JPS61100131A - Plant growing method - Google Patents

Plant growing method

Info

Publication number
JPS61100131A
JPS61100131A JP59224779A JP22477984A JPS61100131A JP S61100131 A JPS61100131 A JP S61100131A JP 59224779 A JP59224779 A JP 59224779A JP 22477984 A JP22477984 A JP 22477984A JP S61100131 A JPS61100131 A JP S61100131A
Authority
JP
Japan
Prior art keywords
light
plant
concentration
irradiated
illuminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59224779A
Other languages
Japanese (ja)
Inventor
彰 池田
江崎 謙治
繁樹 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59224779A priority Critical patent/JPS61100131A/en
Publication of JPS61100131A publication Critical patent/JPS61100131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、人工的に作られた環境のもとて植物を育成
する方法に関し、特に光およびCO2濃度に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to a method for growing plants in an artificially created environment, and in particular to light and CO2 concentration.

〔従来の技術〕[Conventional technology]

植物の育成環境条件を制御することにより植物の生長を
促進し、植物を工業的に生産しようとする新しい植物育
成方法およびそのシステムが工夫され工いる。
New plant growing methods and systems are being devised to promote plant growth and produce plants industrially by controlling plant growing environmental conditions.

植物は一般に、葉において水とOO2を基本とし、光エ
ネルギが加えられることにより有機物を生産しく光合成
)、その一部は個体維持のためのエネルギとして消費さ
れ、残シは葉や根などの器官に分配、蓄積され、各器官
は底長じていく。このような植物において、光、 CO
2濃度、温度などの環境条件を制御してその生長を著し
く促進することが可能であシ、その結果、土地の生産性
が飛躍的に向上するという効果がもたらされ、植物の工
場生産が可能になった。
In general, plants use water and OO2 as their base in their leaves, and when light energy is added, they produce organic matter (photosynthesis), some of which is consumed as energy for maintaining the individual, and the remainder is used to produce organs such as leaves and roots. It is distributed and accumulated, and each organ becomes longer and longer. In such plants, light, CO
It is possible to significantly promote their growth by controlling environmental conditions such as concentration and temperature, resulting in a dramatic increase in land productivity and the possibility of factory production of plants. It's now possible.

この場合、光源として太陽光を利用すれば省エネルギに
なると考えられるが、季節的な気象変化により光量が変
動し、それに伴って温度、湿度などの環境条件が変化す
るため、このような変動環境下の植物の反応は複雑であ
シ植物の周年的計画生産が困難となる。また一定の環境
条件を作るために巨大な空調コストが必要となシ、結局
、経済的でないという問題があった0 そこで、周年的計画生産を目指して、太陽光の代わシに
一定強度の人工光源を用いて植物の生、長を促進しよう
とする工夫がなされている。この場合、他の環境要因も
一定条件に制御しやすいという利点があるが、照明電力
が膨大となシ経済的でないという問題点があった。
In this case, it would be possible to save energy by using sunlight as a light source, but the amount of light fluctuates due to seasonal weather changes, and environmental conditions such as temperature and humidity change accordingly. The reactions of the plants below are complex, making it difficult to plan year-round production of the plants. In addition, huge air conditioning costs were required to create certain environmental conditions, which was ultimately uneconomical. Therefore, with the aim of year-round production planning, artificial Efforts have been made to use light sources to promote the growth and length of plants. In this case, there is an advantage that other environmental factors can be easily controlled to constant conditions, but there is a problem that the lighting power is enormous and it is not economical.

このような問題点を解決するための一つの方法として、
植物体の上方からのみ光を照射した場合の光飽和照度よ
りも低照度の光を、上記植物体の周方向から同時に照射
すると共に、C02濃度を大気中濃度より高く保つよう
にすることにより、極めて低照度で上記植物体の生長を
促進することができる植物育成方法が提案されている。
One way to solve these problems is to
By simultaneously irradiating the plant body from the circumferential direction with light having a lower illuminance than the saturation illuminance when light is irradiated only from above the plant body, and by maintaining the CO2 concentration higher than the atmospheric concentration, A plant growing method has been proposed that can promote the growth of the above-mentioned plants at extremely low illuminance.

以下、図を用いてこの方法をさらに詳しく説明する。第
1図はこの)方法を実証する実験に用いた植物育成装置
を示す構成図でおる。図において、(1O1)は円筒形
の植物育成室の外筒でアシ、内周が例えばhlなどの反
射材(1O2)で形成され、反射材(1O2)に沿って
人工光源(1OS)が設置されている。(104)はガ
ラスで形成された内筒であシ、外筒(101)と共に2
重円筒形の植物育成室を構成している。植物体は内筒(
104)内に固定して設置された栽培ポット(1o5)
に植えられ、人工光源(103)によυ照射されて生長
する。この時、植物体には周方向から光が照射されるこ
とになシ、円筒の上端および下端をのぞいて円筒(10
4)内のあらゆる方向および場所で均一な照度が得られ
ることが確認された。人工光源(1OS)の放熱はクー
ラ(106)からの冷風によって除去される。また、内
筒(104)内に導かれる空気は、空調装置(2OX)
により予め所定の温度および湿度に調節されて、円筒(
11o4)の下部から導入され上部から排出され、プロ
ア(1)により再び空調装置(201)に戻るというよ
うに循環する。CO2は002発生装置、例えば002
ボンベ(図示せず)により循環通路の途中に峠けられた
CO,注入口(2)から注入される0″また、循環通路
には新鮮空気取入れ口(3)および排出口(4)を設け
て循環空気の一部を更新する0この際、循環空気中の0
0.濃度を所定の値に保つようにCO2が供給され、C
02濃度はC02供給量によって調節される。
This method will be explained in more detail below using figures. FIG. 1 is a block diagram showing a plant growing apparatus used in an experiment to demonstrate this method. In the figure, (1O1) is the outer cylinder of a cylindrical plant growth chamber with reeds, the inner circumference is made of reflective material (1O2) such as HL, and an artificial light source (1OS) is installed along the reflective material (1O2). has been done. (104) is an inner cylinder made of glass, and together with the outer cylinder (101), two
It consists of a heavy cylindrical plant growth chamber. The plant body has an inner cylinder (
104) Cultivation pot fixedly installed inside (1o5)
It is planted in the field and grows by being irradiated with an artificial light source (103). At this time, the plant body is irradiated with light from the circumferential direction, and the cylinder (10
4) It was confirmed that uniform illuminance could be obtained in all directions and locations. Heat dissipation from the artificial light source (1OS) is removed by cold air from the cooler (106). In addition, the air guided into the inner cylinder (104) is connected to an air conditioner (2OX).
The cylinder (
11o4) is introduced from the lower part, discharged from the upper part, and returned to the air conditioner (201) by the proa (1), thereby circulating. CO2 is 002 generator, e.g. 002
CO is pumped in the middle of the circulation passage by a cylinder (not shown), 0'' is injected from the inlet (2), and the circulation passage is provided with a fresh air intake (3) and an outlet (4). At this time, the 0 in the circulating air is renewed.
0. CO2 is supplied to keep the concentration at a predetermined value, and C
The 02 concentration is adjusted by the C02 supply amount.

なお、空調装置(ZOl)は冷却機(202)と、スプ
レーノズル(203)および充tfA層(204)を備
えた水スプレ一部と、ヒータ(205)から構成される
装置i (201)に送入された空一気は冷プライン(
206)を用いた冷却器(202)により冷却された後
、ポンプ(5)により貯留水槽(ZO+7)の水がスプ
レーノズル(203)に送られ、充填層(204)で加
湿され、その後ヒータ(205)によ9加温されて、所
定の温度および湿度に調節される。一方、(301)は
所定濃度の栄養塩溶液でおシ、液恒温槽(302)によ
り所定の温度に保たれ、ポンプ(6)により栽培ポット
(105) 。
The air conditioner (ZOl) is a device i (201) consisting of a cooler (202), a water spray part equipped with a spray nozzle (203) and a filled tfA layer (204), and a heater (205). The injected air is transferred to a cold prine (
After being cooled by the cooler (202) using the heater (206), the water in the storage tank (ZO+7) is sent to the spray nozzle (203) by the pump (5), humidified by the packed bed (204), and then sent to the heater ( 205) and adjusted to a predetermined temperature and humidity. On the other hand, (301) is filled with a nutrient salt solution of a predetermined concentration, kept at a predetermined temperature by a liquid constant temperature bath (302), and placed in a cultivation pot (105) by a pump (6).

に送られた後、タンク(303)に戻るo(7)は空気
ポンプでアシ、栄養塩溶液(301)はこの空気ポンプ
(7)によりエアレーションされ、充分な溶存酸素量が
保たれる。
The nutrient salt solution (301) is aerated by the air pump (7), which returns the solution to the tank (303), and a sufficient amount of dissolved oxygen is maintained.

上記の植物育成装置を用い、サラダ菜を一例として、照
度を3Kluxから15 Kluxまで変化させ、その
重量(一と育成日数(日との関係を調べた0第2図にそ
の結果を示す。この時、C02濃度は1200ppm気
温は20℃、栄養塩溶液(301)の液温は21℃、相
対湿度は80%、風速は0.5rrV/aeC1栄養塩
濃度は1.2ミリモー,pH5〜6.5,日長は24時
間であった。
Using the above-mentioned plant growing device, we varied the illumination intensity from 3 Klux to 15 Klux using salad greens as an example, and investigated the relationship between the weight (1) and the number of growing days (0).The results are shown in Figure 2. , C02 concentration is 1200ppm, temperature is 20℃, liquid temperature of nutrient solution (301) is 21℃, relative humidity is 80%, wind speed is 0.5rrV/aeC1 nutrient concentration is 1.2 mm, pH 5-6.5 , the photoperiod was 24 hours.

また、人工光源(:LO3)として螢光灯と白熱灯を用
いた。この図から明らかなように従来から予測される結
果に反して3Klu+cから15に/uxにおける各照
度での生長速度(サラダ菜の重量と育成日数との関係)
に差異が認められず、それぞれ、サラダ菜は10日間で
約20倍の重量に生長することが見出された。この結果
、この方法によれは、上方から光を照射した場合の光飽
和照度(20Klux)の約1/7である3に!!υX
という低照度でも従来と同様に植物の生長を促進できる
ことが見出され、植物の工場生産において最も大きな問
題であった経済性の問題が解決され、植物の周年的計画
生産が可能となるなど実用上極めて大きな効果が得られ
ている。
Further, a fluorescent lamp and an incandescent lamp were used as an artificial light source (:LO3). As is clear from this figure, the growth rate at each illuminance from 3Klu+c to 15/ux (relationship between weight of salad greens and number of growing days) is contrary to conventionally predicted results.
It was found that the salad greens grew to about 20 times the weight in 10 days, with no difference observed. As a result, with this method, the distortion is reduced to 3, which is about 1/7 of the light saturation illuminance (20Klux) when light is irradiated from above! ! υX
It was discovered that plant growth could be promoted in the same way as in the past even at such low illumination levels, solving the economic problem that was the biggest problem in factory plant production, and making it possible to produce plants year-round in a planned manner. An extremely large effect has been obtained.

(発明が解決しようとする問題点〕 しかしながら、上記従来の方法においては、植物体の上
方からのみ光を照射しfc場合の光飽和照度よりも低照
度の光を植物体の周方向から同時に照射しているので、
上記植物体の生長速度はあまシ変わらないが、含水率が
増加し、乾物生産量が低下してしまうという問題点があ
った0表1はサラダ菜のC02濃度12oo 1)1)
mにおける照度と含水率の関係を示したものでおる。
(Problems to be Solved by the Invention) However, in the above conventional method, light is irradiated only from above the plant, and light with an illuminance lower than the light saturation illuminance in the case of fc is simultaneously irradiated from the circumferential direction of the plant. Because I am doing
Although the growth rate of the above-mentioned plants remains the same, there is a problem that the moisture content increases and the dry matter production decreases.
This figure shows the relationship between illuminance and water content at m.

この表から、照度が低くなるに従って含水率が増加して
いることがわかる0 この発明は上記のような問題点を解決するためになされ
たもので、植物の生長を促進すると共に胛度低下に伴な
う含水率の増加を防止し、低照度で含水率の低い植物を
育成する方法を提供することを目的としている0 L問題点を解決するための手段〕 この発明に係る植物育成方法は、植物体の上方からのみ
光を照射した場合の光補償点よp数KIUX高い照度の
光を、上記植物体の周方向から同時に照射すると共に、
C02濃度を上記上方からのみ光を照射した場合の光合
成飽和に相当するCo2濃度より高くするものである。
From this table, it can be seen that the moisture content increases as the illuminance decreases. This invention was made to solve the above-mentioned problems. [Means for Solving the 0L Problem] A method for growing plants according to the present invention aims to prevent the accompanying increase in water content and to provide a method for growing plants with low water content under low illuminance. , simultaneous irradiation of light from the circumferential direction of the plant body with an illuminance that is p number KIUX higher than the light compensation point when light is irradiated only from above the plant body,
The CO2 concentration is made higher than the Co2 concentration corresponding to photosynthetic saturation when light is irradiated only from above.

(作用〕 この発明における周方向からの光の照射は、植物体の上
方からのみ元を照射した場合より低い照度で上記植物体
の生長を促進でき、しかもCo2 濃度を上方からのみ
元を照射した場合の光合成飽和に相当するCo、 a度
より高くすることにより、低照度でも含水率の低い植物
を育成することが可能となる。
(Effect) The irradiation of light from the circumferential direction in this invention can promote the growth of the plant at a lower illuminance than when the source is irradiated only from above, and the Co2 concentration can be reduced by irradiating the source only from above. By increasing the Co and A degrees, which corresponds to photosynthetic saturation in the case, it becomes possible to grow plants with low water content even at low illuminance.

〔実施例〕〔Example〕

以下、この発明の一実施例を図をもとに説明する0 この発明は、低照゛度の光を周方向から同時に照射する
植物育成方法を基本とし、従来の常識を越えた範囲でC
02濃度の影響を詳細に検討した結果得られたものであ
る。すなわち、C02施肥の効果が顕著に発揮されるの
は、第3図に示す−ように、光補償点(光合成速度と呼
吸速度とが等しくなる照度で、植物の種類によって決ま
っておシ、だいたい1〜3 Kluxである)より相轟
高い光飽和点近傍であるのが常識であったが、本発明者
らは、上記光補償点より数Kluχだけ高い弱光(だい
たい3〜)Klux )でも照射を周方向から同時に行
なえばoo2施肥の効果が充分に発揮され、その結果、
含水率が低下することを見出した。しかも、この含水率
の低下は従来の上方からのみ照射において施肥されるC
02濃度をはるかに越えても見られることを明らかにし
た。
An embodiment of the present invention will be described below with reference to the drawings. This invention is based on a plant growing method in which low-intensity light is irradiated simultaneously from the circumferential direction.
This was obtained as a result of a detailed study of the influence of 02 concentration. In other words, the effect of C02 fertilization is most pronounced at the light compensation point (the illuminance at which the photosynthetic rate and the respiration rate are equal, as shown in Figure 3), which is determined by the type of plant, and is roughly determined by the type of plant. It was common knowledge that the light saturation point is near the light saturation point, which is higher than the light compensation point (approximately 3 to 3 Klux), but the inventors have found that even with weak light (approximately 3 to 3 Klux), which is several Klux higher than the optical compensation point, If irradiation is carried out simultaneously from the circumferential direction, the effect of oo2 fertilization will be fully demonstrated, and as a result,
It was found that the water content decreased. Moreover, this decrease in moisture content is caused by the conventional fertilization using C only from above.
It has been revealed that it can be seen even at concentrations far exceeding 02 concentration.

このように、低照度の光を植物体の周方向から同時に照
射する育成方法と組合せると、002施肥効果が充分に
発揮される条件は従来と異なることを見出しこの発明に
至った0 以下さらに詳細に説明する0 この発明の一実施例による方法を実施するのに用いた装
置は第1図に示す従来のものと同一である。育成方法は
Co2濃度が異なるだけであるので省略する。
In this way, we discovered that when combined with a growth method in which low-intensity light is irradiated simultaneously from the circumferential direction of the plant body, the conditions under which the 002 fertilization effect is fully exerted are different from conventional ones, leading to this invention. DETAILED DESCRIPTION The apparatus used to carry out the method according to one embodiment of the invention is the same as the conventional apparatus shown in FIG. The growth method is omitted because the only difference is the Co2 concentration.

この実験により2つの新しい事実を見出した。すなわち
、その第1は数KIIJXという弱光を植物体の周方向
から同時に照射し、かつCO,濃度を大気濃度より高め
ることによって、生長を著しく促進できることである。
Two new facts were discovered through this experiment. That is, the first is that growth can be significantly promoted by simultaneously irradiating weak light of several KIIJX from the circumferential direction of the plant and raising the CO concentration above the atmospheric concentration.

照度を5Kluxから15Kluxまで変化させ、サラ
ダ菜の生長率(1日の生重量の増加)と照度(K10X
 )との関係をC02濃度(ppm )をパラメータと
して調べた。第3図にこれらの結果を示し、同時に上方
照射の場合の結果を示す。図から明らかなように、光補
償点(この例では約2Klux )より数K1..だけ
高い51’uxという低照度において、通常の上方から
のみの照射ではOO3施用効果が見られないが、植物体
に光を周方向から同時に照射するようにすればCo2施
用効果が充分に発揮されることを見出した。
The illuminance was changed from 5Klux to 15Klux, and the growth rate of salad vegetables (increase in fresh weight per day) and illuminance (K10X
) was investigated using the CO2 concentration (ppm) as a parameter. FIG. 3 shows these results, and also shows the results for upward illumination. As is clear from the figure, the optical compensation point (about 2 Klux in this example) is several K1. .. At a low illuminance of 51'ux, the effect of applying OO3 cannot be seen with normal irradiation only from above, but if the plant is simultaneously irradiated with light from the circumferential direction, the effect of applying Co2 can be fully demonstrated. I discovered that.

これは、通常の上方からのみの照射では、光補償点より
数KIIIX高い程度の低照度においては植物体に照射
される光量が少なく、生長速度は光量に律速されてCo
2濃度の依存性が小さくなる。−方、周方向から同時に
照射すれば、低照度であつ又も植物体に照射される光量
が多くな)、生長速度は今度はCog濃度に律速される
ことによるものと思われる。また、周方向から同時九光
照射した場合、照度が高い領域で生長速度が制限される
のは、光合成の暗反応(デンプンなどが同化される一連
の反応)の律速によるものと思われる。以上のように、
植物体に光を周方向から同時に照射すれは、低エネルギ
密度において高エネルギ密度におけると同様に生長を促
進することができる。
This is due to the fact that with normal irradiation only from above, the amount of light irradiated to the plant is small at low illuminance several KIIIX higher than the light compensation point, and the growth rate is limited by the amount of light.
2 concentration dependence becomes smaller. On the other hand, if irradiation is performed simultaneously from the circumferential direction, the illumination intensity is low and the amount of light irradiated onto the plant body is large.) This is thought to be due to the fact that the growth rate is in turn determined by the Cog concentration. Furthermore, when nine lights are irradiated simultaneously from the circumferential direction, the growth rate is limited in areas with high illuminance, which is thought to be due to the rate-limiting effect of the dark reaction of photosynthesis (a series of reactions in which starch and other substances are assimilated). As mentioned above,
By simultaneously irradiating the plant body with light from the circumferential direction, growth can be promoted at low energy densities in the same way as at high energy densities.

第2は、上記低照度の光を局方向から同時に照射する育
成方法において、C02濃度を通常施用する濃度より数
倍高くすることにより、含水率が増加し乾物生産量が低
下するのを防止できることである。以下、詳細に説明す
る。第4図は通常の上方からのみ党を照射してレタスを
育成した場合の生体重量(水を含む)と乾物重量の増加
に及ぼすCO2濃度の効果を示し、これは文献(矢吹万
寿。
Second, in the above-mentioned growth method in which low-intensity light is irradiated simultaneously from local directions, increasing the CO2 concentration several times higher than the concentration normally applied can prevent an increase in moisture content and a decrease in dry matter production. It is. This will be explained in detail below. Figure 4 shows the effect of CO2 concentration on the increase in live weight (including water) and dry weight when lettuce is grown by irradiating the lettuce only from above, which is based on the literature (Manju Yabuki).

19a5:農業気象20 : 1z5〜129)より引
用したものである。この図から明らかなように、上方か
らのみ党を照射した場合は、一般にC02濃度が15o
o ppm (光合成飽和に相当するCO2濃度と一般
に考えられる)以上では乾物重量はほとんど増加しない
が、生体重量は徐々に増加し、植物体の含水率が増加す
ることになる。表2はこの発明の一実施例による実験結
果を示し、上記第3図にその結果を示した実験において
、5Kluxの低照度の光を植物体の周方向から同時に
照射した場合の植物体(この例ではサラダ菜)の含水率
(叫とC02f11度(ppm )との関連を示してい
る。
19a5: Agricultural Meteorology 20: 1z5-129). As is clear from this figure, when the particle is irradiated only from above, the CO2 concentration is generally 15°C.
At or above 0 ppm (generally considered to be the CO2 concentration corresponding to photosynthetic saturation), the dry weight hardly increases, but the living weight gradually increases and the water content of the plant increases. Table 2 shows the experimental results according to one embodiment of the present invention. In the experiment shown in FIG. 3 above, the plant body (this The example shows the relationship between the water content (salad greens) and C02f11 degrees (ppm).

この表および第3図から明らかなように、例えば5Kl
uxという低照度の光を植物体の周方向から同時に照射
した場合、上方からのみ光を照射した場合の光合成飽和
に相当するC02濃度(例えば1500ppm )より
低いCO2酋度(この例では350.1200ppm)
と高いOOs+ a一度(この例では4000ppm 
)を比べると、高いCO2濃度を用いた方が生長率は高
く、12かも含水率が低下すなわち乾物重量が増加して
いることが分かる。  ゛ 以上のように、上方からのみ光を照射した場合の光補償
点(1〜3 K/LI! )より数KbXだけ高い弱光
(3〜7 Ktux )を植物体の周方向から同時に照
射すれば、C02施用の効果を充分に発揮させることが
でき、生長を低下させることなくむしろ促進して、しか
も含水率の増加を防止することができる。
As is clear from this table and Figure 3, for example, 5Kl
When low-intensity light called UX is simultaneously irradiated from the circumferential direction of the plant body, the CO2 concentration (in this example, 350.1200 ppm) is lower than the CO2 concentration (for example, 1500 ppm) that corresponds to photosynthetic saturation when light is irradiated only from above. )
and high OOs+ a once (4000ppm in this example)
), it can be seen that the growth rate is higher when a higher CO2 concentration is used, and that the moisture content of 12 also decreases, that is, the dry weight increases.゛As mentioned above, it is possible to simultaneously irradiate the plant from the circumferential direction with weak light (3 to 7 Ktux), which is several KbX higher than the light compensation point (1 to 3 K/LI!) when light is irradiated only from above. For example, the effects of CO2 application can be fully exhibited, growth can be promoted rather than reduced, and an increase in water content can be prevented.

なお、上記実施例では主にサラダ菜の場合について説明
したが、他の葉菜植物であってもよく1、植物によって
光補償点や馬方向から同時に照射すると効果的な照度も
異なり、これらを考慮した結果、光補償点より数Klu
 x高い光を局方向から同時に照射すればよいと思われ
る。
In the above example, the case of salad vegetables was mainly explained, but other leafy vegetables may also be used1.The effective illuminance differs depending on the plant when irradiated at the same time from the light compensation point or from the direction of the horse, so these should be taken into consideration. As a result, several Klu from the optical compensation point
It seems that it is sufficient to simultaneously irradiate high x light from the local direction.

また、上方からのみ光を照射した一合の光合成飽和に相
当するao2濃度も、植物の種類や照射する光の照度な
どによって変化し、上記実施例で述べた1500 pp
mはほんの一例である。
In addition, the ao2 concentration, which corresponds to photosynthetic saturation when irradiated with light only from above, varies depending on the type of plant and the illuminance of the irradiated light, and is 1500 pp as described in the above example.
m is just an example.

また、この発明の一実施例を実施する装置として植物育
成室(1o1) 、 (1o4)が円筒形のものを示し
たが、球形おるいは矩形であっても同様の結果となる。
Moreover, although the plant growth chambers (1o1) and (1o4) are shown as having a cylindrical shape as an apparatus for carrying out an embodiment of the present invention, the same results will be obtained even if the plant growth chambers (1o1) and (1o4) are spherical or rectangular.

また、光源として人工光源(XOS)を用いたが、太陽
光を利用してもよい。
Further, although an artificial light source (XOS) was used as a light source, sunlight may also be used.

さらに、この発明で周方向とは、本来、植物体の前後左
右および上下のすべての方向を意味するが、少なくとも
前後左右および上方から光を照射すればよい。
Further, in the present invention, the circumferential direction originally means all directions of the plant body, front, back, left, right, and top and bottom, but light may be irradiated from at least the front, back, left, right, and above.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、柚物体の上方からの
み光を照射しfc場合の光補償点より数Ktux高い照
度の光を、上記他物体の局方向から同時に照射すると共
に、CO2濃度を上記上方からのみ光を照射した場合の
光合成飽和に相当するCO2濃度より高くしたので、低
照度で植物の生長を促進すると共に含水率の増加を防止
することができる効果がある。
As described above, according to the present invention, light is irradiated only from above the yuzu object, and light with an illuminance several Ktux higher than the light compensation point in the fc case is simultaneously irradiated from the local direction of the other objects, and the CO2 concentration is is higher than the CO2 concentration corresponding to photosynthetic saturation when light is irradiated only from above, which has the effect of promoting plant growth at low illuminance and preventing an increase in water content.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来およびこの発明の一実施例による方法を実
施する実験に用い−fc植物育成装置を示す構成図、第
2図は光を周方向から同時に照射した場合のサラダ菜の
重量と育成日数の関係を照度3〜1511uxについて
示す特性図、第3図はサラダ菜の生長率と照度の関係を
aOa濃度をパラメータとして光を上方からのみ照射し
た場合と周方向から同時に照射した場合について示す特
性図、第4図は光を上方からのみ照射した場合のレタス
の生体重量および乾物重量とCo、濃度との関係を示す
特性図である。 図において、(101)は2重円筒形植物育成室の外筒
、(102)は反射材、(1OS)は人工光源、(10
4)は円筒、(xo5)は栽培ポット、(zox)は空
調装置、(301)は栄養塩溶液、(2)は00.注入
口でおる。 1人 大巻 場雄 第3図 第4図 CO2濃度(pp−)
Fig. 1 is a configuration diagram showing the FC plant growing apparatus used in experiments to implement the conventional method and the method according to an embodiment of the present invention, and Fig. 2 shows the weight and growing days of salad greens when light is simultaneously irradiated from the circumferential direction. Figure 3 is a characteristic diagram showing the relationship between the growth rate of salad vegetables and illuminance for cases where light is irradiated only from above and simultaneously from the circumferential direction, using aOa concentration as a parameter. , FIG. 4 is a characteristic diagram showing the relationship between the live weight and dry weight of lettuce and Co and concentration when light is irradiated only from above. In the figure, (101) is the outer cylinder of the double cylindrical plant growth chamber, (102) is the reflective material, (1OS) is the artificial light source, (10
4) is a cylinder, (xo5) is a cultivation pot, (zox) is an air conditioner, (301) is a nutrient solution, (2) is 00. Pour into the inlet. 1 person Bao Ohmaki Figure 3 Figure 4 CO2 concentration (pp-)

Claims (1)

【特許請求の範囲】[Claims] 環境条件のうち少なくとも光とCO_2濃度とを制御し
て植物の生長を促進する植物育成方法において、植物体
の上方からのみ光を照射した場合の光補償点より数Kl
_u_x高い照度の光を、上記植物体の周方向から同時
に照射すると共に、CO_2濃度を上記上方からのみ光
を照射した場合の光合成飽和に相当するCO_2濃度よ
り高くすることを特徴とする植物育成方法。
In a plant growing method that promotes plant growth by controlling at least light and CO_2 concentration among environmental conditions, the temperature is several kiloliters below the light compensation point when light is irradiated only from above the plant body.
A method for growing a plant, characterized by simultaneously irradiating light with a high _u_x intensity from the circumferential direction of the plant body, and raising the CO_2 concentration higher than the CO_2 concentration corresponding to photosynthetic saturation when light is irradiated only from above. .
JP59224779A 1984-10-23 1984-10-23 Plant growing method Pending JPS61100131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59224779A JPS61100131A (en) 1984-10-23 1984-10-23 Plant growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59224779A JPS61100131A (en) 1984-10-23 1984-10-23 Plant growing method

Publications (1)

Publication Number Publication Date
JPS61100131A true JPS61100131A (en) 1986-05-19

Family

ID=16819076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59224779A Pending JPS61100131A (en) 1984-10-23 1984-10-23 Plant growing method

Country Status (1)

Country Link
JP (1) JPS61100131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188957A (en) * 1998-10-21 2000-07-11 Matsushita Electric Works Ltd Method and apparatus for storing plant seedling
WO2015163217A1 (en) * 2014-04-22 2015-10-29 岩谷産業株式会社 Plant cultivation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188957A (en) * 1998-10-21 2000-07-11 Matsushita Electric Works Ltd Method and apparatus for storing plant seedling
WO2015163217A1 (en) * 2014-04-22 2015-10-29 岩谷産業株式会社 Plant cultivation method

Similar Documents

Publication Publication Date Title
US4817332A (en) Method of enhancing plant growth and apparatus for performing the same
WO2022048302A1 (en) Method for accelerating vegetative growth to reproductive growth of leafy vegetables
JPH038731B2 (en)
Graves et al. Intermittent solution circulation in the nutrient film technique
WO2019227680A1 (en) Method for increasing vc content of leafy vegetables in plant factory
KR20170025460A (en) Cultivation method of spinach by using light quality in closed-type plant factory system
CN114847029A (en) Luminous environment regulation and control method for reducing melon melting rate of indoor cultivated cucumber
JPS61100131A (en) Plant growing method
CN115316247A (en) Plant factory sponge block water culture seedling method
JPS63240731A (en) Plant cultivation method and apparatus
US5174793A (en) Method of enhancing plant growth using light levels lower than photo saturation intensity
KR20180006992A (en) Cultivation method of spinach by using light quality in closed-type plant factory system
CN108076983B (en) Planting and seedling raising method for organic vegetables
JPS6255025A (en) Plant culture apparatus
JPH0325123B2 (en)
JPS61100132A (en) Plant growing method
CN110199760A (en) A kind of implantation methods that tea leaf quality can be improved
RU2189734C2 (en) Green hydroponic feed growing method
KR20190128406A (en) Water culture method of ginseng
Zieslin et al. Responses of rose cultivar Sonia and the rootstock Rosa indica major to changes in pH and aeration of the root environment
CN108094164A (en) A kind of implantation methods of ocean warship cabin
CN113016481B (en) Application of mixed light in promoting growth of cuttage plants and cultivation method
KR102629081B1 (en) Method of cultivating Astragalus membranaceus with increased growth using nutrient solution
RU2735220C1 (en) Cultivation method of plant growing products in vertically oriented greenhouse complexes
CA2005561A1 (en) Method and installation for hydro-ponically growing plants