JPH0324253A - Production of ni-ti superelastic alloy wire - Google Patents

Production of ni-ti superelastic alloy wire

Info

Publication number
JPH0324253A
JPH0324253A JP15657789A JP15657789A JPH0324253A JP H0324253 A JPH0324253 A JP H0324253A JP 15657789 A JP15657789 A JP 15657789A JP 15657789 A JP15657789 A JP 15657789A JP H0324253 A JPH0324253 A JP H0324253A
Authority
JP
Japan
Prior art keywords
alloy wire
superelastic alloy
wire
superelastic
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15657789A
Other languages
Japanese (ja)
Inventor
Hirohisa Iwai
岩井 博久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP15657789A priority Critical patent/JPH0324253A/en
Publication of JPH0324253A publication Critical patent/JPH0324253A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)

Abstract

PURPOSE:To produce an Ni-Ti superelastic alloy wire having high generating power by applying specific heating treatment to an Ni-Ti superplastic alloy wire of specific cold draft in a tension-applied state. CONSTITUTION:An alloy having a composition consisting of >= about 50atomic% Ni and the balance Ti or a composition formed by substituting one or more elements among Fe, Co, Cr, and Cu for a part of Ni and a part of Ti in the above composition, respectively, is worked at >=10% cold draft, by which an Ni-Ti superelastic alloy wire is prepared. Then, the above alloy wire is subjected, in a state where a tension, e.g. of about 5kgf/mm<2> is applied, to heating treatment at 250-<400 deg.C for 1sec-24hr. By this method, distortion, such as bend, can be removed at relatively low temp., and the Ni-Ti superelastic alloy wire having high generating power can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発生力が大きいN i −T i系超弾性合金
線材の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a N i -T i superelastic alloy wire that generates a large force.

〔従来の技術及び発四が解決しようとする課題〕従来N
 i −T i系超弾性合金線材としては、N i 5
1!1%,残部Ti又はそのNiとTiの一部をFe,
Cr,Co,Cuの何れかl種以止で置換したものが用
いられ、通常所定の冷間加工を施した仲線上りの線材を
400℃以上の温度で数秒から1時間程度の加熱処理を
施して造られている。加熱処理は、所定の冷間加工率を
加えた伸線上りのNi−Ti系超弾性合金線材を400
℃以上の加熱炉内に所定の速度で走行通過させて行なっ
ている。
[Conventional technology and problems that Hatsushi attempts to solve] Conventional N
As the i-Ti superelastic alloy wire, N i 5
1!1%, the remainder Ti or part of the Ni and Ti is Fe,
A wire rod substituted with one or more of Cr, Co, and Cu is used, and the wire rod that has been subjected to a specified cold working is usually heat-treated at a temperature of 400°C or higher for a few seconds to an hour. It is made with care. In the heat treatment, the drawn Ni-Ti superelastic alloy wire that has been subjected to a predetermined cold working rate is
The material is passed through a heating furnace at a temperature of .degree. C. or higher at a predetermined speed.

しかしながら上記製造方法で造られたNi−Ti系超弾
性合金線材は発生力が低く、ユーザから線径を規定され
た際に、必要な発生荷重を満足できない恐れがあった。
However, the Ni-Ti superelastic alloy wire manufactured by the above manufacturing method has a low generated force, and there is a possibility that the required generated load cannot be satisfied when the wire diameter is specified by the user.

即ち上記製造方法で造られた線径0.45m+iのN 
i −T i系超弾性合金線材のステージ部における発
生応力は第3図に示すように負荷時に46〜53kgl
/am.除荷時に歪が2〜8%で17〜25kgl/s
iである。
That is, N having a wire diameter of 0.45 m+i manufactured by the above manufacturing method
The stress generated in the stage part of the i-Ti superelastic alloy wire is 46 to 53 kgl when loaded, as shown in Figure 3.
/am. 17-25 kgl/s with strain of 2-8% during unloading
It is i.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み、種々検討の結果、高発生力を有す
るNi−Ti系超弾性合金線材の製造方法を開発したも
のである。
In view of this, and as a result of various studies, the present invention has developed a method for manufacturing a Ni-Ti based superelastic alloy wire having a high generated force.

即ち本発明は、冷間加工率lO%以上のNi−Ti系超
弾性合金線材に、張力を加えた状態で250℃以上、4
00℃未満の温度で1秒以上、24時間以下の加熱処理
を施すことを特徴とするものである。
That is, the present invention provides a Ni-Ti superelastic alloy wire with a cold working rate of 10% or more, which is heated at 250°C or more under tension at 4
It is characterized by performing heat treatment at a temperature of less than 00° C. for 1 second or more and 24 hours or less.

〔作用〕[Effect]

本発明において、Ni−Ti系超弾性合金線材とは、常
温で8%までの変形歪が除荷によって回復するものでN
i含有ffi50xl%以上、残部Ti又はそのNiと
Tiの一部をFe,Co,Cr,Cuの何れか1種以上
で置換したNi−Ti系超弾性合金の冷間加工上りの線
材であり、その冷間加工率をlO%以上と限定したのは
、加工率が10%未満では、十分な高発生力が得られな
いためである。
In the present invention, the Ni-Ti superelastic alloy wire is one that recovers deformation strain of up to 8% at room temperature by unloading.
A cold-worked wire rod of a Ni-Ti-based superelastic alloy with an i-containing ffi of 50xl% or more, the remainder Ti, or a part of the Ni and Ti replaced with one or more of Fe, Co, Cr, and Cu, The reason why the cold working rate is limited to 10% or more is because if the working rate is less than 10%, a sufficiently high generated force cannot be obtained.

また加熱処理に張力を加えるのは、比較的低温の加熱処
理によっても[1+1り等の歪を除去するためであり、
また加熱処理を250℃以上、400℃未満の温度範囲
で1秒以上、24時間以下と限定したのは、何れも下限
未満では、荷重一歪特性において歪が残ってしまい、超
弾性を示さなくなる。また上限を超えると十分な高発生
力が得られないためである。
Also, the reason why tension is applied during heat treatment is to remove distortions such as [1+1] even by heat treatment at a relatively low temperature.
In addition, the heat treatment was limited to 1 second or more and 24 hours or less in a temperature range of 250°C or higher and less than 400°C, because if the temperature is below the lower limit, strain will remain in the load-strain characteristics and superelasticity will not be exhibited. . Moreover, if the upper limit is exceeded, a sufficiently high generated force cannot be obtained.

〔実施例〕〔Example〕

以下本発明を実施例について説明する。 The present invention will be described below with reference to Examples.

N i −T i系超弾性合金線材に、Ni含有量51
!1%,残部Tiからなる冷間加工率40%の線径0’
.3mlmの線材を用い、、これを第1図に示すように
、サブライスタンド(2)から線材(1)を繰出し、巻
取機(3)に巻取る間に、加熱炉(4)を配置し、該加
熱炉(4)の入口側にブレーキ装置(5)と出口側にピ
ンチローラ(6)を設けて線材(1)に張力を付加した
状態で加熱炉(4)を通過させて線材(+1を加熱処理
した。加熱炉(4)には、図に示してないが、炉内に内
径10m+nのステンレス製パイプを装入し、このパイ
プ内に線材(1)を張力を加えた状態で走行通過させた
The Ni-Ti superelastic alloy wire has a Ni content of 51
! 1%, the balance is Ti, and the wire diameter is 0' with a cold working rate of 40%.
.. Using a wire rod of 3 mlm, as shown in Fig. 1, the wire rod (1) is fed out from the sub-lay stand (2) and the heating furnace (4) is placed between the wire rods (1) and the winder (3). A brake device (5) is provided on the inlet side of the heating furnace (4), and a pinch roller (6) is provided on the outlet side, and the wire rod (1) is passed through the heating furnace (4) with tension applied to it. (+1 was heat-treated. Although not shown in the figure, a stainless steel pipe with an inner diameter of 10 m + n was placed in the heating furnace (4), and the wire rod (1) was placed under tension inside this pipe. I was able to drive through it.

このようにして加熱炉の温度を360゜Cに保持し、線
材の送り速度を4m/min,張力を5kg1/一にセ
ットしてN i −T i系超弾性合企線材を作製した
。この線材について超弾性特性の−評価法である応カー
歪特性を測定した。その結果を第2図に示す。
In this way, the temperature of the heating furnace was maintained at 360° C., the feeding speed of the wire was set at 4 m/min, and the tension was set at 5 kg 1/1, thereby producing a Ni-Ti based superelastic joint wire. This wire was measured for stress strain characteristics, which is a method for evaluating superelastic properties. The results are shown in FIG.

図から明らかなように、ステージ部の発生応力(降伏応
力)は負荷時(歪2〜4%)で70〜71kgl/am
,除荷時(歪4〜8%)で37〜60kg l/一とな
り、従来のNi−Ti系超弾性合金線材に比較し、本発
明によるN i −T i系超弾性合金線材は、高い発
生力が得られ、また負荷時の歪は除荷によりほとんど無
くなっていることが判る。
As is clear from the figure, the stress generated in the stage section (yield stress) is 70 to 71 kgl/am when loaded (strain 2 to 4%).
, 37 to 60 kg l/1 when unloaded (strain 4 to 8%), and compared to the conventional Ni-Ti superelastic alloy wire, the Ni-Ti superelastic alloy wire according to the present invention has a high It can be seen that the generated force was obtained, and that the strain during loading was almost eliminated by unloading.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば冷間加工率10%以上のN 
i −T i系超弾性合金線材に張力を加えた状態で2
50℃以上,400℃未満の温度で、1秒以上、24時
間の加熱処理を施すことにより、従来のNi−Ti系超
弾性合金線材より高発生力を持つことが可能となり、線
径の細径化に伴う発生荷重の低下を補い、設計上の自由
度を大きくする等、工業上顕著な効果を奏するものであ
る。
As described above, according to the present invention, N with a cold working rate of 10% or more
i-T i-based superelastic alloy wire under tension 2
By applying heat treatment at a temperature of 50°C or higher and lower than 400°C for 1 second or more for 24 hours, it is possible to generate a higher force than conventional Ni-Ti superelastic alloy wire, and it is possible to create a wire with a small diameter. This has significant industrial effects, such as compensating for the decrease in load generated due to diameter diameter and increasing the degree of freedom in design.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製造方法における加熱処理方法の説明図
、第2図は本発明製造方法によるNi−Ti系超弾性合
金線材の超弾性特性(応力一歪特性)線図、第3図は従
来製造方法によるN i −T i系超弾性合金線材の
超弾性特性(荷重一歪特性)線図である。 l)線材 2 サブライスタンド 3)巻取機 4)加熱炉 5)ブレーキ装置 6)ピンチローラ 第2図 伸び (%)
Fig. 1 is an explanatory diagram of the heat treatment method in the production method of the present invention, Fig. 2 is a superelastic property (stress-strain property) diagram of the Ni-Ti based superelastic alloy wire produced by the production method of the present invention, and Fig. 3 is FIG. 2 is a superelastic property (load-strain property) diagram of a Ni-Ti based superelastic alloy wire produced by a conventional manufacturing method. l) Wire rod 2 Sub-light stand 3) Winding machine 4) Heating furnace 5) Brake device 6) Pinch roller Fig. 2 Elongation (%)

Claims (1)

【特許請求の範囲】[Claims] 冷間加工率10%以上のNi−Ti系超弾性合金線材に
、張力を加えた状態で250℃以上、400℃未満の温
度で1秒以上、24時間以下の加熱処理を施すことを特
徴とするNi−Ti系超弾性合金線材の製造方法。
A Ni-Ti superelastic alloy wire with a cold working ratio of 10% or more is heat-treated under tension at a temperature of 250°C or more and less than 400°C for 1 second or more and 24 hours or less. A method for manufacturing a Ni-Ti based superelastic alloy wire.
JP15657789A 1989-06-19 1989-06-19 Production of ni-ti superelastic alloy wire Pending JPH0324253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15657789A JPH0324253A (en) 1989-06-19 1989-06-19 Production of ni-ti superelastic alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15657789A JPH0324253A (en) 1989-06-19 1989-06-19 Production of ni-ti superelastic alloy wire

Publications (1)

Publication Number Publication Date
JPH0324253A true JPH0324253A (en) 1991-02-01

Family

ID=15630806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15657789A Pending JPH0324253A (en) 1989-06-19 1989-06-19 Production of ni-ti superelastic alloy wire

Country Status (1)

Country Link
JP (1) JPH0324253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846421A (en) * 1995-07-28 1996-02-16 Furukawa Electric Co Ltd:The Core element wire for antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846421A (en) * 1995-07-28 1996-02-16 Furukawa Electric Co Ltd:The Core element wire for antenna

Similar Documents

Publication Publication Date Title
JP3602467B2 (en) Method for producing niobium-containing zirconium alloy tube and plate for high burnup nuclear fuel
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
JPH01279736A (en) Heat treatment for beta titanium alloy stock
JP2004346389A (en) Casting member made of shape memory alloy, and its producing method
JPH0324253A (en) Production of ni-ti superelastic alloy wire
JP3560907B2 (en) NiTi-based alloy wire, method for producing the same, and guide wire for catheter using the NiTi-based alloy wire
JPS6184361A (en) Manufacture of pseudoelastic spring
JP5278987B2 (en) Manufacturing method for eyeglass frames
JP2001164348A (en) METHOD FOR MANUFACTURING HIGH ELASTICITY Ni-Ti ALLOY WIRE WITH WIDE RANGE OF STRAIN USED FOR GUIDE WIRE FOR MEDICAL TREATMENT, AND HIGH ELASTICITY Ni-Ti ALLOY WIRE WITH WIDE RANGE OF STRAIN MANUFACTURED BY THE SAME METHOD AND USED FOR GUIDE WIRE FOR MEDICAL TREATMENT
JPH08311587A (en) Superplastic ni-co-base alloy and superplastic working method therefor
JPS59208066A (en) Method for working internally nitrided molybdenum-zirconium alloy
JPS61183455A (en) Manufacture of ni-ti type shape memory material
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JPH062059A (en) Superelastic material low in residual strain
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPH07207390A (en) Super elastic spring
JPS59185766A (en) Manufacture of superelastic ni-ti alloy
JPH0762506A (en) Production of superelastic spring
JP2781713B2 (en) Method of manufacturing super-elastic NiTi alloy eyeglass frame member
JPS60155657A (en) Production of ti-ni superelastic alloy
JP3141328B2 (en) Manufacturing method of super elastic spring alloy
JP2979420B2 (en) Orthodontic appliance
JPH0288737A (en) Super elastic ni-ti-cu alloy and its manufacture
JPH02270941A (en) Fe-ni alloy excellent in etching workability and its production
JPH0978165A (en) Nickel-titanium-palladium base superelastic alloy material, its production and dentition correcting wire by the above material