JPH03230561A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH03230561A
JPH03230561A JP2026604A JP2660490A JPH03230561A JP H03230561 A JPH03230561 A JP H03230561A JP 2026604 A JP2026604 A JP 2026604A JP 2660490 A JP2660490 A JP 2660490A JP H03230561 A JPH03230561 A JP H03230561A
Authority
JP
Japan
Prior art keywords
film
capacitor
conductive film
forming
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2026604A
Other languages
Japanese (ja)
Inventor
Hiroshi Onoda
小野田 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2026604A priority Critical patent/JPH03230561A/en
Publication of JPH03230561A publication Critical patent/JPH03230561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To secure capacitor capacitance without difficulty in forming a pattern of a lower electrode even if a memory cell size has been reduced by forming a high melting point metal silicide layer having a plurality of protrusions which extend upward on a first conductive film constituting a capacitance means. CONSTITUTION:A semiconductor device includes a polysilicon film 7 which is connected to an impurity diffusion layer 6 and formed on an element separation oxide film 2 and an insulating film 5, a titanium silicide film 8b having a plurality of protrusions, a silicon nitride film 9 and a polysilicon film 10 formed on the film 9. Since the titanium silicide film 8b formed on the polysilicon film 7 thus has a plurality of protrusions, a surface area increases compared to a flat lower electrode. Therefore an area which can be utilized as a capacitor area increases, resulting in an increase in capacitor capacitance. Thus even if a memory cell size has been reduced due to integration of a DRAM, capacitor capacitance sufficient for satisfying needs for stable operation of the DRAM and reliability can be secured without difficulty in forming a pattern of the lower electrode.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、半導体装置およびその製造方法に関し、特
に、任意の記憶情報のランダムな入出力が可能、な高集
積化に適した半導体装置およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to a semiconductor device and a method for manufacturing the same that are capable of random input/output of arbitrary storage information and are suitable for high integration. It relates to its manufacturing method.

[従来の技術] 従来、半導体装置の中で、記憶情報のランダムな入出力
が可能なものとしてDRAM (Dynamic  R
andom  Access  Mem。
[Prior Art] Conventionally, among semiconductor devices, DRAM (Dynamic
andom Access Mem.

ry)が−船釣に知られている。このDRAMは、ここ
3年間で集積度が4倍に向上し、既にIMから4Mへと
移行している。一般にDRAMは、多数の記憶情報を記
憶する記憶領域であるメモリセルアレイと、外部との入
出力に必要な周辺回路とから構成されている。
ry) is known for boat fishing. The integration density of DRAM has quadrupled in the past three years, and it has already transitioned from IM to 4M. In general, a DRAM is composed of a memory cell array, which is a storage area that stores a large amount of storage information, and peripheral circuits necessary for input/output with the outside.

第3図は、従来のD RA Mのメモリセルを示した断
面図である。第3図を参照して、メモリセルは、シリコ
ン基板1と、シリコン基板1上に形成された素子分離の
ための素子分離酸化膜2と、素子分離酸化膜2に隣接し
てシリコン基板1上に形成された不純物拡散層6と、シ
リコン基板】の不純物拡散層6に隣接する領域上にゲー
ト酸化膜3を介して形成されたゲート電極4と、ゲート
電極4上およびその側面に形成された絶縁のための絶縁
膜5と、不純物拡散層6に接続され素子分離酸化膜2お
よび絶縁膜5上に形成されたキャパシタ下部電極17と
、キャパシタ下部電極17上およびその側面に形成され
たキャパシタ誘電膜8と、キャパシタ誘電膜8上に形成
されたキャパシタ上部電極20とを含む。
FIG. 3 is a cross-sectional view showing a memory cell of a conventional DRAM. Referring to FIG. 3, a memory cell includes a silicon substrate 1, an element isolation oxide film 2 for element isolation formed on the silicon substrate 1, and an element isolation oxide film 2 formed on the silicon substrate 1 adjacent to the element isolation oxide film 2. an impurity diffusion layer 6 formed on a silicon substrate; a gate electrode 4 formed on a region adjacent to the impurity diffusion layer 6 of the silicon substrate with a gate oxide film 3 interposed therebetween; An insulating film 5 for insulation, a capacitor lower electrode 17 connected to the impurity diffusion layer 6 and formed on the element isolation oxide film 2 and the insulating film 5, and a capacitor dielectric formed on the capacitor lower electrode 17 and its side surfaces. A capacitor upper electrode 20 is formed on the capacitor dielectric film 8 .

また、DRAMのメモリセルは、その信号電荷蓄積用の
キャパシタ構造によって、いくつかのタイプに分けるこ
とができるが、第3図に示したものはいわゆるスタック
ドタイプのメモリセルである。このタイプのメモリセル
では、素子分離酸化膜2およびゲート電極4上にまで延
在された2層の導電膜(キャパシタ下部電極17および
キャパシタ上部電極20)とその間に形成された誘電膜
(キャパシタ誘電膜8)とからキャパシタが構成されて
いる。したがって、DRAMの高集積化に伴ってメモリ
セルサイズが縮小された場合には、キャパシタ面積も同
時に縮小されることとなる。
Furthermore, DRAM memory cells can be divided into several types depending on their capacitor structure for storing signal charges, and the one shown in FIG. 3 is a so-called stacked type memory cell. This type of memory cell consists of two layers of conductive films (capacitor lower electrode 17 and capacitor upper electrode 20) extending over the element isolation oxide film 2 and gate electrode 4, and a dielectric film (capacitor dielectric film) formed between them. A capacitor is constituted by the film 8). Therefore, when the memory cell size is reduced as DRAM becomes highly integrated, the capacitor area is also reduced at the same time.

[発明が解決しようとする課題] 前述のように、DRAMの高集積化に伴ってメモリセル
が縮小された場合には、キャパシタの面積も同時に縮小
されることとなる。しかし、記憶領域としてのDRAM
の安定動作および信頼性を考慮すると、メモリセルサイ
ズか縮小されても1ビツトのメモリセルに蓄える電荷量
をほぼ一定に維持する必要がある。そのための方法とし
て、キャパシタの誘電膜を薄くする方法か考えられるが
、この誘電膜を薄くするという方法は、誘電膜を薄くす
ることにより誘電膜の信頼性か劣化するという問題点か
ある。
[Problems to be Solved by the Invention] As described above, when memory cells are reduced in size due to higher integration of DRAMs, the area of capacitors is also reduced at the same time. However, DRAM as a storage area
Considering the stable operation and reliability of the memory cell, it is necessary to maintain the amount of charge stored in one bit of memory cell almost constant even if the memory cell size is reduced. One possible method for this purpose is to thin the dielectric film of the capacitor, but this method has the problem that the reliability of the dielectric film deteriorates as the dielectric film becomes thinner.

そこで、従来の改良方法として、キャパシタの誘電膜を
薄くすることなくキャパシタの下部電極を厚くして表面
積を増加させる方法が考えられる。
Therefore, as a conventional improvement method, a method can be considered to increase the surface area by thickening the lower electrode of the capacitor without thinning the dielectric film of the capacitor.

第4図はこの従来の改良されたスタックドタイプのメモ
リセルを示した断面図である。第4図を参照して、第3
図に示したメモリセルと比較して、この第4図に示した
メモリセルでは、キャパシタ下部電極27の厚みか増加
している。この結果、キャパシタ誘電膜8およびキャパ
シタ上部電極20もキャパシタ下部電極27の厚みを増
した分だけ長くなり、キャパシタ全体として利用できる
表面積が増加し、キャパシタ容量が増加することとなる
。すなわち、キャパシタ下部電極27およびキャパシタ
誘電膜8ならびにキャパシタ上部電極20により構成さ
れるキャパシタの横方向の長さは従来と変わらないので
、平面上での面積を増やすことなく容量手段として利用
できる面積が増加できる。
FIG. 4 is a sectional view showing this conventional improved stacked type memory cell. Referring to Figure 4, the third
In the memory cell shown in FIG. 4, the thickness of the capacitor lower electrode 27 is increased compared to the memory cell shown in the figure. As a result, capacitor dielectric film 8 and capacitor upper electrode 20 also become longer by the increased thickness of capacitor lower electrode 27, increasing the usable surface area of the capacitor as a whole and increasing capacitance. That is, since the lateral length of the capacitor constituted by the capacitor lower electrode 27, the capacitor dielectric film 8, and the capacitor upper electrode 20 is the same as before, the area that can be used as a capacitor means without increasing the planar area is increased. Can be increased.

しかし、このキャパシタの下部電極を厚(して表面積を
増加させる方法では、下部電極を厚くすることによって
生じる高段差部での下部電極パターン形成が困難になる
という問題点があった。すなわち、下部電極の厚みが増
して高段差になった分だけエツチング時間が増加し、こ
の結果、エツチングレートのばらつきによるオーバエツ
チングの度合いが従来に比べて激しくなるという不都合
が生じる。オーバエツチングが激しくなると半導体装置
自体の信頼性が低下するという問題が新たに生じる。
However, this method of increasing the surface area by making the lower electrode of the capacitor thicker has the problem that it becomes difficult to form the lower electrode pattern at the high step part caused by increasing the thickness of the lower electrode. As the thickness of the electrode increases and the height difference increases, the etching time increases, resulting in the disadvantage that the degree of overetching due to variations in etching rate becomes more severe than in the past.When overetching becomes severe, the semiconductor device A new problem arises in that the reliability of the device itself decreases.

つまり、従来においては、DRAMの集積化に伴ってメ
モリセルサイズが縮小された場合に下部電極のパターン
形成上の困難性を伴うことなくキャパシタ容量を確保す
ることは困難であった。
That is, in the past, when the memory cell size was reduced due to the integration of DRAMs, it was difficult to secure the capacitor capacity without encountering difficulties in patterning the lower electrode.

この発明は、上記のような課題を解決するためになされ
たもので、メモリセルサイズが縮小された場合にも下部
電極のパターン形成上の困難性を伴うことなくキャパシ
タ容量を確保することのできる半導体装置およびその製
造方法を提供することを目的とする。
This invention was made to solve the above-mentioned problems, and even when the memory cell size is reduced, it is possible to secure capacitor capacity without experiencing difficulties in patterning the lower electrode. The purpose of the present invention is to provide a semiconductor device and a method for manufacturing the same.

[課題を解決するための手段] 第1請求項における発明は、第1導電型の半導体基板の
素子分離領域に隣接して形成された第2導電型の不純物
領域と、半導体基板の不純物領域に隣接する領域上に第
1の絶縁膜を介して形成されたゲート電極と、少な(と
も不純物領域上に形成された第1の導電膜と少なくとも
その第1の導電膜上に形成された上方に延びる複数の突
起部を有する高融点金属シリサイド層とその高融点金属
シリサイド層上に形成された第2の絶縁膜とその第2の
絶縁膜上に形成された第2の導電膜とを有する容量手段
とを含む。
[Means for Solving the Problems] The invention in the first claim includes an impurity region of a second conductivity type formed adjacent to an element isolation region of a semiconductor substrate of a first conductivity type, and an impurity region of the semiconductor substrate. A gate electrode formed on an adjacent region with a first insulating film interposed therebetween; A capacitor including a high melting point metal silicide layer having a plurality of extending protrusions, a second insulating film formed on the high melting point metal silicide layer, and a second conductive film formed on the second insulating film. means.

第2請求項における発明は、少なくとも不純物領域上に
容量手段の下部電極となる第1の導電膜を形成するステ
ップと、その第1の導電膜の上に高融点金属層を形成す
るステップと、第1の導電膜および高融点金属層に熱処
理を加えて第1の導電膜上に上方に延びる複数の突起部
を有する高融点金属シリサイド層を形成するステップと
、少なくとも高融点金属シリサイド層上に容量手段の誘
電膜となる第2の絶縁膜を形成するステップと、第2の
絶縁膜上に容量手段の上部電極となる第2の導電膜を形
成するステップとを含む。
The invention in the second claim includes the steps of: forming a first conductive film to serve as a lower electrode of the capacitor on at least the impurity region; and forming a high melting point metal layer on the first conductive film. applying heat treatment to the first conductive film and the high melting point metal layer to form a high melting point metal silicide layer having a plurality of upwardly extending protrusions on the first conductive film; The method includes the steps of forming a second insulating film that becomes a dielectric film of the capacitor, and forming a second conductive film that becomes an upper electrode of the capacitor on the second insulating film.

[作用] 第1請求項に係る発明では、第2導電型の不純物領域が
第1導電型の半導体基板の素子分離領域に隣接して形成
され、ゲート電極が半導体基板の不純物領域に隣接する
領域上に第1の絶縁膜を介して形成され、容量手段か、
少なくとも不純物領域上に形成された第1の導電膜と少
なくともその第1の導電膜上に形成された上方に延びる
複数の突起部を有する高融点金属シリサイド層とその高
融点金属ンリサイド層上に形成された第2の絶縁膜とそ
の第2の絶縁膜上に形成された第2の導電膜とから構成
される。つまり、容量手段を構成する第1の導電膜上に
上方に延びる複数の突起部を有する高融点金属シリサイ
ド層が形成されるので、平面上での面積を増やすことな
く容量手段として利用できる面積が増加されるとともに
容量手段の下部電極となる第1の導電膜の厚みを増加す
る必要もない。
[Operation] In the invention according to the first claim, the impurity region of the second conductivity type is formed adjacent to the element isolation region of the semiconductor substrate of the first conductivity type, and the gate electrode is formed in the region adjacent to the impurity region of the semiconductor substrate. A capacitive means is formed on the first insulating film through the first insulating film.
A first conductive film formed on at least an impurity region, a refractory metal silicide layer formed on at least the first conductive film and having a plurality of upwardly extending protrusions, and a refractory metal silicide layer formed on the refractory metal silicide layer. The second insulating film is formed by a second insulating film, and a second conductive film is formed on the second insulating film. In other words, since a high melting point metal silicide layer having a plurality of upwardly extending protrusions is formed on the first conductive film constituting the capacitor means, the area that can be used as the capacitor means is increased without increasing the planar area. There is also no need to increase the thickness of the first conductive film which becomes the lower electrode of the capacitive means.

第2請求項に係る発明では、少な(とも不純物領域上に
容量手段の下部電極となる第1の導電膜が形成され、そ
の第1の導電膜上に高融点金属層が形成され、第1の導
電膜および高融点金属層に熱処理か加えられて第1の導
電膜上に上方に延びる複数の突起部を有する高融点金属
シリサイド層か形成され、少なくともその高融点金属シ
リサイド層上に容量手段の誘電膜となる第2の絶縁膜が
形成され、その第2の絶縁膜上に容量手段の上部電極と
なる第2の導電膜が形成される。つまり、容量手段の下
部電極となる第1の導電膜およびその上に形成された高
融点金属層が熱処理されて第1の導電膜上に上方に延び
る複数の突起部を有する高融点金属シリサイド層が形成
されるので、平面上での面積を増やすことなく容量手段
として利用できる面積が増加されるとともに容量手段の
下部電極となる第1の導電膜の厚みを増加する必要がな
い。
In the invention according to the second claim, a first conductive film serving as a lower electrode of the capacitor means is formed on the impurity region, a high melting point metal layer is formed on the first conductive film, and a high melting point metal layer is formed on the first conductive film. A heat treatment is applied to the conductive film and the high melting point metal layer to form a high melting point metal silicide layer having a plurality of upwardly extending protrusions on the first conductive film, and a capacitive means is formed on at least the high melting point metal silicide layer. A second insulating film that becomes a dielectric film is formed, and a second conductive film that becomes an upper electrode of the capacitive means is formed on the second insulating film. The conductive film and the high melting point metal layer formed thereon are heat-treated to form a high melting point metal silicide layer having a plurality of upwardly extending protrusions on the first conductive film. The area usable as the capacitor means is increased without increasing the area, and there is no need to increase the thickness of the first conductive film serving as the lower electrode of the capacitor means.

[発明の実施例コ 第1図は本発明の一実施例を示したDRAMのメモリセ
ルの断面図である。第1図を参照して、メモリセルは、
シリコン基板1と、シリコン基板1上に形成された素子
分離のための素子分離酸化膜2と、素子分離酸化膜2に
隣接してシリコン基板1上に形成された不純物拡散層6
と、不純物拡散層6に隣接してシリコン基板1上にゲー
ト酸化膜3を介して形成されたゲート電極4と、ゲート
電極4上およびその側面に形成された絶縁のための絶縁
膜5と、不純物拡散層6に接続され素子分離酸化膜2お
よび絶縁膜5上に形成されたポリシリコン膜7と、ポリ
シリコン膜7上に形成された複数の突起部を有するチタ
ンシリサイド膜8bと、チタンシリサイド膜8b上に形
成された窒化シリコン膜9と、窒化シリコン膜9上に形
成されたポリシリコン膜10とを含む。
[Embodiment of the Invention] FIG. 1 is a sectional view of a DRAM memory cell showing an embodiment of the invention. Referring to FIG. 1, the memory cell is
A silicon substrate 1, an element isolation oxide film 2 for element isolation formed on the silicon substrate 1, and an impurity diffusion layer 6 formed on the silicon substrate 1 adjacent to the element isolation oxide film 2.
, a gate electrode 4 formed on the silicon substrate 1 adjacent to the impurity diffusion layer 6 with a gate oxide film 3 interposed therebetween, and an insulating film 5 for insulation formed on the gate electrode 4 and on the side surfaces thereof. A polysilicon film 7 connected to the impurity diffusion layer 6 and formed on the element isolation oxide film 2 and the insulating film 5; a titanium silicide film 8b having a plurality of protrusions formed on the polysilicon film 7; A silicon nitride film 9 formed on film 8b and a polysilicon film 10 formed on silicon nitride film 9 are included.

このように、ポリシリコン膜7上に形成されたチタンシ
リサイド膜8bが複数の突起部を有するので、従来の平
面状の下部電極に比べて表面積が増加する。したがって
、ポリンリコン7.チタンシリサイド膜8b、窒化シリ
コン膜9およびポリシリコン膜10から構成されるキャ
パシタがキャパシタ面積として利用できる面積が増加し
この結果キャパシタ容量を増加させることかできる。ま
た、この構造では、キャパシタの下部電極を構成するポ
リシリコン膜7の厚みが従来と変わらないため、従来の
下部電極の厚みを増した場合に生じる高段差部での下部
電極のパターン形成上の困難性もない。したがって、本
実施例では、DRAMの集積化に伴ってメモリセルサイ
ズが縮小化された場合にも下部電極のパターン形成上の
困難性を伴うことな(DRAMの安定動作および信頼性
の要求を満たすのに十分なキャパシタ容量を確保するこ
とができる。さらに、数工程の製造プロセスを追加する
のみで、製法上の困難性を解消することができる。
As described above, since the titanium silicide film 8b formed on the polysilicon film 7 has a plurality of protrusions, the surface area is increased compared to a conventional planar lower electrode. Therefore, Porinlicon 7. The area that can be used as a capacitor area of the capacitor composed of titanium silicide film 8b, silicon nitride film 9, and polysilicon film 10 increases, and as a result, the capacitor capacity can be increased. In addition, in this structure, since the thickness of the polysilicon film 7 constituting the lower electrode of the capacitor is unchanged from that of the conventional one, it is difficult to form a pattern of the lower electrode at the high step portion that occurs when the thickness of the conventional lower electrode is increased. There is no difficulty. Therefore, in this embodiment, even if the memory cell size is reduced due to the integration of DRAM, there will be no difficulty in patterning the lower electrode (satisfying the requirements for stable operation and reliability of DRAM). It is possible to secure sufficient capacitor capacity for the following reasons.Furthermore, by adding only a few manufacturing steps, difficulties in the manufacturing method can be resolved.

第2八図ないし第2D図は、第1図に示したDRAMの
メモリセルの製造プロセスを説明するための断面構造図
である。第2A図ないし第2D図を参照して製造プロセ
スについて説明する。まず、第2A図に示すように、シ
リコン基板1上に素子分離酸化膜2.不純物拡散層6.
ゲート酸化膜3゜ゲート電極4および絶縁膜5を形成す
る。このDRAMのアクセストランジスタおよび素子分
離酸化膜2を形成する方法の詳細は、従来から一般に知
られているので省略する。次に、第2B図に示すように
、シリコン基板1上の全面にポリシリコン膜7をCVD
法で形成する。そして、ポリシリコン膜7上にチタン膜
8aをスパッタ蒸着する。
28 to 2D are cross-sectional structural diagrams for explaining the manufacturing process of the DRAM memory cell shown in FIG. 1. The manufacturing process will be described with reference to FIGS. 2A to 2D. First, as shown in FIG. 2A, an element isolation oxide film 2. Impurity diffusion layer 6.
A gate oxide film 3. A gate electrode 4 and an insulating film 5 are formed. The details of the method for forming the access transistor and element isolation oxide film 2 of this DRAM are well known in the art and will therefore be omitted. Next, as shown in FIG. 2B, a polysilicon film 7 is deposited on the entire surface of the silicon substrate 1 by CVD.
form by law. Then, a titanium film 8a is sputter-deposited on the polysilicon film 7.

第2C図に示すように、窒素雰囲気中で900°Cの熱
処理を行なう。これによりチタンシリサイド膜8bが形
成されるが、このチタンシリサイド膜8bには凝集現象
か生じており、その表面は複数の突起部か形成された形
状となる。次に、第2D図に示すようにフォトリソグラ
フィ法およびドライエツチング法を用いてキャパシタ下
部電極が形成される以外の部分を除去する。そして、第
1図に示すようにチタンシリサイド膜8b上に窒化シリ
コン膜9を形成した後、窒化シリコン膜9上にポリシリ
コン膜10を形成する。そして、フォトリソグラフィ法
およびドライエツチング法を用いてキャパシタ上部電極
となるポリシリコン膜および誘電膜となる窒化シリコン
膜9を最終的に形成する以外の部分を除去する。なお、
本実施例では、キャパシタの誘電膜として窒化シリコン
膜9を用いたが、本発明はこれに限らず、熱酸化膜、酸
化タンタル膜、あるいはこれらの複合膜を用いてもよい
。また、本実施例では、高融点金属としてチタンを用い
たが、本発明はこれに限らず、他の高融点金属やタング
ステン、モリブデン、コバルトなとを用いても同様の効
果が得られる。さらに、本実施例では、スタックドタイ
プのキャパシタを例に挙げて説明したが、本発明はこれ
に限らず、下部電極に相当する部分がシリコン基板であ
ればプレーナ型やトレンチ型のキャパシタでも同様の効
果が得られる。
As shown in FIG. 2C, heat treatment is performed at 900° C. in a nitrogen atmosphere. As a result, a titanium silicide film 8b is formed, but an agglomeration phenomenon occurs in this titanium silicide film 8b, and its surface has a shape in which a plurality of protrusions are formed. Next, as shown in FIG. 2D, the portions other than those where the capacitor lower electrode will be formed are removed using photolithography and dry etching. Then, as shown in FIG. 1, a silicon nitride film 9 is formed on the titanium silicide film 8b, and then a polysilicon film 10 is formed on the silicon nitride film 9. Then, photolithography and dry etching are used to remove the portions other than those on which the polysilicon film that will become the capacitor upper electrode and the silicon nitride film 9 that will become the dielectric film will finally be formed. In addition,
In this embodiment, the silicon nitride film 9 is used as the dielectric film of the capacitor, but the present invention is not limited to this, and a thermal oxide film, a tantalum oxide film, or a composite film thereof may be used. Further, in this embodiment, titanium is used as the high melting point metal, but the present invention is not limited to this, and similar effects can be obtained by using other high melting point metals such as tungsten, molybdenum, and cobalt. Furthermore, although this embodiment has been described using a stacked type capacitor as an example, the present invention is not limited to this, and the present invention can be applied to a planar type or trench type capacitor as long as the portion corresponding to the lower electrode is a silicon substrate. The effect of this can be obtained.

[発明の効果] 第1請求項における発明では、容量手段を構成する第1
の導電膜上に上方に延びる複数の突起部を有する高融点
金属シリサイド層を形成することにより、平面上での面
積を増加することなく容量手段として利用できる面積が
増加されるとともに容量手段の下部電極となる策1の導
電膜の厚みを増す必要がないので、メモリセルサイズが
縮小された場合にも下部電極のパターン形成上の困難性
を伴うことなくキャパシタ容量を確保することのできる
半導体装置を提供し得るに到った。
[Effect of the invention] In the invention in the first claim, the first
By forming a refractory metal silicide layer having a plurality of upwardly extending protrusions on the conductive film, the area that can be used as the capacitor means is increased without increasing the area on the plane, and the lower part of the capacitor means is increased. Since there is no need to increase the thickness of the conductive film in Plan 1 that serves as an electrode, a semiconductor device that can secure capacitor capacity without experiencing difficulties in patterning a lower electrode even when the memory cell size is reduced. We were able to provide the following.

第2請求項における発明では、容量手段の下部電極とな
る第1の導電膜およびその上に形成された高融点金属層
を熱処理して第1の導電膜上に上方に延びる複数の突起
部を有する高融点金属シリサイド層を形成することによ
り、平面上での面積を増加することなく容量手段として
利用できる面積が増加されるとともに容量手段の下部電
極となる第1の導電膜の厚みを増す必要がないので、メ
モリセルサイズが縮小された場合にも下部電極のパター
ン形成上の困難性を伴うことなくキャパシタ容量を確保
することのできる半導体装置の製造方法を提供し得るに
到った。
In the invention in the second claim, the first conductive film serving as the lower electrode of the capacitor means and the high melting point metal layer formed thereon are heat-treated to form a plurality of protrusions extending upward on the first conductive film. By forming a high-melting point metal silicide layer with a high melting point metal silicide layer, the area that can be used as a capacitor is increased without increasing the area on the plane, and it is necessary to increase the thickness of the first conductive film that becomes the lower electrode of the capacitor. Therefore, it has become possible to provide a method for manufacturing a semiconductor device that can ensure capacitor capacity without any difficulty in patterning the lower electrode even when the memory cell size is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1−図は本発明の一実施例を示したDRAMのメモリ
セルの断面図、第2八図ないし第2D図は第1図に示し
たDRAMのメモリセルの製造プロセスを説明するため
の断面構造図、第3図は従来のスタックドタイプのメモ
リセルの断面図、第4図は従来の改良されたスタックド
タイプのメモリセルの断面図である。 図において、1はシリコン基板、2は素子分離酸化膜、
3はゲート酸化膜、4はケート電極、5は絶縁膜、6は
不純物拡散層、7はポリシリコン膜、8bはチタンシリ
サイド膜、9は窒化シリコン膜、 10はポリシリコン膜である。 なお、 図中同一符号は同一、 または相当部分を 示す。
FIG. 1-FIG. 1 is a cross-sectional view of a DRAM memory cell showing an embodiment of the present invention, and FIGS. 28 to 2D are cross-sectional views for explaining the manufacturing process of the DRAM memory cell shown in FIG. 3 is a sectional view of a conventional stacked type memory cell, and FIG. 4 is a sectional view of a conventional improved stacked type memory cell. In the figure, 1 is a silicon substrate, 2 is an element isolation oxide film,
3 is a gate oxide film, 4 is a gate electrode, 5 is an insulating film, 6 is an impurity diffusion layer, 7 is a polysilicon film, 8b is a titanium silicide film, 9 is a silicon nitride film, and 10 is a polysilicon film. Note that the same symbols in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板の素子分離領域に隣接し
て形成された第2導電型の不純物領域と、前記半導体基
板の前記不純物領域に隣接する領域上に第1の絶縁膜を
介して形成されたゲート電極と、 少なくとも前記不純物領域上に形成された第1の導電膜
と少なくとも該第1の導電膜上に形成された上方に延び
る複数の突起部を有する高融点金属シリサイド層と該高
融点金属シリサイド層上に形成された第2の絶縁膜と該
第2の絶縁膜上に形成された第2の導電膜とを有する容
量手段とを含む、半導体装置。
(1) An impurity region of a second conductivity type formed adjacent to an element isolation region of a semiconductor substrate of a first conductivity type and a region adjacent to the impurity region of the semiconductor substrate with a first insulating film interposed therebetween. a first conductive film formed on at least the impurity region; and a refractory metal silicide layer formed on at least the first conductive film and having a plurality of upwardly extending protrusions. A semiconductor device comprising capacitor means having a second insulating film formed on the high melting point metal silicide layer and a second conductive film formed on the second insulating film.
(2)第1導電型の半導体基板の素子分離領域に隣接し
て第2導電型の不純物領域が形成され、前記半導体基板
の前記不純物領域に隣接する領域上に第1の絶縁膜を介
してゲート電極が形成される半導体装置の製造方法であ
って、 少なくとも前記不純物領域上に容量手段の下部電極とな
る第1の導電膜を形成するステップと、前記第1の導電
膜上に高融点金属層を形成するステップと、 前記第1の導電膜および前記高融点金属層に熱処理を加
えて前記第1の導電膜上に上方に延びる複数の突起部を
有する高融点金属シリサイド層を形成するステップと、 少なくとも前記高融点金属シリサイド層上に容量手段の
誘電膜となる第2の絶縁膜を形成するステップと、 前記第2の絶縁膜上に容量手段の上部電極となる第2の
導電膜を形成するステップとを含む、半導体装置の製造
方法。
(2) A second conductivity type impurity region is formed adjacent to the element isolation region of the first conductivity type semiconductor substrate, and a second conductivity type impurity region is formed on the semiconductor substrate adjacent to the impurity region via a first insulating film. A method of manufacturing a semiconductor device in which a gate electrode is formed, the method comprising: forming a first conductive film to serve as a lower electrode of a capacitor on at least the impurity region; and forming a high melting point metal on the first conductive film. forming a layer, and applying heat treatment to the first conductive film and the high melting point metal layer to form a high melting point metal silicide layer having a plurality of upwardly extending protrusions on the first conductive film. forming a second insulating film to serve as a dielectric film of the capacitive means on at least the high melting point metal silicide layer; and forming a second conductive film to serve as an upper electrode of the capacitive means on the second insulating film. A method of manufacturing a semiconductor device, the method comprising: forming a semiconductor device.
JP2026604A 1990-02-06 1990-02-06 Semiconductor device and manufacture thereof Pending JPH03230561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2026604A JPH03230561A (en) 1990-02-06 1990-02-06 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2026604A JPH03230561A (en) 1990-02-06 1990-02-06 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03230561A true JPH03230561A (en) 1991-10-14

Family

ID=12198116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2026604A Pending JPH03230561A (en) 1990-02-06 1990-02-06 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03230561A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278091A (en) * 1993-05-04 1994-01-11 Micron Semiconductor, Inc. Process to manufacture crown stacked capacitor structures with HSG-rugged polysilicon on all sides of the storage node
US5474950A (en) * 1992-10-24 1995-12-12 Hyundai Electronics Industries Co., Ltd. Method for manufacturing a capacitor in a semiconductor device
JPH08306882A (en) * 1995-05-11 1996-11-22 Nec Corp Semiconductor device and fabrication method thereof
KR100480557B1 (en) * 1997-07-23 2006-04-21 삼성전자주식회사 Method for fabricating capacitor of semiconductor device having selectively deposited metal silicide film
KR100546163B1 (en) * 1998-09-21 2007-12-12 주식회사 하이닉스반도체 Capacitor Formation Method of Semiconductor Device
JP2008503077A (en) * 2004-06-18 2008-01-31 エスティマイクロエレクトロニクス(クロル 2)エスエーエス Integrated circuit with capacitor having electrodes and method for manufacturing the capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474950A (en) * 1992-10-24 1995-12-12 Hyundai Electronics Industries Co., Ltd. Method for manufacturing a capacitor in a semiconductor device
US5278091A (en) * 1993-05-04 1994-01-11 Micron Semiconductor, Inc. Process to manufacture crown stacked capacitor structures with HSG-rugged polysilicon on all sides of the storage node
USRE36786E (en) * 1993-05-04 2000-07-18 Micron Technology, Inc. Process to manufacture crown stacked capacitor structures with HSG-rugged polysilicon on all sides of the storage node
JPH08306882A (en) * 1995-05-11 1996-11-22 Nec Corp Semiconductor device and fabrication method thereof
KR100239009B1 (en) * 1995-05-11 2000-01-15 가네꼬 히사시 Method for manufacturing highly integrared capacitor
KR100480557B1 (en) * 1997-07-23 2006-04-21 삼성전자주식회사 Method for fabricating capacitor of semiconductor device having selectively deposited metal silicide film
KR100546163B1 (en) * 1998-09-21 2007-12-12 주식회사 하이닉스반도체 Capacitor Formation Method of Semiconductor Device
JP2008503077A (en) * 2004-06-18 2008-01-31 エスティマイクロエレクトロニクス(クロル 2)エスエーエス Integrated circuit with capacitor having electrodes and method for manufacturing the capacitor
US8975682B2 (en) 2004-06-18 2015-03-10 Stmicroelectronics (Crolles 2) Sas Integrated circuit comprising a capacitor with HSG metal electrodes

Similar Documents

Publication Publication Date Title
JP2682455B2 (en) Semiconductor memory device and method of manufacturing the same
JP2504606B2 (en) Semiconductor memory device and manufacturing method thereof
JP2906807B2 (en) Semiconductor memory cell and manufacturing method thereof
JPH0430573A (en) Semiconductor memory device
JP3222944B2 (en) Method for manufacturing capacitor of DRAM cell
JPH02312269A (en) Semiconductor memory device and manufacture thereof
US5501999A (en) Process for formation of capacitor for DRAM cell
JPH10173148A (en) Semiconductor storage device
KR20000002888A (en) Production method of capacitor of semiconductor memory device
JPH03230561A (en) Semiconductor device and manufacture thereof
JPH02219264A (en) Dram cell and its manufacture
JPH0294561A (en) Semiconductor storage device and manufacture thereof
JPH09283719A (en) Semiconductor integrated circuit device and manufacture of the device
JP3120462B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP2715012B2 (en) Semiconductor memory device and method of manufacturing the same
JPS62193275A (en) Three-dimensional one transistor cell device and manufactureof the same
JPH01273347A (en) Semiconductor device
JPH11214645A (en) Semiconductor memory and manufacture thereof
JP3004280B2 (en) Semiconductor memory cell
JPH04352359A (en) Semiconductor memory device
JP2501647B2 (en) Semiconductor memory device and manufacturing method thereof
JP2827377B2 (en) Semiconductor integrated circuit
JPH04216666A (en) Semiconductor device and its manufacture
JPH02122560A (en) Semiconductor storage device
JPH05304271A (en) Trench type memory cell