JPH04207128A - Apparatus for cultivating plant - Google Patents

Apparatus for cultivating plant

Info

Publication number
JPH04207128A
JPH04207128A JP33805790A JP33805790A JPH04207128A JP H04207128 A JPH04207128 A JP H04207128A JP 33805790 A JP33805790 A JP 33805790A JP 33805790 A JP33805790 A JP 33805790A JP H04207128 A JPH04207128 A JP H04207128A
Authority
JP
Japan
Prior art keywords
light radiation
plant
plants
cultivation
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33805790A
Other languages
Japanese (ja)
Inventor
Kimitoshi Horaguchi
洞口 公俊
Masaaki Morita
森田 政明
Katsusuke Murakami
村上 克介
Ichiro Aiga
相賀 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33805790A priority Critical patent/JPH04207128A/en
Priority to US07/801,689 priority patent/US5269093A/en
Publication of JPH04207128A publication Critical patent/JPH04207128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PURPOSE:To obtain the subject apparatus capable of adding far infrared light radiation required for photomorphogenesis of a plant to light radiation having a wavelength region necessary for photosynthesis of the plant as a main wavelength, optionally regulating respective light radiation intensities and performing cultivation of high added value according to the purposes and uses. CONSTITUTION:In a plant cultivation apparatus for cultivating plants such as vegetables by light radiation from artificial light sources, a cultivation chamber 2 and a wind channel 3 for circulating air are provided in the interior of a wind channel type growth cabinet 1. The circulation wind velocity of air is regulated with a fan 4 and the temperature, humidity and CO2 in the growth cabinet 1 are regulated by a temperature regulating means 5, a humidity regulating means 6 and a CO2 concentration regulating means 7. An apparatus (8b) for far infrared light radiation (having 700-800nm wavelength region as a main wavelength) participating in photomorphogenesis of the plants is simultaneously added to an apparatus (8a) for light radiation (PAR) having 400-700nm wavelength region as a main wavelength participating in photosynthesis of the plants to optionally regulate respective light radiation intensities. Thereby, the plants are cultivated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は人工光源の光放射によって野菜などの植物を栽
培装置に関するものであム 従来の技術 光放射強度をはじ敢 温皮 湿度、気流条件、CO2濃
嵐 水分、養分、等の成育環境条件を人工的に有効適切
に制御して、野菜などの植物を高品質、高効取 安定に
栽培・生産すゑ いわゆる植物工場の研究開発が近蝦 
活発化U 一部では実用化されていも 植物工場の光放
射の供給方式として(戴 完全自然利用方丈 自然光と
人工光を併用したハイブリッド光方丈 完全人工光利用
方式があム 高品質、高効風 安定に野菜などの植物を
栽培・生産するという植物工場の目的に適合させるため
にζよ より完全に成育環境制御の下で栽培を図る方式
が望ましく、光放射の供給方式としても、  完全人工
光利用方式の採用が理想的であム 人工光源としては一
般凶 メタルハライドランプ、高圧ナトリウムランプ、
蛍光ランス 等が単洩 あるいは組合わせて使用されて
いる力交 生体監 乾物重といった物質生産効率に重点
が置かれ 茎几葉の大きさ・形次 草丈 葉/茎の重量
比 等の植物の形態形成は考虜されていな(〜 発明が解決しようとする課題 自然環境への依存から脱却して、人工環境の下で植物を
工業製品と同じように高品質・安定に生産することを目
的とした植物工場において、栽培・生産植物の高品質と
安定生産に加えて、光放射環境を人工的に制御すること
によって、茎五 葉の大きさ・形状 草丈 葉/茎の重
量比 等の植物の形態形成を任意にコントロールするこ
とができれば 例えは 葉面積を小さ(抑制し厚みの厚
い葉をもったしおれにくい葉菜類を生産することによっ
て遠距離の長時間輸送に有利となる。また人工光源に近
接させる状態で、光源からの光放射を高効率に利用しな
がら栽培空間を高密度に利用するうえでは 草丈を抑制
した燐化栽培が有効であり、さらに 葉が大きく柔らか
な葉菜類の生産は病人食として有効であム 本発明は従
来の植物の光合成による物質生産に加え 形態形成を付
加した高付加価値の植物を栽培できる装置を提供するこ
とを目的としていも 課題を解決するための手段 前記課題を解決するため本発明は 植物の光合成に関与
するP A R(Photosyntheticall
y Acti−veRadiation、光合成有効光
放射)、即ち400〜700nmの波長域を主波長とす
る光放射に 植物の光形態形成に関与する遠赤色光放射
 即ち700〜800nlIlの波長域を主波長とする
光放射を付加し それぞれの光放射強度を任意に調節す
ることができることを特徴とした植物栽培装置である。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a device for cultivating plants such as vegetables by light radiation from an artificial light source, which surpasses the light radiation intensity of conventional technology. Strong Arashi Artificially and effectively controlling growth environment conditions such as moisture and nutrients to achieve stable cultivation and production of high-quality, highly effective vegetables and other plants Research and development of so-called plant factories is rapidly progressing.
Activation U Although it has been put into practical use in some places, as a method of supplying light radiation for plant factories (Dai) Completely natural use method Hybrid light method using both natural light and artificial light Fully artificial light method is used High quality, high efficiency wind In order to meet the purpose of a plant factory, which is to cultivate and produce vegetables and other plants in a stable manner, it is desirable to use a method of cultivation under more complete growth environment control, and as a method of supplying light radiation, it is desirable to use completely artificial light. Ideally, it would be best to adopt this method.Generally used artificial light sources include metal halide lamps, high-pressure sodium lamps,
Fluorescent lances, etc. are used singly or in combination. Emphasis is placed on material production efficiency such as biological monitoring, dry weight, and plant morphology such as stem and leaf size and shape, plant height, and leaf/stem weight ratio. The purpose of this invention is to break away from dependence on the natural environment and produce plants in an artificial environment with the same high quality and stability as industrial products. In addition to achieving high quality and stable production of cultivated and produced plants, the plant factories that have been cultivated have been able to artificially control the light radiation environment to improve plant characteristics such as stem size, leaf size and shape, plant height, leaf/stem weight ratio, etc. If morphogenesis could be controlled arbitrarily, for example, it would be possible to reduce the leaf area and produce leafy vegetables with thick leaves that are less likely to wilt, making it advantageous for long-distance transportation over long distances.Also, it would be advantageous to be close to artificial light sources. In this situation, phosphorization cultivation that suppresses plant height is effective for efficiently utilizing the light radiation from the light source and using the cultivation space in high density. The purpose of the present invention is to provide a device capable of cultivating high value-added plants that have added morphogenesis in addition to the conventional material production through photosynthesis of plants. In order to solve this problem, the present invention aims to solve the following problems:
y Acti-ve Radiation (photosynthetically effective light radiation), i.e., light radiation having a dominant wavelength in the wavelength range of 400 to 700 nm; Far-red light radiation involved in photomorphogenesis of plants, i.e., having a dominant wavelength in the wavelength range of 700 to 800 nm. This plant cultivation device is characterized by being able to add light radiation and arbitrarily adjust the intensity of each light radiation.

作用 前記構成によれは 植物の物質生産を制御する光合成の
観点からみて有効であるとされるPAR光放射源のみの
光放射環境の下での成育に比ベア00〜800nmの波
長域を有する遠赤色光放射源からの照射に基づく光形態
形成作用によって植物の部間や葉脈の伸長が促進される
。このた&  PAR光放射源および遠赤色光放射源か
らの光放射強度を任意に調整し 遠赤色光放射の付加状
態を制御することによって、植物の茎の伸長・燐化や葉
の大きさ・形状 草丈、葉/茎の重量比 等を人工的に
コントロールすることができ、植物の目的・用途に応じ
た高付加価値の植物の栽培・生産が可能となム 実施例 以下、本発明の実施例を図面に基づいて説明すも 第1
図は本発明の植物栽培装置の一実施例を示していも 風洞型グロースキャビネットl内には栽培室2と空気を
循環させるための風洞3が設けられ ファン4によって
空気が循環されるとともに風速が調整されも 温度調整
手段5、湿度調整手段6、COa濃度調整手段7が設け
られ グロースキャビネット1内の温工 湿@  Co
tが調整されも前記栽培室2内の上方にはP A R(
Photosynt−hetically Activ
e Radiation、光合成有効光放射)、即ち4
00〜700nmの波長域を主波長とする複数本のPA
R照射用蛍光ランプ8aおよび遠赤色光放射即ち700
〜800nmの波長域を主波長とする複数本の遠赤色光
放射照射用蛍光ランプ8bが水平且つ並列に配設されて
おり、PAR照射用蛍光ランプおよび遠赤色光放射照射
用蛍光ランプは個々個別に点滅および調光できるように
なっている。またこれら蛍光ランプ8aおよび8bの下
方には保水性を備えた栽培ベット9が配設されている。
The effect of the above structure is that compared to the PAR light radiation source, which is effective from the viewpoint of photosynthesis to control material production in plants, the long-distance radiation having a wavelength range of 00 to 800 nm is compared to the growth in a light radiation environment using only PAR light radiation sources. Photomorphogenesis based on irradiation from a red light radiation source promotes the elongation of plant parts and leaf veins. In addition, by arbitrarily adjusting the light radiation intensity from the &PAR light radiation source and the far-red light radiation source and controlling the addition state of far-red light radiation, the elongation and phosphorization of plant stems and the size and size of leaves can be controlled. The shape, plant height, leaf/stem weight ratio, etc. can be artificially controlled, making it possible to cultivate and produce high value-added plants according to the purpose and use of the plant. An example will be explained based on the drawings.Part 1
The figure shows an embodiment of the plant cultivation apparatus of the present invention. A cultivation chamber 2 and a wind tunnel 3 for circulating air are provided in a wind tunnel type growth cabinet l. Air is circulated by a fan 4 and the wind speed is adjusted. Temperature adjustment means 5, humidity adjustment means 6, and COa concentration adjustment means 7 are provided.
Even if t is adjusted, P A R (
Photosynt-hetically Active
e Radiation, photosynthetically effective light radiation), i.e. 4
Multiple PAs with main wavelength in the wavelength range of 00 to 700 nm
Fluorescent lamp 8a for R irradiation and far red light emission, i.e. 700
A plurality of fluorescent lamps 8b for irradiating far-red light radiation having a main wavelength in the wavelength range of ~800 nm are arranged horizontally and in parallel, and the fluorescent lamps for PAR irradiation and the fluorescent lamps for irradiating far-red light radiation are individually arranged. It can be blinked and dimmed. Further, a cultivation bed 9 with water retention properties is arranged below these fluorescent lamps 8a and 8b.

栽培ベット9には点滴方式で所要量の培養液が供給され
 栽培ベット9に栽培された植物に水分と養分が供給さ
れも 次に 上記装置4基を用いて植物栽培を行った実験例に
つき説明すも 栽培植物Aとして、 7年間継続して隔離栽培され 遺
伝的な均一性が確保されたヒマワリ(Heli−ant
hus Annus L、cV Ru5sian Ma
nmoth)の種子を発芽させ、第2図の点線で示す分
光分布特性をもつPAR照射用3波長域発光形蛍光ラン
プの下で育苗した 子葉が充分に展開し 第3稟 第4
葉が展開しつつある播種8日目の均一な幼植物を用いた
 4基のグロースキャビネット1内には各々、第2図の
点線で示す分光分布特性をもつPAR照射用3波長域発
光形55W蛍光ランプのみ4本配設、同じく前記PAR
照射用3波長域発光形55W蛍光うンプ4本に加え 第
2図の実線で示す遠赤色光放射照射用20W蛍光ランプ
を1末 5木 9本を配設し九 な耘 遠赤色光照射用
20W蛍光ランプを付加しないランプ配設場所に!! 
 20W蛍光ランプを黒色画用紙で覆ったランプを配設
し 各々のグロースキャビネットの温度均一性が確保さ
れるよう配慮し九 各々のキャビネット内の光放射環境
条件を第1表に示す。ランプはいずれも24時間連続点
灯し 気温は25′t−相対湿度は70%に制御し九 
また栽培は培養液(大球ハウス1号 2号標準濃度培養
液)を用いた水耕法とじ九 さらに根圏にはエアーポン
プにより空気を供給した 実験結果を示すと第2表のようになa 葉面積は 遠赤
色光放射処理区C,Dで処理開始6日目以降 有意な増
加がみられた また茎長(よ 遠赤色蛍光ランプの付加
本数の増加に従って、 3日目には処理区C,Dで有意
に増加した 処理日数がすすむにつれて、遠赤色光放射
を付加しない場合との差は拡大し 処理区Cで(よ 8
日目には遠赤色光放射を付加しない処理区Aの2.6倍
へ 処理区つでは3.6倍以上に伸長した 第3図に1
よ 茎の伸長状態を示すために 赤色光放射処理開始8
日目=おける各処理区の胚軸瓜 第1間節玉 第2間1
玉 茎五 植物長を積層してグラフに示し島黒塗りつぶ
しの先端が茎長を示し 棒グラフの売場は植物高を示も
 第1間節玉 第2間節几 茎t 植物高ともに遠赤色
光放射の処理区α Dは人きく伸長し九 発明の効果 前記構成によれC′L  植物の物質生産を制御する光
合成の観点からみて有効であるとされるPAR光放射源
のみの光放射環境の下での成育に比べ00〜800nm
の波長域を有する遠赤色光放射源からつ照射に基づく光
形態形成作用によって植物の節用や葉脈の伸長が促進さ
れも このた、&  PAR光放射源および遠赤色光放
射源からの光放射強度?任意に調整し 遠赤色光放射の
付加状態を制御することによって、植物の茎の伸長・燐
化や葉のスきさ・形机 草丈 葉/茎の重量比 等を人
工勺にコントロールすることができ、植物の目的・用途
に応じた高付加価値の植物の栽培・生産が可能となり、
その効果は犬なるものであム
The required amount of culture solution is supplied to the cultivation bed 9 using a drip method, water and nutrients are supplied to the plants grown in the cultivation bed 9, and then an example of an experiment in which plant cultivation was performed using the four devices described above will be explained. Plum cultivation plant A is sunflower (Heli-ant), which has been isolated and cultivated for seven years to ensure genetic uniformity.
hus Annus L, cV Ru5sian Ma
seeds) were germinated, and the seedlings were grown under a three-wavelength fluorescent lamp for PAR irradiation with the spectral distribution characteristics shown by the dotted line in Figure 2.
Uniform seedlings on the 8th day of sowing with leaves beginning to develop were used.In each of the four growth cabinets 1, there was a 3-wavelength range emitting type 55W for PAR irradiation with the spectral distribution characteristics shown by the dotted line in Figure 2. Only 4 fluorescent lamps are installed, same as above PAR
In addition to four 3-wavelength range emitting type 55W fluorescent lamps for irradiation, nine 20W fluorescent lamps for far-red light irradiation, as shown by the solid line in Figure 2, are installed. For lamp installation locations where 20W fluorescent lamps are not added! !
A 20W fluorescent lamp covered with black drawing paper was installed to ensure temperature uniformity in each growth cabinet.Table 1 shows the light emission environment conditions inside each growth cabinet. All lamps were lit continuously for 24 hours, and the temperature was controlled at 25't - relative humidity at 70%.
In addition, cultivation was carried out using the hydroponic method using a culture solution (Daikyu House No. 1, No. 2 standard concentration culture solution), and Table 2 shows the experimental results in which air was supplied to the rhizosphere using an air pump. a Significant increase in leaf area was observed in far-red light radiation treated plots C and D from the 6th day after the start of treatment. There was a significant increase in treatment area C and D. As the number of treatment days progressed, the difference with the case where far-red light radiation was not added expanded, and in treatment area C (Yo 8
On the 1st day, the increase was 2.6 times that of treatment area A where far-red light radiation was not added, and the increase was more than 3.6 times that of treatment area A. Figure 3 shows 1.
Start of red light radiation treatment to show the elongated state of the stem 8
Day = Hypocotyl melon of each treatment section 1st internodes 2nd internodes 1
The plant lengths are stacked and shown in a graph.The tip of the black fill indicates the stem length.The bar graph section indicates the plant height.1st internodal ball2nd internodal stem tBoth plant heights emit far-red light. The treatment area αD grows rapidly and the effect of the invention is due to the above-mentioned structure. 00-800nm compared to growth in
The photomorphogenetic effect based on irradiation from a far-red light radiation source with a wavelength range of ? By arbitrarily adjusting and controlling the addition state of far-red light radiation, it is possible to artificially control plant stem elongation, phosphorization, leaf spacing, shape, plant height, leaf/stem weight ratio, etc. This makes it possible to cultivate and produce high value-added plants according to the purpose and use of the plant.
The effect is like a dog.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の栽培装置の概略側面医 第
2図は同栽培装置を用いた植物の成育実験に用いたPA
R照射用3波長域発光形蛍光ランプおよび遠赤色光照射
用蛍光ランプの分光分布特性医 第3図は光放射環境が
異なるグロースキャビネット(処理区)での茎の伸長具
合を示す図であa 8a・・・・PAR照射用光源8b・・・・遠赤色光放
射照射用先爪 9・・・・栽培ベット、A・・・・植悦
代理人の氏名 弁理士 小鍜治 明 ほか2名(vs 
−ut−u−)7s w )  *H¥Xつ6.921
4(i  5 手続補正書け1 、発明の名称 植物栽培装置 3補正をする者 事件との関係      特   許   出   願
   大佐 所  犬販府門真市大字門真1006番地
名 称 (582)松下電器産業株式会社代表者   
 谷  井  昭  雄 4代理人 〒571 住 所  大阪府門真市太字門真1006番地松下電器
産業株式会社内
Fig. 1 is a schematic side view of a cultivation device according to an embodiment of the present invention. Fig. 2 shows a PA used in a plant growth experiment using the same cultivation device.
Spectral distribution characteristics of 3-wavelength fluorescent lamps for R irradiation and fluorescent lamps for far-red light irradiation 8a... Light source for PAR irradiation 8b... Tip claw for far-red light irradiation 9... Cultivation bed, A... Name of Uetsu agent Patent attorney Akira Kokaji and 2 others ( vs
-ut-u-)7s w) *H¥X6.921
4 (i 5 Write procedural amendments 1, Name of invention Plant cultivation device 3 Relationship with the case of the person making the amendments) Patent application Office 1006 Oaza Kadoma, Kadoma City, Inuhanfu Name (582) Representative of Matsushita Electric Industrial Co., Ltd. person
Akio Tanii 4 Agent 571 Address 1006 Bold Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)植物の光合成に関与する400〜700nmの波
長域を主波長とする光放射(PAR)に、植物の光形態
形成に関与する遠赤色光放射(700〜800nmの波
長域を主波長とする)を付加し、それぞれの光放射強度
を任意に調節することを特徴とする植物栽培装置。
(1) Optical radiation (PAR) with a dominant wavelength in the 400-700 nm wavelength range involved in photosynthesis in plants is combined with far-red light radiation (with a dominant wavelength in the 700-800 nm wavelength range) involved in photomorphogenesis in plants. 1. A plant cultivation device characterized in that a plant cultivation device is equipped with a light source (a) and the intensity of each light beam is arbitrarily adjusted.
(2)PAR光放射源および遠赤色光放射源を配設し、
その両者の光放射強度の比を光量子束密度比、660±
5nm/730±5nmの値で15.0〜0.1、66
0〜700nm/700〜800nmの値で7.0〜0
.5、400〜700nm/700〜800nmの値で
22.0〜1.0の間でPAR光放射源および遠赤色光
放射源を個々に点滅および調光可能とすることを特徴と
する植物の栽培装置。
(2) arranging a PAR light radiation source and a far-red light radiation source;
The ratio of the light radiation intensity of both is the photon flux density ratio, 660±
5nm/730±5nm value: 15.0 to 0.1, 66
0-700nm/700-800nm value 7.0-0
.. 5. Cultivation of a plant characterized in that a PAR light radiation source and a far-red light radiation source can be individually blinked and dimmed between 22.0 and 1.0 at a value of 400 to 700 nm/700 to 800 nm. Device.
JP33805790A 1990-11-30 1990-11-30 Apparatus for cultivating plant Pending JPH04207128A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33805790A JPH04207128A (en) 1990-11-30 1990-11-30 Apparatus for cultivating plant
US07/801,689 US5269093A (en) 1990-11-30 1991-12-02 Method and apparatus for controlling plant growth with artificial light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33805790A JPH04207128A (en) 1990-11-30 1990-11-30 Apparatus for cultivating plant

Publications (1)

Publication Number Publication Date
JPH04207128A true JPH04207128A (en) 1992-07-29

Family

ID=18314509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33805790A Pending JPH04207128A (en) 1990-11-30 1990-11-30 Apparatus for cultivating plant

Country Status (1)

Country Link
JP (1) JPH04207128A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191854A (en) * 2011-03-15 2012-10-11 National Agriculture & Food Research Organization Insect pest control facility for plant seedling
CN110545657A (en) * 2017-02-07 2019-12-06 普瑞瓦控股有限公司 Method and device for cultivating crops
JP2021052671A (en) * 2019-09-30 2021-04-08 シャープ株式会社 Lighting device, light irradiation equipment for plants, and light irradiation method for plants

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191854A (en) * 2011-03-15 2012-10-11 National Agriculture & Food Research Organization Insect pest control facility for plant seedling
CN110545657A (en) * 2017-02-07 2019-12-06 普瑞瓦控股有限公司 Method and device for cultivating crops
US11622508B2 (en) 2017-02-07 2023-04-11 Priva Holding B.V. Method and device for cultivating a crop
JP2021052671A (en) * 2019-09-30 2021-04-08 シャープ株式会社 Lighting device, light irradiation equipment for plants, and light irradiation method for plants

Similar Documents

Publication Publication Date Title
US5269093A (en) Method and apparatus for controlling plant growth with artificial light
KR101481538B1 (en) Growing apparatus of plant with led
JP2012165665A (en) Lighting device, strawberry cultivation system and strawberry cultivation method
JP2003339236A (en) Lighting device and apparatus for plant growth, and method for plant growth
JP4015251B2 (en) Rice cultivation method
EP2761987B1 (en) Method for cultivating plant
KR20170025460A (en) Cultivation method of spinach by using light quality in closed-type plant factory system
CN105674201B (en) A kind of LED lamp for plant growth
JPH04207128A (en) Apparatus for cultivating plant
JP4157367B2 (en) Plant lighting device and lighting method
JP7127067B2 (en) Method and device for growing crops
KR101900643B1 (en) Cultivation method of spinach by using light quality in closed-type plant factory system
JP2021527406A (en) Methods and equipment for growing crops
JP6033592B2 (en) Plant cultivation method and plant cultivation apparatus
JPS63240731A (en) Plant cultivation method and apparatus
JP2809873B2 (en) Plant cultivation equipment
RU2715604C1 (en) Method of producing healthier potato minitubers
JPH0349530B2 (en)
EP2761988B1 (en) Method for cultivating plant
Parker Environmental factors and their control in plant experiments
JPS6255025A (en) Plant culture apparatus
JP4104082B1 (en) Cultivation method and apparatus for flowered yam
JP7236186B1 (en) Plant cultivation method and plant cultivation device
JP2014008033A (en) Cultivation method and cultivation device for plant
JPH0998A (en) Culture of tissue culture seedling