり設備費が過大になつてしま
う。 表からも明らかなように、照度を高くすると全
ての条件で光合成速度は高くなるが、その効率は
低照度の方が高くなる。これは、低照度にすると
生産に対する照明電力の効率は上がるが、栽培日
数が長くなることを意味する。 さらに、強光および弱光での日長と炭酸ガス濃
度効果を見る。すなわち、炭酸ガス添加による光
合成増加効果は、いづれの日長においても弱光の
方が顕著である。また、日長が長くなることによ
る光合成速度低下率は弱光の方が小さいことがわ
かる。 以上の結果から、炭酸ガスを添加し、かつ低照
度弱光照射の効果がさらに明確になる。 また、第3図ではサラダ菜の場合について示し
たが、他の植物であつてもよく、植物によつて光
飽和照度や周方向から同時に照射すると効果的な
照度も異なり、これらを考慮した結果、光飽和照
度の1/7〜1/2の照度であればよいと思われる。 また、上記植物育成装置では植物育成室10
1,104を円筒形としたが、球形あるいは矩形
であつても同様の結果となる。また、光源として
人工光源103を用いたが、太陽光を利用しても
よい。この場合、光反射板を配置したり、光フア
イバを用いることにより同様の効果を得ることが
できる。 また、この発明で周方向とは、本来、植物体の
前後左右および上下のすべてを意味するが、少な
くとも前後左右および上方から照射すればよい。 〔発明の効果〕 以上のように、この発明によれば、植物体の上
方からのみ光を照射した場合の光飽和照度の1/7
〜1/2の低照度の光を、上記植物体の周方向から
同時に照射すると共に、CO2濃度を大気中濃度よ
り高く保つようにしたので、極めて低照度で上記
植物体の生長を促進することができる効果があ
る。
[Table] When considering practical plant production, the efficiency of lighting power must be considered first, but at the same time, growth rate is also important. If the growth rate is low, the number of cultivation days will be longer, and if you try to increase a certain amount of production,
As the cultivation area increases, equipment costs become excessive. As is clear from the table, increasing the illuminance increases the photosynthetic rate under all conditions, but the efficiency is higher under low illuminance. This means that lower illuminance increases the efficiency of lighting power for production, but increases the number of cultivation days. Furthermore, we will look at the effect of day length and carbon dioxide concentration under strong and weak light. That is, the effect of increasing photosynthesis due to the addition of carbon dioxide gas is more pronounced under weak light at any day length. Furthermore, it can be seen that the rate of decline in photosynthesis rate due to longer day length is smaller in weak light. From the above results, the effect of adding carbon dioxide gas and irradiating with low-intensity weak light becomes even clearer. In addition, although Fig. 3 shows the case of salad greens, other plants may be used, and depending on the plant, the light saturation illuminance and the effective illuminance when irradiated simultaneously from the circumferential direction will differ, and as a result of taking these into consideration, It seems that an illuminance of 1/7 to 1/2 of the light saturation illuminance is sufficient. In addition, in the above plant growing device, the plant growing chamber 10
1,104 is assumed to be cylindrical, but the same result will be obtained even if it is spherical or rectangular. Further, although the artificial light source 103 is used as a light source, sunlight may also be used. In this case, the same effect can be obtained by arranging a light reflecting plate or using an optical fiber. Furthermore, in the present invention, the circumferential direction originally means all of the front, rear, left, right, and upper and lower sides of the plant, but it is sufficient to irradiate at least from the front, rear, left, and right, and from above. [Effects of the Invention] As described above, according to the present invention, 1/7 of the light saturation illuminance when light is irradiated only from above the plant body.
By simultaneously irradiating the plants with ~1/2 low-intensity light from the circumferential direction and keeping the CO 2 concentration higher than the atmospheric concentration, the growth of the plants can be promoted with extremely low illuminance. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光を上方から照射した場合のサラダ菜
の見かけ光合成速度と照度との関係を示す特性
図、第2図はこの発明の植物育成装置を示す構成
図、第3図は光を周方向から同時に照射した場合
のサラダ菜の重量と育成日数との関係を照度3〜
15Kluxについて示す特性図である。 図において、101は2重円筒形植物育成室の
外筒、102は反射材、103は人工光源、10
4は内筒、105は栽培ポツト、201は空調装
置、301は栄養塩溶液、2はCO2注入口であ
る。
Fig. 1 is a characteristic diagram showing the relationship between the apparent photosynthetic rate of salad vegetables and illuminance when light is irradiated from above, Fig. 2 is a configuration diagram showing the plant growing device of the present invention, and Fig. 3 is a diagram showing the relationship between the apparent photosynthetic rate of salad vegetables and illuminance when light is irradiated from above. The relationship between the weight of salad greens and the number of growing days when irradiated at the same time from illuminance 3 to
It is a characteristic diagram shown about 15Klux. In the figure, 101 is the outer cylinder of a double cylindrical plant growth chamber, 102 is a reflective material, 103 is an artificial light source, and 10
4 is an inner cylinder, 105 is a cultivation pot, 201 is an air conditioner, 301 is a nutrient solution, and 2 is a CO 2 injection port.

Claims (1)

【特許請求の範囲】 1 環境条件のうち少なくとも光とCO2濃度とを
制御して植物の生長を促進する植物育成方法にお
いて、植物体の上方からのみ光を照射した場合の
光飽和照度の1/7〜1/2の低照度の光を、上記植物
体の少なくとも前後左右および上方向から同時に
照射すると共に、CO2濃度を大気中濃度より高い
500〜2000ppmに保つことを特徴とする植物育成
方法。 2 内部に育成すべき植物体が収納された光透過
性の内側容器と、この内側容器の外周に配置さ
れ、内周面が反射材で構成された外側容器と、こ
の外側容器の中に設けられ、上記植物体の上方か
らのみ光を照射した場合の光飽和照度の1/7〜1/2
の低照度の光を、上記植物体の周方向から同時に
照射する光源と、上記植物体が収納された内側容
器内にCO2を供給すると共に、このCO2濃度を大
気中濃度より高く保つ手段とを備えた植物育成装
置。
[Claims] 1. In a plant growing method that promotes plant growth by controlling at least light and CO 2 concentration among environmental conditions, 1 of the light saturation illuminance when light is irradiated only from above the plant body. Simultaneously irradiate the above plants with low-intensity light of 7 to 1/2 from at least the front, back, left, right, and upper directions, and raise the CO 2 concentration to a level higher than that in the atmosphere.
A plant growing method characterized by maintaining the concentration between 500 and 2000 ppm. 2. A light-transmissive inner container in which a plant to be grown is stored, an outer container arranged around the outer periphery of this inner container and whose inner peripheral surface is made of a reflective material, and a container provided inside this outer container. 1/7 to 1/2 of the light saturation illuminance when the above plant is irradiated with light only from above.
a light source that simultaneously irradiates low-intensity light from the circumferential direction of the plant, and a means for supplying CO 2 into an inner container in which the plant is housed, and keeping the CO 2 concentration higher than the atmospheric concentration. A plant growing device equipped with
JP20330983A 1983-10-28 1983-10-28 Plant growing method Granted JPS6094025A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP20330983A JPS6094025A (en) 1983-10-28 1983-10-28 Plant growing method
CA000466401A CA1269538A (en) 1983-10-28 1984-10-26 Method of enhancing plant growth and apparatus for performing the same
US06/665,212 US4817332A (en) 1983-10-28 1984-10-26 Method of enhancing plant growth and apparatus for performing the same
DE8484113019T DE3485108D1 (en) 1983-10-28 1984-10-29 METHOD FOR IMPROVING THE GROWTH OF PLANTS.
AT84113019T ATE67642T1 (en) 1983-10-28 1984-10-29 METHOD OF IMPROVING THE GROWTH OF PLANTS.
EP84113019A EP0140361B1 (en) 1983-10-28 1984-10-29 Method of enhancing plant growth
US07/266,610 US5174793A (en) 1983-10-28 1988-12-23 Method of enhancing plant growth using light levels lower than photo saturation intensity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20330983A JPS6094025A (en) 1983-10-28 1983-10-28 Plant growing method

Publications (2)

Publication Number Publication Date
JPS6094025A JPS6094025A (en) 1985-05-27
JPH0325123B2 true JPH0325123B2 (en) 1991-04-05

Family

ID=16471892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20330983A Granted JPS6094025A (en) 1983-10-28 1983-10-28 Plant growing method

Country Status (1)

Country Link
JP (1) JPS6094025A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014226064A (en) * 2013-05-21 2014-12-08 パイオニア株式会社 Light emission control device, light emission control method, and program
JP6518050B2 (en) * 2014-09-11 2019-05-22 株式会社テヌート Photosynthesis promotion system and device used therefor

Also Published As

Publication number Publication date
JPS6094025A (en) 1985-05-27

Similar Documents

Publication Publication Date Title
EP0140361B1 (en) Method of enhancing plant growth
US8782948B2 (en) Method and apparatus for aeroponic farming
KR101413135B1 (en) Multipurpose apparatus of indoor hydroponic system for ginseng
US5269093A (en) Method and apparatus for controlling plant growth with artificial light
CA2261815A1 (en) Method for growing plants and apparatus for growing plants
KR101013776B1 (en) Apartment type ginseng cultivating system and ginseng cultivating method using the same
GB1600173A (en) Method and installation for the storage of biochemical energy in plants
KR20170025460A (en) Cultivation method of spinach by using light quality in closed-type plant factory system
JPH1166A (en) Plant culturing method and apparatus therefor
WO2019227680A1 (en) Method for increasing vc content of leafy vegetables in plant factory
JPS63126440A (en) Hydroponic apparatus
JPH0325123B2 (en)
KR101900643B1 (en) Cultivation method of spinach by using light quality in closed-type plant factory system
US5174793A (en) Method of enhancing plant growth using light levels lower than photo saturation intensity
JPS63240731A (en) Plant cultivation method and apparatus
JPS61100131A (en) Plant growing method
JP3578383B2 (en) Greenhouse and method for cultivating plants using the greenhouse
RU2281647C2 (en) Method for hydroponic growing of c3 plants
JPH0463525A (en) Plant culturing method and plant culturing device
JPS61100132A (en) Plant growing method
RU2735220C1 (en) Cultivation method of plant growing products in vertically oriented greenhouse complexes
JP2809873B2 (en) Plant cultivation equipment
JPH04207128A (en) Apparatus for cultivating plant
CA2005561A1 (en) Method and installation for hydro-ponically growing plants
CN108094164A (en) A kind of implantation methods of ocean warship cabin