JPS61100132A - Plant growing method - Google Patents

Plant growing method

Info

Publication number
JPS61100132A
JPS61100132A JP59224784A JP22478484A JPS61100132A JP S61100132 A JPS61100132 A JP S61100132A JP 59224784 A JP59224784 A JP 59224784A JP 22478484 A JP22478484 A JP 22478484A JP S61100132 A JPS61100132 A JP S61100132A
Authority
JP
Japan
Prior art keywords
temperature
light
plant
growth
illuminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59224784A
Other languages
Japanese (ja)
Inventor
彰 池田
江崎 謙治
繁樹 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59224784A priority Critical patent/JPS61100132A/en
Publication of JPS61100132A publication Critical patent/JPS61100132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は人工的に作られた環境のもとて植物を育成す
る方法に関し、特に光、気温およびOOQ濃度に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a method for growing plants in an artificially created environment, particularly regarding light, temperature and OOQ concentration.

〔従来の技術〕[Conventional technology]

植物の育成環境条件を制御することにより植物の生長を
促進し、植物を工業的に生産しようとする新しい植物育
成方法およびそのシステムが工夫されている。
New plant growing methods and systems have been devised to promote plant growth and produce plants industrially by controlling plant growing environmental conditions.

植物は一般に、業において水とCO2を基本とし、光エ
ネルギが加えられることにより有機物を生産しく光合成
)、その一部は個体維持のためのエネルギとして消費さ
れ、残りは葉や根などの器官に分配、蓄積され、各器官
は成長していく。このような植物において、光、C02
濃度、温度などの環境条件を制御してその生長を著しく
促進することが可能であり、その結果、土地の生産性が
飛躍的に向上するという効果がも几らされ、植物の工場
生産が可能になった。
In general, plants use water and CO2 as their base, and produce organic matter by adding light energy (photosynthesis). Some of this is consumed as energy for maintaining the individual, and the rest is used for organs such as leaves and roots. It is distributed and accumulated, and each organ grows. In such plants, light, C02
It is possible to significantly promote their growth by controlling environmental conditions such as concentration and temperature, and as a result, the productivity of land is dramatically improved, making factory production of plants possible. Became.

この場合、光源として太陽光を利用すれば、省エネルギ
になると考えられるが、季節的な気象変化によシ光量が
変動し、それに伴って温度、湿度などの環境条件が変化
するため、このような変動環境下の植物の反応は複雑で
あシ、植物の周年計画生産が困難となる。ま九一定の環
境条件を作るために巨大な空調コストが必要となり、結
局、経済的でないという問題があった。
In this case, it would be possible to save energy by using sunlight as a light source, but the amount of light fluctuates due to seasonal weather changes, and environmental conditions such as temperature and humidity change accordingly. The reactions of plants under fluctuating environments are complex, making it difficult to plan year-round production of plants. In order to create a certain environmental condition, a huge amount of air conditioning cost is required, which is ultimately uneconomical.

そこで周年的計画生産を目指して、太陽光の代わりに一
定強度の人工光源を用いて植物の生長を促進しようとす
る工夫がなされている。この場合、他の環境要因も一定
条件Vc111II御しやすいという利点があるが、照
射電力が膨大となり経済的でないという問題点かあつ之
Therefore, with the aim of year-round planned production, efforts have been made to promote plant growth by using artificial light sources of constant intensity instead of sunlight. In this case, there is an advantage that it is easy to control other environmental factors under certain conditions Vc111II, but there is a problem that the irradiation power becomes enormous and it is not economical.

このような問題点を解決するための一つの方法として、
植物体の上方からのみ光を照射し定場合の光飽和照度よ
りも低照度の光を、上記植物体の周方向から同時に照射
すると共に、C02濃度を大気中濃度より高く保つよう
にすることにより、極めて低照度で上記植物体の生長を
促進することがで与る植物育成方法が提案されている。
One way to solve these problems is to
By irradiating light only from above the plant body and simultaneously irradiating the plant body with light at a lower illuminance than the normal light saturation illuminance from the circumferential direction of the plant body, and maintaining the CO2 concentration higher than the atmospheric concentration. , a plant growing method has been proposed that promotes the growth of the above-mentioned plants under extremely low illuminance.

以下、図を用いてこの方法をさらに詳しく説明する。第
1図はこの方法を実証する実験に用いた植物育成装置を
示す構成図である。図において。
This method will be explained in more detail below using figures. FIG. 1 is a block diagram showing a plant growing apparatus used in an experiment to demonstrate this method. In fig.

(101)は円筒形の植物育成室の外筒であり、内筒が
例えばAtなどの反射材(M)2)で形成され1反射材
(102) ?C沿って人工光源(10s)が設置され
ている。
(101) is the outer cylinder of a cylindrical plant growth chamber, and the inner cylinder is formed of a reflective material (M) 2) such as At. An artificial light source (10s) is installed along C.

(104)はガラスで形成された円筒であり、外筒(1
01)と共に2重円筒形の植物育成室を構成している。
(104) is a cylinder made of glass, and the outer cylinder (104) is a cylinder made of glass.
01) constitutes a double cylindrical plant growth chamber.

植物体は円筒(104)内に固定して設置され定栽培ボ
ッl−(105)に植えられ、人工光源(103)によ
り照射されて生長する。この時、植物体には周方向から
光が照射されることになり1円筒の上端および下端をの
ぞいて円筒(104)内のあらゆる方向および場所で均
一な照度が得られることが確認された。
The plant body is fixedly installed in a cylinder (104), planted in a fixed cultivation box (105), and is irradiated with an artificial light source (103) to grow. At this time, the plant body was irradiated with light from the circumferential direction, and it was confirmed that uniform illuminance was obtained in all directions and locations within the cylinder (104), except for the top and bottom ends of one cylinder.

人工光源(103)の放熱はクーラ(105)からの冷
風によって除去される。捷た、内筒(104)内に導か
れる空気は、空調袋ffi (2)l) Kより予め所
定の温度および湿度に調節されて1円筒(104)の下
部から導入され上部から排出され、プロア(11により
再び空調装置(201) VC戻るというように循環す
る。
Heat radiation from the artificial light source (103) is removed by cold air from the cooler (105). The air that has been shrunk and led into the inner cylinder (104) is adjusted to a predetermined temperature and humidity by an air conditioning bag ffi (2)l)K, is introduced from the lower part of the cylinder (104), and is discharged from the upper part. The air conditioner (201) is then returned to the VC by the Proa (11), and so on.

Co2はCOa発生装置、例えばCo2ポンベ(図示せ
ず)により循環通路の途中に設けられたCO2注入口(
2)から注入される。また、循環通路にば新鮮空気収入
れ口(3)および排出口(4)を設けて循環空気の一部
を更新する。この際、循環空気中のC02濃度を所定の
値に保つようにCO2が供給され、CO2濃度はCO2
供給量によって調節される。なお、空調装置(201)
は冷却機(2D2)と、スプレーノズル(203)およ
び充填層(泳、)を備えた水スプレ一部と、ヒータ(2
:15)から構成される装置され几空気は冷プライン(
2)6)を用い次冷却器(2D2)により冷却された後
、ポンプ(5)により貯留水槽(幻7)の水がスプレー
ノズル(胚)に送られ、充填層(204)で加湿され,
その後ヒータ(幻5)により加温されて、所定の温度お
よび湿度にv14節される。
Co2 is supplied through a CO2 inlet (
2). In addition, a fresh air inlet (3) and a fresh air outlet (4) are provided in the circulation passage to renew a part of the circulating air. At this time, CO2 is supplied to keep the CO2 concentration in the circulating air at a predetermined value, and the CO2 concentration is
Adjusted by supply. In addition, air conditioner (201)
is a cooler (2D2), a water spray part with a spray nozzle (203) and a packed bed (2D2), and a heater (2D2).
:15) The air is passed through a cold prine (
2) After being cooled by the subcooler (2D2) using 6), the water in the storage tank (phantom 7) is sent to the spray nozzle (embryo) by the pump (5), and humidified by the packed bed (204).
Thereafter, it is heated by a heater (gen 5) and maintained at a predetermined temperature and humidity.

一方、(301)は所定濃度の栄養塩溶液であり、液恒
温槽(302)により所定の温度に保たれ、ポンプ(6
}によシ栽培ポット(105)に送られfc後、夕/り
(x3)に戻る。[7iは空気ポンプであり、栄養塩浴
液(301)はこの空気ポンプ{7ノによりエアレーシ
ョンされ、充分な溶存酸素量が保たれる。
On the other hand, (301) is a nutrient solution with a predetermined concentration, which is kept at a predetermined temperature by a liquid constant temperature bath (302), and is kept at a predetermined temperature by a pump (6).
}It is sent to the Yoshi cultivation pot (105) and returns to Yu/Ri (x3) after fc. [7i is an air pump, and the nutrient salt bath liquid (301) is aerated by this air pump {7i} to maintain a sufficient amount of dissolved oxygen.

上記の植物育[装置を用い、サラダ菜を一例として、照
度を3Ktuxからx5xtuxまで変化させ、その貞
鍍(glと育成日数(日)との関係を胸べt0第2図に
結果を示す。この時、C02#度は1200ppm、気
温は20゜C、栄養塩溶液(301)の液温は21’C
、相対湿度は80チ、風速は0・5m/sea 、栄養
塩濃度は1.2ミリモー、pH 5〜6.6、日長は2
4時間であった。
Using the above plant growing device, the illuminance was varied from 3Ktux to x5xtux using salad greens as an example, and the relationship between the GL and the number of growing days (days) is shown in Figure 2. At the time, the C02# degree is 1200 ppm, the air temperature is 20°C, and the liquid temperature of the nutrient solution (301) is 21'C.
, relative humidity is 80 degrees, wind speed is 0.5 m/sea, nutrient concentration is 1.2 mm, pH is 5-6.6, photoperiod is 2
It was 4 hours.

また、人工光源(103)として螢光灯と白熱灯を用い
之。この図から明らかなように従来から予測される結果
に反して3に/uxから15Ktuxにおける各照度で
の生長速度(サラダ菜の貞軟と育成日数との関係)K差
異が認められず,それぞれ、サラダ菜は10日間で約2
0倍のtitに生長することが見出され念。この結果、
この方法によれば,上方から光を照射した場合の光飽和
照度( 20Ktux )の約1/7である3Klux
 、lL−いう低照度でも従来と同様に植物の生長を促
進できることが見出され、植物の工場生産において最も
大傘な問題であった経済性の問題が解決され、植物の周
年的計画生産が可能となるなど実用上極めて大きな効果
が得られている。
In addition, fluorescent lamps and incandescent lamps are used as artificial light sources (103). As is clear from this figure, contrary to conventionally predicted results, no difference was observed in the growth rate (relationship between salad greens' softness and number of growing days) at each illuminance from 3/ux to 15Ktux. Approximately 2 salad vegetables in 10 days
It was discovered that it grows to 0 times the tit. As a result,
According to this method, 3Klux, which is about 1/7 of the light saturation illuminance (20Ktux) when light is irradiated from above, is obtained.
It was discovered that plant growth could be promoted in the same way as in the past even at low illuminance levels of , 1L-, solving the economical problem that was the most important problem in factory production of plants, and making annual planned production of plants possible. This has resulted in extremely significant practical effects.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の方法によれば、低照度におい
ても著しく生長を促進することができるが、照度をさら
にi<してもそれ以上は生長を促進できないという問題
点があった。
However, according to the above-mentioned conventional method, although growth can be significantly promoted even at low illuminance, there is a problem in that even if the illuminance is further increased to i<, growth cannot be further promoted.

この発明は、上記のような問題点を解消する之めになさ
れたもので、従来の飽和生長速度を打破し、さらに高速
に植物を生長させることができる育成方法を提供するこ
とを目的としている。
This invention was made to solve the above-mentioned problems, and aims to provide a growing method that can overcome the conventional saturated growth rate and grow plants even faster. .

r問題点t′s決するための手段〕 この発明に係る植物言説方法は、植物体の周方向から同
時に光を照射し、気温を上方からのみ光を照射した場合
の最適気温より高く保つと共に、CO2濃度を大気中の
濃度より鵬〈保つものである。
Means for Resolving Problems] The plant communication method according to the present invention simultaneously irradiates light from the circumferential direction of the plant body, maintains the temperature higher than the optimum temperature when light is irradiated only from above, and This is to keep the CO2 concentration lower than that in the atmosphere.

〔作用〕[Effect]

この発明における周方向からの光の照射は、植物体の上
方からのみ光を照射した場合よシ低い照度で上記植物体
の生長を促進でき、しかも気温を上方からのみ光を照射
した場合の最適気温より高ぐ保つことおよび002濃度
を大気中の濃度よシ品ぐ保つことにより、上記植物体の
生長°をさらに促進できる。
In this invention, the irradiation of light from the circumferential direction can promote the growth of the plants at a lower illuminance than when the light is irradiated only from above, and the temperature is optimal when the light is irradiated only from above. By keeping the temperature higher than the air temperature and keeping the 002 concentration much higher than that in the atmosphere, the growth of the plants can be further promoted.

〔実抱例〕[Actual example]

この発明は、低照度の光を植物体の周方向から同時に照
射して植物の生長を促進する育成方法?基本とし、従来
の常識を趣え次範囲で気温の効果を詳細に検討した結果
得られ友ものである。すなわち、第3図に上方からのみ
元を照射(以下上方照射と略す)した場合のサラダ菜の
生長速度(相対値)と気温(℃)との関係を示すように
、上方照射の場合においては、最もよく生長促進される
最適2温(第3図の例では22℃前後)が定まっており
、この温度より高くても低くても生長速度が低下すると
いうのが常識でめったが、本発明者らは、植物体の周方
向から同時に光を照射(以下周方向照射と略す)した場
合には、上記従来の最適気温より高い頭硫に新たな最適
気温が存在することを見出し九。しかも、この新たな最
適気温における生長速度が従来の飽和生長速度を上まわ
ること上用らかにした。このように、周方向照射方法に
おいては、生長速度に及ぼす気温の効果が上方照射方法
の場合と異なることを見出し、この発明に、至った。
This invention is a growing method that simultaneously irradiates low-intensity light from the circumferential direction of the plant to promote plant growth. This is the result of a detailed study of the effects of temperature in the following ranges, based on conventional wisdom. In other words, in the case of upward irradiation, as shown in Figure 3, which shows the relationship between the growth rate (relative value) of salad vegetables and the temperature (°C) when the source is irradiated only from above (hereinafter referred to as upward irradiation). The two optimal temperatures that best promote growth (around 22°C in the example in Figure 3) have been determined, and it is common knowledge that the growth rate will rarely decrease if the temperature is higher or lower than this temperature, but the inventors of the present invention found that when light is irradiated simultaneously from the circumferential direction of the plant body (hereinafter referred to as circumferential irradiation), a new optimum temperature exists in the head sulfur, which is higher than the conventional optimum temperature.9. Moreover, the growth rate at this new optimum temperature exceeds the conventional saturated growth rate. In this manner, it was discovered that the effect of temperature on the growth rate in the circumferential irradiation method is different from that in the upward irradiation method, leading to the present invention.

以下、この発明の一実施例を図をもとに説明する。この
発明の一実癩例による方法を夷絶するのに用いた装置は
第1図に示す従来のものと同一であり、ifcM成方法
は気温が異なるだけであるので、説明を省略する。
An embodiment of the present invention will be described below with reference to the drawings. The apparatus used to extinguish the leprosy method according to one embodiment of the present invention is the same as the conventional one shown in FIG. 1, and the ifcM formation method differs only in temperature, so a description thereof will be omitted.

光を周方向から同時に照射した場合のGO2d/1j1
200 ppmにおけるサラダ菜の生長速度(相対値)
と気温との1@係を照度をパラメータとして調べた・第
4図にその結果を示す。この冥躾結果から2つの新しい
現象が見出された。すなわち、その第1は、上方照射に
よる育成方法においては、第3図に示すように、サラダ
菜の最適気温が22℃ml後であるのに対し、周方向照
射によれば、上記最適気温はそれより高くなり、ま之、
高照度となる程より高くなることである。例えば第4図
の例では、5Ktuxにおける最適気温は26℃前後、
15Ktuxにおいてはzcrcl¥i]後となり、周
方向照射における最適気温は上方照射におけるそれより
大体5〜10℃1偽くなる。第2は、第2図に示したよ
うに、シ温が2o℃においては照度を高めても(3Kt
ux→102よび15に/、ux)生長速度はあまり変
化しなかったが、上述の如く気温を高めることにより、
従来以上に高速生長させることができることである。
GO2d/1j1 when light is irradiated simultaneously from the circumferential direction
Growth rate of salad greens at 200 ppm (relative value)
The relationship between temperature and temperature was investigated using illuminance as a parameter. Figure 4 shows the results. Two new phenomena were discovered from the results of this training. That is, the first is that in the growing method using upward irradiation, the optimal temperature for salad vegetables is after 22℃ml, as shown in Figure 3, whereas according to the circumferential irradiation, the optimum temperature is 22°C. It's higher, mano,
The higher the illuminance, the higher the illuminance. For example, in the example shown in Figure 4, the optimal temperature at 5Ktux is around 26℃,
At 15 Ktux, it is after zcrcl\i], and the optimum temperature for circumferential irradiation is approximately 5 to 10°C 1 higher than that for upward irradiation. Second, as shown in Figure 2, when the temperature is 2oC, even if the illuminance is increased (3Kt
ux → 102 and 15/, ux) The growth rate did not change much, but as mentioned above, by increasing the temperature,
It is possible to grow at a faster rate than before.

以上のように1周方向照射における育成気温を通常の上
方照射における最適気温より高くすることにより、生長
速度を従来の飽和生長速度より増大させることができる
As described above, by setting the growth temperature in one circumferential irradiation higher than the optimum temperature in normal upward irradiation, the growth rate can be increased above the conventional saturated growth rate.

なお、上記夷怖列では、002嗟度は1200ppmと
したが、これに限るものではなく、大気中のCOq濃度
(300ppm l¥iI後)より高くすればよい。
In addition, in the above-mentioned fear series, the 002 intensity was set to 1200 ppm, but it is not limited to this, and it may be set higher than the COq concentration in the atmosphere (after 300 ppm l\iI).

まt、上記実施例では生にサラダ菜の場合について説明
したが、化の植物であってもよく、植物や照度などによ
って最適な気温も異なるが、上方照射における最適気温
より3〜b 好ブしい。
Also, in the above example, the case of raw salad vegetables was explained, but it may also be a green plant, and the optimum temperature varies depending on the plant and the illuminance, but it is preferable to 3 to 50% higher than the optimum temperature for upward irradiation. .

ま之、第1図に示す植物育成装置では植物育成室(10
1)、 (104)を円筒形としたが、球形あるいは矩
形であっても同様の結果となる。また、光源として人工
光源(103)を用いたが、太陽光を利用してもよい。
However, the plant growing device shown in Figure 1 has a plant growing room (10
1) and (104) are assumed to be cylindrical, but the same results will be obtained even if they are spherical or rectangular. Further, although an artificial light source (103) was used as a light source, sunlight may also be used.

まt、この発明で周方向とは、本来、植物体の前後左右
および上下のすべてを怠味するが、少なくとも前後左右
および上方から光を照射すればよいO い。
Also, in this invention, the circumferential direction originally refers to all of the front, rear, left and right sides, and top and bottom of the plant, but it is sufficient to irradiate light from at least the front, back, left and right, and from above.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、植物体の周方向から
同時に光を照射し、気温を上方からのみ光を照射した場
合のi&通気温よV島〈医つと共に、002濃度を大部
中の濃度より茜〈保つようにしたので、植物の生長をさ
らに促進することができる効果がある。
As described above, according to the present invention, when light is simultaneously irradiated from the circumferential direction of the plant body and light is irradiated only from above, the 002 concentration can be reduced by Since the concentration was kept at a lower concentration than the inside, it has the effect of further promoting the growth of plants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来およびこの発明の一実施例による方法を笑
捲する実験に用いた植物育成装置を示す構成図、第2図
は光を周方向から同時に照射した場合のサラダ菜の重量
と育我日数の関係を照度3〜15にムXについて示す特
性図、第3図は光を上方からのみ照射した場合のサラダ
菜の生長速度と2県の関係を示す特性図、第4図は光を
周方向から同時に照射した場合の生長速度と気温との関
係を照度をパラメータとして示す特性図である。 図において、(101)は2重円筒形植物育成室の外筒
、 (102)は反射材、(103)は人工光源、(1
04)は円筒、(105)は栽培ポット、(201)は
空調装置、(301)は栄養塩溶ば、(2)はCO2注
入口である。
Fig. 1 is a configuration diagram showing a plant growing apparatus used in experiments to demonstrate conventional methods and methods according to an embodiment of the present invention, and Fig. 2 shows the weight and growth of salad greens when light is simultaneously irradiated from the circumferential direction. Figure 3 is a characteristic diagram showing the relationship between the number of days and the illuminance of 3 to 15 for Mu X. Figure 3 is a characteristic diagram showing the relationship between the growth rate of salad vegetables and two prefectures when light is irradiated only from above. FIG. 3 is a characteristic diagram showing the relationship between growth rate and temperature when irradiated from both directions at the same time, using illuminance as a parameter. In the figure, (101) is the outer cylinder of the double cylindrical plant growth chamber, (102) is the reflective material, (103) is the artificial light source, and (1
04) is a cylinder, (105) is a cultivation pot, (201) is an air conditioner, (301) is a nutrient solution, and (2) is a CO2 injection port.

Claims (2)

【特許請求の範囲】[Claims] (1)植物体の周方向から同時に光を照射し、気温を上
方からのみ光を照射した場合の最適気温より高く保つと
共に、CO_2濃度を大気中の濃度より高く保つことを
特徴とする植物育成方法。
(1) Plant cultivation characterized by simultaneously irradiating light from the circumferential direction of the plant body, keeping the temperature higher than the optimum temperature when light is irradiated only from above, and keeping the CO_2 concentration higher than the concentration in the atmosphere. Method.
(2)気温を上方からのみ光を照射した場合の最適気温
より3〜10℃高く保つ特許請求の範囲第1項記載の植
物育有方法。
(2) The method for growing plants according to claim 1, in which the temperature is kept 3 to 10° C. higher than the optimum temperature when light is irradiated only from above.
JP59224784A 1984-10-23 1984-10-23 Plant growing method Pending JPS61100132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59224784A JPS61100132A (en) 1984-10-23 1984-10-23 Plant growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59224784A JPS61100132A (en) 1984-10-23 1984-10-23 Plant growing method

Publications (1)

Publication Number Publication Date
JPS61100132A true JPS61100132A (en) 1986-05-19

Family

ID=16819148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59224784A Pending JPS61100132A (en) 1984-10-23 1984-10-23 Plant growing method

Country Status (1)

Country Link
JP (1) JPS61100132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287423A (en) * 1987-05-18 1988-11-24 Watanabeyasushi Kk Acclimatizing apparatus for plant tissue culture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287423A (en) * 1987-05-18 1988-11-24 Watanabeyasushi Kk Acclimatizing apparatus for plant tissue culture

Similar Documents

Publication Publication Date Title
US4817332A (en) Method of enhancing plant growth and apparatus for performing the same
US5299383A (en) Plant cultivation method and apparatus therefor
US4068405A (en) Automatic food plant production
Kozai Acclimatization of micropropagated plants
US5269093A (en) Method and apparatus for controlling plant growth with artificial light
JPH038731B2 (en)
JPH10178899A (en) Plant cultivation device, cultivation method using the same and recording medium recording the same
WO2019227680A1 (en) Method for increasing vc content of leafy vegetables in plant factory
JPH1166A (en) Plant culturing method and apparatus therefor
JPS63240731A (en) Plant cultivation method and apparatus
JPS61100132A (en) Plant growing method
US5174793A (en) Method of enhancing plant growth using light levels lower than photo saturation intensity
JPS61100131A (en) Plant growing method
CN110771504B (en) Sugar-free culture strong seedling transplanting method for rehmannia detoxified seedlings
JPS6255025A (en) Plant culture apparatus
JPH0325123B2 (en)
RU2281647C2 (en) Method for hydroponic growing of c3 plants
JPS6251931A (en) Plant growing method
KR100472961B1 (en) Method for massive production of high quality potato plug seedlings
CN219919934U (en) Tissue culture climatic box suitable for tropical plants
JP2732184B2 (en) Culture method of plant tissue culture seedling
RU2681450C1 (en) Method of hydroponic lettuce cultivation
KR100189575B1 (en) Apparatus for cultivating seedling
JPH04207128A (en) Apparatus for cultivating plant
JPH01128729A (en) Device for growing plant