JPH03239153A - プラズマ用電極材料 - Google Patents

プラズマ用電極材料

Info

Publication number
JPH03239153A
JPH03239153A JP32946089A JP32946089A JPH03239153A JP H03239153 A JPH03239153 A JP H03239153A JP 32946089 A JP32946089 A JP 32946089A JP 32946089 A JP32946089 A JP 32946089A JP H03239153 A JPH03239153 A JP H03239153A
Authority
JP
Japan
Prior art keywords
chromium
resistance
crystal
single crystal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32946089A
Other languages
English (en)
Inventor
Masatoshi Kato
雅敏 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP32946089A priority Critical patent/JPH03239153A/ja
Publication of JPH03239153A publication Critical patent/JPH03239153A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高温での耐食性、耐エロージヨン性か高く、
アークあるいはスパークなどによる金属消耗の激しい環
境においても溶融消耗することなく使用できる産業機械
用の電極、例えば発電プラント用電極に用いることので
きる電極材料を提供するものである。
[従来の技術及びその問題点] 磁気流体発電(以下旧1D発電という)は、従来の発電
方法に比べてエネルギー変換効率の高い直接発電方法の
一つである。
MHD発電システムは、カリウム化合物が添加された高
温高速の燃焼ガスを電極上に流し、この際発生する誘導
電流により発電を行なうものである。
このため、これに用いる電極の寿命が装置上問題となる
。従って、これらの問題のない耐食性、耐アーク性、耐
熱疲労性、耐エロージヨン性を有する電極材料の開発が
行なわれている。
このような電極材料としては従来、SUS 304、5
LIS 447J1等のステンレス鋼、Pt系合金ある
いはV系合金などが提案されたが、ステンレス鋼は高温
腐食やアークによる金属消耗が激しく、粒界からの割れ
も激しい。V系合金、Nj系合金においてもアークによ
る消耗、あるいは、使用中に割れが生じ、高温環境では
ほとんど使用できないという問題点がある。更にpt等
の貴金属合金は、非常に良い特性を有しているか経済性
の面で問題がある。
また、金属材料いがいでは、アルミナ、ジルコニア等の
セラミックスの使用が提案されたが、溶融するアルカリ
スラグによる高温腐食、シャットダウンに伴うサーマル
ショックに弱く実用化には至っていない。
[問題を解決するための手段] 本発明者は上記問題点を解決するために鋭意検討を行っ
た結果、単結晶化された高純度の金属クロムが高い耐ア
ーク性、耐スパーク性を有することを見出した。更に、
金属クロム中に不可避的に存在するFe、 AI、N1
、Si等の不純物のうちSiが、クロムの再結晶化およ
び耐アーク性、耐スパーク性に好影響をおよほすことを
見出した。更に、C。
またはCo及びSiのクロムへの?、U 合添加かクロ
ムの二次再結晶による単結晶化に有効であり、同時に優
れた高温耐食性および耐アーク性、耐スパーク性をもた
らすことを見出し本発明を完成した。
即ち本発明は、単結晶クロム金属および巨大結晶粒クロ
ム金属からなるプラズマ用電極材料を提供するものであ
る。
本発明の単結晶クロム金属または巨大結晶粒クロム金属
とは、高純度、例えば99.9%以上の単結晶純金属ク
ロムまたは巨大結晶粒純金属クロム、0.1wL%以下
のSiを含有した単結晶クロム基合金または巨大結晶粒
クロム基合金、0 、01.w t%〜3wt%のCo
を含有した単結晶クロム基合金または巨大結晶粒クロム
基合金、Coを0.01wt%〜3wt%の範囲で含有
し、更にSiを0.1wt%以下含有した単結晶クロム
基合金または巨大結晶粒クロム基合金等を示すものであ
る。
これらの電極材料の製法としては従来より行なわれてい
る引上げ法でも可能であるか、本発明の材料はこのよう
な複雑な方法によらず、焼結法あるいは粉末冶金法等に
より成型した後に熱処理により二次再結晶化を行なう簡
単な方法で得られる。
ここで言う巨大結晶粒とは、平均結晶粒径0.5〜5 
cmの比較的大きな単結晶が集合したもので、単結晶と
実質的に変るものではない。
本発明のプラズマ用電極材料を得るために用いるクロム
は電解法、還元法のいずれの方法で得たものでも差し支
えない。このようにして得た金属クロム中には、得られ
たままの状態でPe、 AI、Si等の不純物が不可避
的に混入している。しかし、本発明では前述したように
、これら不純物の中でSiが単結晶化に対して特に有効
であり、また、Coの添加も非常に効果がある。
本発明は、高純度、例えば99,9%以上の純金属クロ
ム、または、Co及び/またはSiを含有したクロムを
用いて得る。クロムに対してC01Siを含有させる方
法は、これらをくるむに添加すれば良いが、その際の添
加量は、クロムに対するCoについては0.01〜3v
t%であり、また、Siの添加量は原料中に不i’J避
的に含まれるSi成分を含めて最終的に0、]wL%〜
50ppmとなる量である。Siは原料中に不純物とし
て不可避的に混入しているため(通常、最低限40〜6
0ppm 含まれている)S1無添加でも効果があるが
、不純物としての混入量も含めて0,1vt%を越える
量が存在するとクロム粒界のピンニング効果か過剰に現
れ、単結晶の生成が困難となる。
更に、Siの量か50ppmより小では効果の度合いが
小さい。また、Coの添加量は0.01wt%より少で
は再結晶の際の核発生が不十分となり単結晶の成長が起
こらない。また、3wt%を越える添加量ではクロム粒
界のピンニング効果が過剰に現れ、単結晶の生成か困難
となる。Si、 Coの添加は単独で単結晶化および耐
アーク性、耐スパーク性の向上に充分効果かあるか、C
oを0.01〜3wt%、SiをO,ht%〜50pp
mとなる量を複合添加することにより、これらの単独添
加の際に比べ単結晶化か容易となり、耐アーク性、耐ス
パーク性が著しく向上する。
本発明で原料として用いる金属クロムは前記のような不
可避的不純物を含んだものであるが、これらのクロムに
Si、 Coを添加する方?ムとして、金属クロl、を
得るための1j;(科、例えば酸化クロムにCo20+
 、5t02等をあらかじめ混合する方法かある。本発
明においてもこの方法か好ましいが、Co、 Siの添
加はその他の不純物の混入か防止でき、また、均一な組
成か得られる方法であれば制限はない。このようにし、
で得られたクロムは、好ましくは次の方1人で成形する
。即ち、iすられたクロムを粉末状として焼結加工を施
す。ここで用いる焼結加工法は一般的に行なわれている
焼成法、HIP灰等の方法か用いられるか、何れにして
も焼結体か、熱による歪を受ける状態となる方法が望ま
しい。この際の焼結温度は、通常1200℃以上で金属
クロムの融点以下であり、圧力は11000at以上、
また焼結時間は特に限定されないが10分以上である。
上記した方法で15だクロムの成形品は熱処理(二次l
I)結晶化)に供するか、この熱処理は、Co、S1無
添加のもの、または、これらを単独に添加したものは1
500℃以上、金属クロムの融点以下の温度で、また、
CoとSiを?j2.S添加したもツバL400”C以
上、金属クロムの融点以下の温度てぃづれも30分以上
還元雰囲気で行なう。
また、更に望ましい方法として、焼結法あるいはI! 
I P法により得られた焼結体に、更に塑性加工を施す
ことにより、後の熱処理(二次再結晶化)を温和な条件
で行なうことかできる。ここで行なう塑性加工の方法は
、特に限定しないが、通常行なわれている圧延、鍛造、
押出し加工、据え込み加工等でよく、たとえば圧延の場
合は約700 ℃以下で30〜90%の圧延率で行なう
ことが好ましい。
さらに、上記した方法で得たクロムの成形品は熱処理(
二次再結晶化)に供するか、この熱処理は、Co5Si
無添加のもの、あるいは、これらを単独に添加したもの
は1300℃以上、好ましくは1500 ’C以上から
金属クロムの融点以下の温度で、CoとSiを複合添加
したものにおいては1200℃以上、金属クロムの融点
以下の温度で、いづれも30分以上還元雰囲気で行なう
このようにして得られた材料は、加工の際の粒界による
月11 :#化がなく、展性、延性に富み、加工性にも
優れているので、打抜きプレス加工、絞りIJII玉等
を施し、所望の形状、大きさに切断、溶接加りするなと
様々な方法を採用することにより、容易に復雑な形状、
構造の電極を得られる。
:発明の効果コ 本発明の材$−1は、高温酸化環境あるいは高温ガス環
境において、粒界腐食、粒界割れ等を受けることはなく
、さらにSi、 Coの添加により酸化皮膜の性能か向
トし、粒界の存在による酸化皮膜の不均一を生しること
なく、非常に高い耐食性、耐エロー2ヨシ性を持つと同
時に、スパークによる電極消耗やf5jアーク性にも優
れた÷オ料となる。このような効果はSi、 Coの複
合添加により、互いの相乗効果により更に飛躍的に向上
する。
従って、これらの+オ料は、MIID発電用電極の他に
も溶射用電極、溶接用電極の材料として有用なものであ
る。
[実施例] 以下、本発明を実施例により説明するが、本発明はこれ
に限定されるものではない。
実施例1〜3 不純物としてFe:0.015%、 Si:0.004
%、AI:0.007%、0 :0.042%、ltl
 : 0.001%を含む金属りoム粉末を予備成形し
、1200〜1300℃、1200〜2000atm、
1時間の焼結条件で焼結し、これを、水素雰囲気炉で1
500〜1600℃、3時間の熱処理を行ない、クロム
の単結晶を得た。この時の焼結温度、焼結圧力、熱処理
温度の影響を表1に示した。これらの単結晶はX線背面
ラウェ法を用いて単結晶であることを確認した。このも
のの性能試験は次の方法で行なった。
耐アーク試験 得られた材料をテストピースに切断し、2500℃の水
酸化カリウムを添加した石炭燃焼ガス中に設置し、対極
との間にアークを生じさせた。10時間後のテストピー
スの様子を表1に示す。
旧(D発電実用試験 材料をMHD発電機内に設置し、以下の条件で実用試験
を行なった。結果を表1に示す。
ガス流速 ガス電気型導度 ガス温度 ガス添加材 燃料 運転時間 実施例4〜12 純度99.99%で不純物としてSiを0.001%含
む酸化クロムに表1で示した組成でSi、−Co各々お
よび5i1Coの両方を添加した。Co2O3は湿式法
により3vt%まで種々の量添加し、5iOzも湿式法
により不純物として含まれるSiを含めて0.1wt%
まで種々の量添加した。この酸化クロムを1550℃で
水素還元したのち粉砕し金属クロム粉末を得た。この金
属クロム粉末を予備成形し1200〜1300℃、12
00〜2000atm 、  1時間の焼結条件で焼結
し、これを、水素雰囲気炉で1400〜1600℃、3
時間の熱処理を行ない、クロムの単結晶を得た。この時
の焼結温度、焼結圧力、熱処理温度の影響を表1に示し
た。これらの単結晶はX線背面ラウェ法を用いて単結晶
900 m/s 0 2500度以上 硫酸カリウム、炭酸カリウム 石炭 50時間 であることを確認した。
次いで、得られた材料を実施例1と同様に性能試験に供
した。その結果を表1に示す。
実施例13〜15 実施例1で用いた金属クロム粉末を用いて、実施例1と
同様の方法で焼結体を得たのちに、これに500℃で6
0%の温間圧延を加え、1400〜1600℃の水素雰
囲気炉で3時間の熱処理を行ない、クロムの単結晶を得
た。この時の焼結温度、焼結圧力、熱処理温度の影響を
表1に示した。尚この単結晶はX線背面ラウェ法で単結
晶であることを確認した。
次いで、得られた+オ料を実施例1と同様の性能試験に
供した。その結果を表1に示す。
実施例16〜24 実施例4〜12て用いた金属クロム粉末を用いて、実施
例1と同様の方法で焼結体を得たのちに、これに500
℃で60%の温間圧延を加え、1200〜1600℃の
水素雰囲気炉で3時間の熱処理を行ない、クロムの単結
晶を得た。この時の焼結温度、焼結圧力、熱処理温度の
影響を表1に示した。尚この単結晶はX線背面ラウェ法
で単結晶であることを確認した。
次いて、得られた材料を実施例1と同様の性能試験試験
に供した。その結果を表1に示す。
比較例1〜3 実施例1で用いた金属クロム粉末を用いて、実施例1〜
3と同様の方法で表2に示す焼結温度、焼結圧力、熱処
理温度で得られた材料の再結晶状況を表2に併せて示す
次いで、得られた材料を実施例1と同様の性能試験に供
した。その結果を表2に示す。
比較例4〜12 実施例3〜12で用いた方法と同様な方法で表2に示す
ようにSi、 Coの添加量を変化させた種々の金属ク
ロム粉末を用いて、実施例4〜12と同様の方法で表2
に示す焼結温度、焼結圧力、熱処理温度で得られた材料
の再結晶状況を表2に併せて示す。
次いで、得られた材料を実施例1と同様の性能試験に供
した。その結果を表2に示す。
比較例13〜14 実施例1て用いた金属クロム粉末を用いて、実施例13
〜15と同様の方法で表2に示す焼結温度、焼結圧力、
熱処理温度で得られた材料の再結晶状況を表2に併せて
示す。
次いで、得られた材料を実施例1と同様の性能試験に供
した。その結果を表2に示す。
比較例15〜20 実施例4〜12で用いた方法と同様な方法で表2に示す
ようにSj、 Coの添加量を変化させた種々の金属ク
ロム粉末を用いて、実施例16〜24と同様の方法で表
2に示す焼結温度、焼結圧力、熱処理温度で得られた材
料の再結晶状況を表2に併せて示す。
次いで、得られた材料を実施例1と同様の性能試験に供
した。その結果を表2に示す。
范−人 幀見温度 焼結圧力 熱処即温 Siの含有 Coの含
有(T;)(aim)F(’C)m(wtX)tA(w
L2:)再結晶状態 酬 ゛ド均腐食減が (B/cm4h) り 試 島i; +( M H++ +−t、t″1.′ll→試k117 ’
に、51jれの  粒界腐食  平均腐食イ1層チのイ
1唾6表量 (mm/h) う1う・ツク のイ4無 実施例+   1200 実施例2  +3(11’) 実施例:l  13 +’、l O ¥施例4  1200 実施例5 1200 実施例6  1300 実施例7  1200 実施例8 1200 実施例9 1300 実施例IQ  I200 実施例11 1200 実lit辷的り1213(10 実施例13 1200 実施例14  ]:+30 0施例+5  +300 実施例16 121)0 実施例17°1300 実施例+8 1300 実施例+9 120(1 実施例20  +300 実施例2+  1300 実施例n  ]+20 0施例23 1300 実施例24+300 +800 000 + 600 】800 800 600 800 800 600 800 800 600 800 800 20 (lO 800 800 000 I800 800 000 800 800 000 1600 0.004 +600 0.004 1 !’50 (、−10,004 16000,005 16000,0+ 1500 0.05 1600 0.002 1600 0.002 1500 0.002 +400 0.005 1!500 0.05 1600 0.05 1600 0.004 1401)  0.004 +400 0.004 14.00 0.05 1400 0゜005 +600 0.1 1400 0.002 1300 0.002 1600 0.002 1400 0.1 1200 0.0+ 1600 0.1 巨大結晶粒 !+1結晶 単結晶 巨大結晶粒 単3吉晶 単結晶 巨大結晶粒 単結晶 単結晶 巨大結晶粒 単結晶 単結晶 単結晶 巨大結晶粒 単結晶 単結晶 巨大結晶粒 単結晶 単結晶 巨大結晶粒 単結晶 単結晶 単結晶 単結晶 1.6 】  4 1.2 1.6 I、5  2  6 1.4 1 1  、( 1,1 1,0 !  3 ]  6 1.2 】1.3 1.5  2  2 1.6 +、+ 1、O 1,0 1,0 1 2 01以下 0.2 01以[・ () 1以F O22 2 01以下 0.1 (]、1以下 0、】以、下 0.1以F 2 2 01以]・“ 0.2 0.2 0、+ 0.2 0.1以丁 0】9.下 ()、1以下 O01以下 第二人 比較例1 比較例2 比較例3 比較例4 比較例5 比較例6 比較例7 比較例8 比較例9 比較例10 比(咬tシリ11 比較例12 比較例13 比較例14 比I!!2例15 比較ゆ1lfi 比較例17 比較例18 比較例19 比較例20 焼t^温度 焼結圧力 熱処理温 Slの含有 Coの
含有(℃)       (at、m)     度 
(’C)    ffi  (wtX)   量 (w
tX)100 (1 300 300 000 300 300 000 300 300 000 1コ300 +300 000 ]200 000 200 300 ] 21.)0 100 (1 12(10 800 ]600 100 800 600 600 800 400 600 800 I600 】600 000 】800 000 181)0 2(100 18(10 000 800 16000,004 + 40 (10,00/+ 1600 0.004 1300 0.1 1600 0.2 1600 0.001 1300 0.002 1300 0、t)02 1600 0.002 +200 0.1 1600 0.2 1601)  0.001 11000.004 1200 0.004 +600 0.2 1200 0.005 1200 0.002 1300 0.002 1000 0 1300 0.2 再結晶状聾 微1結晶粒 微細結晶粒 微細結晶粒 子4遥結晶粒 徽lvl結晶粒 微細結晶粒 微細結晶粒 微細結晶粒 微!1lIT8晶拉 微細結晶粒 微細結晶粒 微細結晶粒 微細結晶粒 微細結晶粒 微細結晶粒 微細結晶粒 微細結晶粒 微細結晶粒 微■1R品粒 微細結晶l立 トドj ア タ;・(11に結゛じトj MHD発電大用試験r^里 平均腐食減!′11 (113/c〕112・;)) にりれの  粒+N %qT +)   平均腐nイ1
1!駈のイ1@4表f五 (mm/h) クラ・・ツク の有理 2.9 2.8 9 2.9 2.8 2.9 3.0 3、()  9 2.9 2.8 2.9 3、() 2.9 3.0 2.9 0 2.8 3.0 2.9 4 0.5 5 0.4 0、i’5 6 0.7 6 0.7 0.4 0.4 0.5 (] 5 0.4 0.5 4 0.6 5 5 0.4 手続補正書 5補正の対象 明細書特許請求の範囲の欄 平成 2年11月21日

Claims (1)

  1. 【特許請求の範囲】 1)単結晶クロム金属または巨大結晶粒クロム金属から
    なるプラズマ用電極材料。 2)単結晶クロム金属が、単結晶純金属クロム、0.1
    wt%以下のSiを含有した単結晶クロム基合金、0.
    01wt%〜0.3wt%のCoを含有した単結晶クロ
    ム基合金、Coを0.01wt%〜0.3wt%含有し
    且つ0.1wt%以下のSiを含有した単結晶クロム基
    合金からなる群から選ばれる1種である特許請求の範囲
    第1項に記載のプラズマ用電極材料。 3)巨大結晶粒クロム金属が、巨大結晶粒純金属クロム
    、0.1wt%以下のSiを含有した巨大結晶粒クロム
    基合金、0.01wt%〜0.3wt%のCoを含有し
    た巨大結晶粒クロム基合金、Coを0.01wt%〜0
    .3wt%含有し且つ0.1wt%以下のSiを含有し
    た巨大結晶粒クロム基合金からなる群から選ばれる1種
    である特許請求の範囲第1項に記載のプラズマ用電極材
    料。
JP32946089A 1989-10-17 1989-12-21 プラズマ用電極材料 Pending JPH03239153A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32946089A JPH03239153A (ja) 1989-10-17 1989-12-21 プラズマ用電極材料

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP26824789 1989-10-17
JP1-268247 1989-10-17
JP1-275899 1989-10-25
JP1-292499 1989-11-13
JP1-308965 1989-11-30
JP32946089A JPH03239153A (ja) 1989-10-17 1989-12-21 プラズマ用電極材料

Publications (1)

Publication Number Publication Date
JPH03239153A true JPH03239153A (ja) 1991-10-24

Family

ID=26548235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32946089A Pending JPH03239153A (ja) 1989-10-17 1989-12-21 プラズマ用電極材料

Country Status (1)

Country Link
JP (1) JPH03239153A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271840A (ja) * 1992-03-27 1993-10-19 Kobe Steel Ltd 超高温耐熱部材用Cr基合金
EP1102651A1 (en) * 1998-08-06 2001-05-30 Eramet Marietta Inc. Purification process for chromium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271840A (ja) * 1992-03-27 1993-10-19 Kobe Steel Ltd 超高温耐熱部材用Cr基合金
EP1102651A1 (en) * 1998-08-06 2001-05-30 Eramet Marietta Inc. Purification process for chromium
EP1102651A4 (en) * 1998-08-06 2003-02-12 Eramet Marietta Inc PURE CHROME RECOVERY

Similar Documents

Publication Publication Date Title
EP2388346B1 (en) Production of fine grain niobium products by micro-alloying and ingot metallurgy
CN105008562A (zh) 具有硅、铝和铬的镍基合金
JP5420609B2 (ja) スパッタリング用チタンターゲット
KR102273787B1 (ko) 하이엔트로피 합금을 포함하는 복합 구리 합금 및 그 제조 방법
JP2022532738A (ja) 粉末用ニッケル基合金および粉末の製造方法
CN108570569B (zh) 一种氮化铝弥散强化铜复合材料的内氮化制备方法
EP3572540A1 (en) Nickel-base superalloy
MXPA05011491A (es) Hoja de niobio de grano fino mediante metalurgia de lingote.
NO132400B (ja)
US4370299A (en) Molybdenum-based alloy
JPH03239153A (ja) プラズマ用電極材料
JPH06256882A (ja) 加圧中空物体用アルミニウム合金
CN112626431B (zh) 一种医用超声换能器用预应力螺栓的制备方法
CN108866434A (zh) 新型耐酸耐热电热合金0Cr21Al4ZrTi及制备方法
JPH03211248A (ja) クロム基合金高温材料
JPH10195502A (ja) ステンレス鋼粉末、ステンレス鋼部材及び該ステンレス鋼部材の製造方法
JP2004183079A (ja) チタン合金およびチタン合金材の製造方法
CN108531775A (zh) 一种含极低量合金化元素的高温抗氧化钛合金
CN113234947B (zh) 纳米铜钛合金及其制备方法
JP2001152208A (ja) 酸化物分散強化型Ni基合金線およびその製造方法
WO2020189214A1 (ja) 熱間鍛造用のチタンアルミナイド合金材及びチタンアルミナイド合金材の鍛造方法
Dima et al. Studies and Research on Treatment of Titanium Alloys
JPH03232795A (ja) 高温電極材料
Jun et al. Effect of Sintering Temperature on Microstructure and Mechanical Properties of TC4 Alloy
JPH0259491A (ja) クロムの巨大粒又は単結晶及びその製造法