USRE36786E - Process to manufacture crown stacked capacitor structures with HSG-rugged polysilicon on all sides of the storage node - Google Patents

Process to manufacture crown stacked capacitor structures with HSG-rugged polysilicon on all sides of the storage node Download PDF

Info

Publication number
USRE36786E
USRE36786E US08585402 US58540296A USRE36786E US RE36786 E USRE36786 E US RE36786E US 08585402 US08585402 US 08585402 US 58540296 A US58540296 A US 58540296A US RE36786 E USRE36786 E US RE36786E
Authority
US
Grant status
Grant
Patent type
Prior art keywords
conductive
forming
insulating layer
process
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08585402
Inventor
Pierre Fazan
Viju Mathews
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • H01L27/108Dynamic random access memory structures
    • H01L27/10844Multistep manufacturing methods
    • H01L27/10847Multistep manufacturing methods for structures comprising one transistor one-capacitor memory cells
    • H01L27/1085Multistep manufacturing methods for structures comprising one transistor one-capacitor memory cells with at least one step of making the capacitor or connections thereto
    • H01L27/10852Multistep manufacturing methods for structures comprising one transistor one-capacitor memory cells with at least one step of making the capacitor or connections thereto the capacitor extending over the access transistor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/84Electrodes with an enlarged surface, e.g. formed by texturisation being a rough surface, e.g. using hemispherical grains
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/964Roughened surface

Abstract

The present invention develops a container capacitor by forming a first insulative layer over conductive word lines; forming an opening between neighboring conductive word lines; forming a conductive plug between neighboring parallel conductive word lines; forming a planarized blanketing second insulating layer over the first insulative layer and the conductive plug; forming an opening into the second insulating layer, the opening thereby forming a container shape; forming a conductive spacer adjacent the wall of the container form, the conductive spacer having inner and outer surfaces; removing the second insulating layer, thereby exposing the outer surface of the conductive spacer; forming a layer of hemispherical grained conductive material superjacent the inner and outer surfaces of the conductive spacer; forming insulating spacers adjacent the inner and outer surfaces of the hemispherical grained conductive material; patterning the hemispherical grained conductive material to form a separate conductive container structure serving as a first capacitor cell plate; removing the insulating spacers; forming a capacitor cell dielectric layer adjacent and coextensive the conductive container structure and the first insulating layer; and forming a second conductive layer superjacent and coextensive the capacitor cell dielectric layer, the second conductive layer forming a second capacitor cell plate. The process of the present invention can be further modified to form a DRAM double container capacitor storage cell.

Description

FIELD OF THE INVENTION

This invention relates to semiconductor circuit memory storage devices and more particularly to a process for fabricating three-dimensional stacked capacitor structures that may be used in such storage devices as high-density dynamic random access memories (DRAMs).

BACKGROUND OF THE INVENTION

In dynamic semiconductor memory storage devices it is essential that storage node capacitor cell plates be large enough to retain an adequate charge (or capacitance) in spite of parasitic capacitances and noise that may be present during circuit operation. As is the case for most semiconductor integrated circuitry, circuit density is continuing to increase at a fairly constant rate. The issue of maintaining storage node capacitance is particularly important as the density of DRAM arrays continues to increase for future generations of memory devices.

The ability to densely pack storage cells while maintaining required capacitance levels is a crucial requirement of semiconductor manufacturing technologies if future generations of expanded memory array devices are to be successfully manufactured.

One method of maintaining, as well as increasing, storage node size in densely packed memory devices is through the use of "stacked storage cell" design. With this technology, two or more layers of a conductive material such as polycrystalline silicon (polysilicon or poly) are deposited over an access device on a silicon wafer, with dielectric layers sandwiched between each poly layer. A cell constructed in this manner is known as a stacked capacitor cell (STC). Such a cell utilizes the space over the access device for capacitor plates, has a low soft error rate (SER) and may be used in conjunction with inter-plate insulative layers having a high dielectric constant.

However, it is difficult to obtain sufficient storage capacitance with a conventional STC capacitor as the storage electrode area is confined within the limits of its own cell area. Also, maintaining good dielectric breakdown characteristics between poly layers in the STC capacitor becomes a major concern once insulator thickness is appropriately scaled.

A paper submitted by N. Shinmura, et al., entitled "A Stacked Capacitor Cell with Ring Structure," Extended Abstracts of the 22nd International Conference on Solid State Devices and Materials, 1990, pp. 833-836, discusses a 3-dimensional stacked capacitor incorporating a ring structure around the main electrode to effectively double the capacitance of a conventional stacked capacitor.

The ring structure and its development is shown in FIGS. 1(c) through 1(g), pp. 834 of the article mentioned above. FIG. 1(a), on the same page shows a bird's eye-view of storage electrodes. The storage node is formed by two polysilicon layers that form a core electrode encircled by a ring structure. Capacitor dielectric film surrounds the whole surface of the storage node electrode and then is covered with a third polysilicon layer to form the top capacitor electrode and completes the storage cell. This design can be fabricated using current methods and increases storage capacitance by as much as 200%.

Also, in a paper submitted by T. Kaga, et al., entitled "Crown-Shaped Stacked-Capacitor Cell for 1.5V Operation 64-Mb DRAM's," IEEE Transactions on Electron Devices. VOL. 38, No. 2, February 2, 1991, pp. 255-261, discusses a self-aligned stacked-capacitor cell for 64-Mb DRAM's, called a CROWN cell. The CROWN cell and its development are shown in FIGS. 7(d) through 7(f), pp. 258 of this article. The crown shaped storage electrode is formed over word and bit lines and separated by a oxide/nitride insulating layer with the top insulating layer being removed to form the crown shape. Capacitor dielectric film surrounds the whole surface of the storage node electrode and the top capacitor electrode is formed to complete the storage cell.

U.S. Pat. No. 5,162,248, having the same assignee as does the present invention, is a related process to form a container cell. All publications cited herein are hereby incorporated by reference.

The present invention develops an existing stacked capacitor fabrication process to construct and optimize a three-dimensional container (crown or double crown) stacked capacitor cell. The capacitor's bottom plate (or storage node plate) is centered over a buried contact (or node contact) connected to an access transistor's diffusion area. The method presented herein provides fabrication uniformity and repeatability of the three-dimensional container cell.

SUMMARY OF THE INVENTION

The invention is directed to maximizing storage cell surface area in a high density/high volume DRAM (dynamic random access memory) fabrication process. An existing capacitor fabrication process is modified to construct a three-dimensional stacked container capacitor. The capacitor design of the present invention defines a stacked capacitor storage cell that is used in a DRAM process, however it will be evident to one skilled in the art to incorporate these steps into other processes requiring volatile memory cells, such as VRAMs or the like.

A first embodiment of the present invention develops a process for fabricating a conductive container structure on a starting substrate, with the process comprising the steps of:

a) forming a first insulating layer over parallel conductive lines;

b) forming an opening through the first insulating layer between neighboring parallel conductive lines;

c) forming a conductive plug between the neighboring parallel conductive lines;

d) forming a planarized blanketing second insulating layer over the first insulative layer and the conductive plug;

e) forming an opening into the second insulating layer, the opening thereby forming a container shape;

f) forming a conductive spacer adjacent the wall of the container form, the conductive spacer having inner and outer surfaces;

g) removing the second insulating layer thereby exposing the outer surface of the conductive spacer;

h) forming a layer of hemispherical grained conductive material superjacent the inner and outer surfaces of the conductive spacer;

i) forming insulating spacers adjacent the inner and outer surfaces of the hemispherical grained conductive material;

j) patterning the hemispherical grained conductive material to form a separate conductive container structure;

k) removing the insulating spacers;

l) forming a third insulating layer adjacent and coextensive the conductive container structure and the first insulating layer; and

m) forming a second conductive layer superjacent and coextensive the third insulating layer.

A second embodiment of the present invention develops a process for fabricating a conductive double container structure on a starting substrate, the process comprising the steps of:

a) forming a first insulating layer over parallel conductive lines;

b) forming an opening through the first insulating layer between neighboring parallel conductive lines;

c) forming a conductive plug between the neighboring parallel conductive lines;

d) forming a planarized blanketing second insulating layer over the first insulative layer and the conductive plug;

e) forming an opening into the second insulating layer, the opening thereby forming a container shape;

f) forming a conformal conductive layer adjacent the wall of the container form;

g) forming a third insulating layer;

h) removing portions of the third insulating layer and the conductive layer such that the conductive layer is separated into L-shaped structures, the L-shaped conductive structures having inner and outer surfaces with vertical insulating spacers adjacent the inner portions of the L-shaped structures;

i) forming a conductive plug between the insulating spacers, the conductive plug making contact to the L-shaped structures and the first conductive plug;

j) removing the insulating spacers and the second insulating layer, thereby exposing the inner and outer surfaces of the L-shaped structures;

k) forming a layer of hemispherical grained conductive material superjacent the inner and outer surfaces of the L-shaped structures;

l) forming insulating spacers adjacent the inner and outer surfaces of the hemispherical grained conductive material;

m) patterning the hemispherical grained conductive material to form a separate conductive double container structure;

n) removing the insulating spacers;

o) forming a third insulating layer adjacent and coextensive the conductive double container structure and the first insulating layer; and

p) forming a second conductive layer superjacent and coextensive the third insulating layer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a composite cross-sectional view of an in-process wafer portion depicting the beginning steps of the present invention, whereby a polysilicon plug has been formed between two word lines which is then followed a deposition of nitride followed by a planarized layer of oxide;

FIG. 2 is a cross-sectional view of the in-process wafer portion of FIG. 1 after a contact opening exposing the poly plug which is followed by the formation of doped polysilicon spacers;

FIG. 3 is a cross-sectional view of the in-process wafer portion of FIG. 2 after a oxide wet etch followed by deposition of HSG poly;

FIG. 4 is a cross-sectional view of the in-process wafer portion of FIG. 3 following the formation of oxide spacers and patterning of individual storage modes;

FIG. 5 is a cross-sectional view of the in-process wafer portion of FIG. 4 following the removal of the oxide spacers of FIG. 4;

FIG. 6 is a cross-sectional view of the in-process wafer portion FIG. 5 following the formation of conformal cell dielectric and polysilicon, respectively;

FIG. 7 is a cross-sectional view of the in-process wafer portion of FIG. 1 after a contact opening exposing the poly plug which is followed by the formation of doped polysilicon spacers and oxide spacers;

FIG. 8 is a cross-sectional view of the in-process wafer portion of FIG. 7 after formation of a doped polysilicon plug between the oxide spacers of FIG. 7;

FIG. 9 is a cross-sectional view of the in-process wafer portion of FIG. 8 after a oxide wet etch followed by deposition of HSG poly;

FIG. 10 is a cross-sectional view of the in-process wafer portion of FIG. 9 following the formation of oxide spacers and patterning of individual storage nodes;

FIG. 11 is a cross-sectional view of the in-process wafer portion of FIG. 10 following the removal of the oxide spacers of FIG. 10; and

FIG. 12 is a cross-sectional view of the in-process wafer portion FIG. 11 following the formation of conformal cell dielectric and polysilicon, respectively.

DETAILED DESCRIPTION OF THE PRESENT INVENTION

The present invention is directed to maximizing storage cell surface area, as well as providing uniform and repeatable, defect free, storage cell structures across a given substrate, in a high density/high volume DRAM fabrication process.

As shown in FIG. 1, a silicon wafer is prepared using conventional process steps to form a conductively doped poly plug 13 residing between neighboring word lines 12 and making contact to diffusion region 11 of substrate 10. Silicon nitride layer 14 insulates word lines 12 and planarize silicon oxide 15 blankets nitride 14 and poly plug 13. The wafer has been processed up to the point of processing an array of storage cell capacitors. Capacitor cell fabrication will now follow.

The storage capacitor of each memory cell will make contact to the underlying diffusion region 11 via poly plug 13. Each underlying diffusion region 11 will have two storage node connections isolated from a single digit line contact by access transistors formed by poly word lines 12 crossing the active area. Normally each diffusion region 11 within the array is isolated from one another by a thick field oxide. The diffusion areas can be arranged in interdigitated columns and non-interdigitated rows or simply parallel and in line to one another in both the vertical and horizontal directions. As previously mentioned, the diffusion areas are used to form active field effect transistors (FETS serving as access transistors to each individual capacitor) that can be doped as NMOS or PMOS type FETs depending on the desired use.

A preferred embodiment is depicted in FIGS. 2-6 in view of the in process steps of FIG. 1. Now referring to FIG. 2, the thickness of planarized oxide layer 15 depends on the height that is desired for the poly container structure yet to be formed. The height of the resulting poly structure will be one of the factors in determining the resulting capacitor plate surface area desired. A contact opening 21 is etched into oxide 15 thereby allowing access to the underlying poly plug 13. Contact opening 21 not only allows access to the underlying topography but also provides form for a subsequently placed layer of conductively doped thin poly. This thin poly layer is now formed, preferably by CVD, and then etched, thereby forming poly spacers 22 adjacent the patterned edges of oxide 15. Poly spacers 22 may either have been deposited insitu doped or it may be subsequently doped.

Referring now to FIG. 3, oxide 15 is removed by an oxide wet etch thereby exposing the outer surface area of poly 22 which is followed by deposition of conductively doped hemispherical grain poly 31 (HSG poly).

Referring now to FIG. 4, a silicon oxide layer is deposited and a spacer etch is performed to form silicon oxide spacers 41 that cover and protect HSG poly 31 from a subsequent poly storage node patterning dry etch. The presence of oxide spacers 41 allow for HSG poly 31 to remain intact which will help significantly to increase capacitance.

Referring now to FIG. 5, the exposed portions of poly 31 are removed to separate neighboring poly structures, thereby forming individual containers 42, comprising poly plug 13 and doped poly spacers 22, with their respective exposed surfaces being coated with HSG doped poly 31.

Referring now to FIG. 6, when using the individual containers 42 (of FIG. 5) to form a capacitor storage node plate contain ®r 42, the remaining portion of nitride 14 is coated with a capacitor cell dielectric 61. Finally, a doped conformal poly layer 62 is placed to blanket cell dielectric 61 and serves as a common capacitor cell plate to the entire array of containers 42. From this point on the wafer is completed using conventional fabrication process steps.

An alternate embodiment is depicted in FIGS. 7-12 in view of the in-process steps completed in FIG. 1. Now referring to FIG. 7, the thickness of planarized oxide layer 15 depends on the height that is desired for the poly container structure yet to be formed. The height of the resulting poly structure will be one of the factors in determining the resulting capacitor plate surface area desired. A contact opening 71 is etched into silicon oxide 15 thereby allowing access to the underlying poly plug 13. Contact opening 71 not only allows access to the underlying topography but also provides a form for a subsequently placed layer of conductively doped thin poly. Next, silicon oxide is deposited which is followed by a dry etchback that forms oxide spacers 73 and L-shaped patterned poly liners 72 adjacent the patterned edges of oxide 15. This dry etchback also leaves a gap between oxide spacers 73 and exposes a middle portion of poly plug 13.

Referring now to FIG. 8, a second poly plug 81 is formed by depositing a doped poly layer that is then etched back below the upper surface of spacers 73. A dry etchback satisfactorily accomplishes this etch step.

Referring now to FIG. 9, oxide spacers 73 and planarized oxide 15 are removed by an oxide wet etch thereby exposing the inner and outer surface area of poly 71 and poly plug 81 to form a double crown structure 91 (also referred to as a poly plug crown structure or a double container cell). This step is then followed by a deposition of conductively doped hemi-spherical grain poly 92 (HSG poly) to coat the exposed surfaces of double crown structure 91.

Referring now to FIG. 10, a silicon oxide layer is deposited and a spacer etch is perfomred to form silicon oxide spacers 101 to cover and protect HSG poly 92 from a subsequent poly storage node patterning dry etch. The presence of oxide spacers 101 allow for HSG poly 92 to remain intact which will help to increase capacitance significantly.

Referring now to FIG. 11, the exposed portion of poly 92 are removed to separate neighboring poly structures, thereby forming an individual container 111 comprising doped poly plug 13 and doped L-shaped poly liners 72 which are both covered by HSG doped poly 92.

Referring now to FIG. 12, when using this structure to form a capacitor storage node plate container 111 and the remaining portion of nitride 14 is coated with a capacitor cell dielectric 121. And, finally a doped conformal poly layer 12 is placed to blanket cell dielectric 121 and serves as a common capacitor cell plate to the entire array of containers 111. From this point on the wafer is completed using conventional fabrication process steps.

It is to be understood that although the present invention has been described with reference to a preferred embodiment, various modifications, known to those skilled in the art, may be made to the structures and process steps presented herein without departing from the invention as recited in the several claims appended hereto.

Claims (43)

We claim:
1. A process for fabricating a conductive container structure on a starting substrate, said process comprising the steps of:
a) forming a first insulating layer over parallel conductive lines;
b) forming an opening through said first insulating layer between neighboring parallel conductive lines;
c) forming a conductive plug between said neighboring parallel conductive lines;
d) forming a planarized blanketing second insulating layer over said first insulative layer and said conductive plug;
e) forming an opening into said second insulating layer, said opening .Iadd.into said second insulating layer .Iaddend.thereby forming a container shape;
f) forming a conductive spacer adjacent the wall of said container .[.form.]. .Iadd.shape.Iaddend., said conductive spacer having inner and outer surfaces;
g) removing said second insulating layer thereby exposing said outer surface of said conductive spacer;
h) forming a layer of hemispherical grained conductive material superjacent said inner and outer surfaces of said conductive spacer;
i) forming insulating spacers adjacent the inner and outer surfaces of said hemispherical grained conductive material;
j) patterning said hemispherical grained conductive material to form a separate conductive container structure;
k) removing said insulating spacers;
l) forming a third insulating layer adjacent and coextensive said conductive container structure and said first insulating layer; and
m) forming a second conductive layer superjacent and coextensive said third insulating layer.
2. A process as recited in claim 1, wherein said conductive plug comprises conductively doped polysilicon.
3. A process as recited in claim 1, wherein said first insulating layer is silicon nitride.
4. A process as recited in claim 1, wherein said second insulating layer is silicon oxide.
5. A process as recited in claim 1, wherein said conductive spacer comprises conductively doped polysilicon.
6. A process as recited in claim 1, wherein said hemispherical grained conductive material comprises conductively doped hemispherical grained polysilicon.
7. A process as recited in claim 1, wherein said insulating spacers are silicon oxide.
8. A process as recited in claim 1, wherein said third insulating layer is silicon nitride.
9. A process as recited in claim 1, wherein said second conductive layer comprises conductively doped polysilicon.
10. A process for fabricating a conductive double container structure on a starting substrate, said process comprising the steps of:
a) forming a first insulating layer over parallel conductive lines;
b) forming an opening through said first insulating layer between neighboring parallel conductive lines;
c) forming a .Iadd.first .Iaddend.conductive plug between said neighboring parallel conductive lines;
d) forming a planarized blanketing second insulating layer over said first insulative layer and said .Iadd.first .Iaddend.conductive plug;
e) forming an opening into said second insulating layer .Iadd.over said first conductive plug.Iaddend., said opening .Iadd.into said second insulating layer .Iaddend.thereby forming a container shape;
f) forming a conformal conductive layer adjacent the wall of said container .[.form.]. .Iadd.shape.Iaddend.;
g) forming a third insulating layer .Iadd.over said conductive layer.Iaddend.;
h) removing portions of said third insulating layer and said conductive layer such that said conductive layer is separated into L-shaped structures, said L-shaped conductive structures having inner and outer surfaces with vertical insulating spacers adjacent the inner portions of said L-shaped structures;
i) forming a .Iadd.second .Iaddend.conductive plug between said insulating spacers, said .Iadd.second .Iaddend.conductive plug making contact to said L-shaped structures and said first conductive plug;
j) removing said insulating spacers and said second insulating layer, thereby exposing said inner and outer surfaces of said L-shaped structures;
k) forming a layer of hemispherical grained conductive material superjacent said inner and outer surfaces of said L-shaped structures;
l) forming insulating spacers adjacent the inner and outer surfaces of said hemispherical grained conductive material;
m) patterning said hemispherical grained conductive material to form a separate conductive double container structure;
n) removing said insulating spacers;
o) forming a third insulating layer adjacent and coextensive said conductive double container structure and said first insulating layer; and
p) forming a second conductive layer superjacent and coextensive said third insulating layer.
11. A process as recited in claim 10, wherein said first conductive plug comprises conductively doped polysilicon.
12. A process as recited in claim 10, wherein said first insulating layer is silicon nitride.
13. A process as recited in claim 10, wherein said second insulating layer is silicon oxide.
14. A process as recited in claim 10, wherein said conformal conductive layer comprises conductively doped polysilicon.
15. A process as recited in claim 10, wherein said third insulating layer is silicon oxide.
16. A process as recited in claim 10, wherein said second conductive plug comprises conductively doped polysilicon.
17. A process as recited in claim 10, wherein said hemispherical grained conductive material comprises conductively doped hemispherical grained polysilicon.
18. A process as recited in claim 10, wherein said insulating spacers are silicon oxide.
19. A process as recited in claim 10, wherein said third insulating layer is silicon nitride.
20. A process as recited in claim 10, wherein said second conductive layer comprises conductively doped polysilicon.
21. A process for fabricating a DRAM container storage capacitor on a silicon substrate having active areas, word lines and digit lines, said process comprising the steps of:
a) forming a first insulating layer over parallel conductive lines;
b) forming an opening through said first insulating layer between neighboring parallel conductive lines;
c) forming a conductive plug between said neighboring parallel conductive .[.word.]. lines;
d) forming a planarized blanketing second insulating layer over said first insulative layer and said conductive plug;
e) forming an opening into said second insulating layer, said opening .Iadd.into said second insulating layer .Iaddend.thereby forming a container shape;
f) forming a conductive spacer adjacent the wall of said container .[.form.]. .Iadd.shape.Iaddend., said conductive spacer having inner and outer surfaces;
g) removing said second insulating layer, thereby exposing said outer surface of said conductive spacer;
h) forming a layer of hemispherical grained conductive material superjacent said inner and outer surfaces of said conductive spacer;
i) forming insulating spacers adjacent the inner and outer surfaces of said hemispherical grained conductive material;
j) patterning said hemispherical grained conductive material to form a separate conductive container structure serving as a first capacitor cell plate;
k) removing said insulating spacers;
l) forming a capacitor cell dielectric layer adjacent and coextensive said conductive container structure and said first insulating layer; and
m) forming a second conductive layer superjacent and coextensive said capacitor cell dielectric layer, said second conductive layer forming a second capacitor cell plate.
22. A process as recited in claim 21, wherein said conductive plug comprises conductively doped polysilicon.
23. A process as recited in claim 21, wherein said first insulating layer is silicon nitride.
24. A process as recited in claim 21, wherein said second insulating layer is silicon oxide.
25. A process as recited in claim 21, wherein said conductive spacer comprises conductively doped polysilicon.
26. A process as recited in claim 21, wherein said hemispherical grained conductive material comprises conductively doped hemispherical grained polysilicon.
27. A process as recited in claim 21, wherein said insulating spacers are silicon oxide.
28. A process as recited in claim 21, wherein said third insulating layer is silicon nitride.
29. A process as recited in claim 21, wherein said second conductive layer comprises conductively doped polysilicon.
30. A process for fabricating a DRAM double container storage capacitor on a silicon substrate having active areas, word lines and digit lines, said process comprising the steps of:
a) forming a first insulating layer over parallel conductive lines;
b) forming an opening through said first insulating layer between neighboring parallel conductive lines;
c) forming a .Iadd.first .Iaddend.conductive plug between said neighboring parallel conductive .[.word.]. lines;
d) forming a planarized blanketing second insulating layer over said first insulative layer and said .Iadd.first .Iaddend.conductive plug;
e) forming an opening into said second insulating layer .Iadd.over said first conductive plug.Iaddend., said opening .Iadd.into said second insulating layer .Iaddend.thereby forming a container shape;
f) forming a conformal conductive layer adjacent the wall of said container .[.form.]. .Iadd.shape.Iaddend.;
g) forming a third insulating layer .Iadd.over said conductive layer.Iaddend.;
h) etching said third insulating layer and said conductive layer such that said conductive layer is separated into L-shaped structures, said L-shaped conductive structures having inner and outer surfaces with vertical insulating spacers adjacent the inner portions of said L-shaped structures;
i) forming a .Iadd.second .Iaddend.conductive plug between said insulating spacers, said .Iadd.second .Iaddend.conductive plug making contact to said L-shaped structures and said first conductive plug;
j) removing said insulating spacers and said second insulating layer, thereby exposing said inner and outer surfaces of said L-shaped structures;
k) forming a layer of hemispherical grained conductive material superjacent said inner and outer surfaces of said L-shaped structures;
l) forming insulating spacers adjacent the inner and outer surfaces of said hemispherical grained conductive material;
m) patterning said hemispherical grained conductive material to form a separate conductive double container structure serving as a first capacitor cell plate;
n) removing said insulating spacers;
o) forming a capacitor cell dielectric layer adjacent and coextensive said conductive double container structure and said first insulating layer; and
p) forming a second conductive layer superjacent and coextensive said capacitor cell dielectric layer, said second conductive layer forming a second capacitor cell plate.
31. A process as recited in claim 30, wherein said first conductive plug comprises conductively doped polysilicon.
32. A process as recited in claim 30, wherein said first insulating layer is silicon nitride.
33. A process as recited in claim 30, wherein said second insulating layer is silicon oxide.
34. A process as recited in claim 30, wherein said conformal conductive layer comprises conductively doped polysilicon.
35. A process as recited in claim 30, wherein said third insulating layer is silicon oxide.
36. A process as recited in claim 30, wherein said second conductive plug comprises conductively doped polysilicon.
37. A process as recited in claim 30, wherein said hemispherical grained conductive material comprises conductively doped hemispherical grained polysilicon.
38. A process as recited, in claim 30, wherein said insulating spacers are silicon oxide.
39. A process as recited in claim 30, wherein said third insulating layer is silicon nitride.
40. A process as recited in claim 30, wherein said second conductive layer comprises conductively doped polysilicon. .Iadd.
41. A process for fabricating a conductive container structure on a starting substrate, said process comprising the steps of:
providing a substrate assembly having a first insulating layer thereon;
forming a second insulating layer over said first insulative layer;
forming an opening into said second insulating layer, said opening forming a container form;
forming a conductive spacer adjacent the wall of said container form, said conductive spacer having inner and outer surfaces;
removing said second insulating layer thereby exposing said outer surface of said conductive spacer;
depositing a layer of hemispherical grained conductive material superjacent said inner and outer surfaces of said conductive spacer;
forming insulating spacers over the layer of hemispherical grained conductive material;
patterning the hemispherical grained conductive material to form a container structure;
removing the insulating spacers;
forming a third insulating layer adjacent said container structure; and
forming a second conductive layer superjacent said third insulating layer..Iaddend..Iadd.
42. A process as recited in claim 41, wherein said first insulating layer is silicon nitride..Iaddend..Iadd.43. A process as recited in claim 41, wherein said second insulating layer is silicon oxide..Iaddend..Iadd.44. A process as recited in claim 41, wherein said conductive spacer comprises conductively doped polysilicon..Iaddend..Iadd.45. A process as recited in claim 41, wherein said hemispherical grained conductive material comprises conductively doped hemispherical grained polysilicon..Iaddend..Iadd.46. A process as recited in claim 41, wherein said third insulating layer is
silicon nitride..Iaddend..Iadd.47. A process as recited in claim 41, wherein said second conductive layer comprises conductively doped polysilicon..Iaddend..Iadd.48. A process for fabricating a conductive container structure on a starting substrate, said process comprising the steps of:
providing a substrate assembly having a first insulating layer thereon;
forming a second insulating layer over said first insulative layer;
forming an opening into said second insulating layer, said opening forming a container form;
forming a conductive spacer adjacent the wall of said container form, said conductive spacer having inner and outer surfaces;
removing said second insulating layer thereby exposing said outer surface of said conductive spacer;
depositing a layer of hemispherical grained conductive material comprising hemispherical grained polysilicon adjacent said inner and outer surfaces of said conductive spacer;
forming insulating spacers over the layer of hemispherical grained conductive material;
patterning the hemispherical grained conductive material to form a container structure;
removing the insulating spacers;
forming a third insulating layer adjacent said conductive container structure; and
forming a second conductive layer superjacent said third insulating layer..Iaddend.
US08585402 1993-05-04 1996-01-11 Process to manufacture crown stacked capacitor structures with HSG-rugged polysilicon on all sides of the storage node Expired - Lifetime USRE36786E (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08058554 US5278091A (en) 1993-05-04 1993-05-04 Process to manufacture crown stacked capacitor structures with HSG-rugged polysilicon on all sides of the storage node
US08585402 USRE36786E (en) 1993-05-04 1996-01-11 Process to manufacture crown stacked capacitor structures with HSG-rugged polysilicon on all sides of the storage node

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08585402 USRE36786E (en) 1993-05-04 1996-01-11 Process to manufacture crown stacked capacitor structures with HSG-rugged polysilicon on all sides of the storage node

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08058554 Reissue US5278091A (en) 1993-05-04 1993-05-04 Process to manufacture crown stacked capacitor structures with HSG-rugged polysilicon on all sides of the storage node

Publications (1)

Publication Number Publication Date
USRE36786E true USRE36786E (en) 2000-07-18

Family

ID=22017535

Family Applications (2)

Application Number Title Priority Date Filing Date
US08058554 Expired - Lifetime US5278091A (en) 1993-05-04 1993-05-04 Process to manufacture crown stacked capacitor structures with HSG-rugged polysilicon on all sides of the storage node
US08585402 Expired - Lifetime USRE36786E (en) 1993-05-04 1996-01-11 Process to manufacture crown stacked capacitor structures with HSG-rugged polysilicon on all sides of the storage node

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08058554 Expired - Lifetime US5278091A (en) 1993-05-04 1993-05-04 Process to manufacture crown stacked capacitor structures with HSG-rugged polysilicon on all sides of the storage node

Country Status (1)

Country Link
US (2) US5278091A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218242B1 (en) 2000-09-13 2001-04-17 Vanguard International Semiconductor Corp. Method for fabricating capacitors in semiconductor integrated circuit
US6309923B1 (en) * 2000-07-20 2001-10-30 Vanguard International Semiconductor Corporation Method of forming the capacitor in DRAM
US20020028552A1 (en) * 1998-10-17 2002-03-07 Ki-Young Lee Capacitor of semiconductor integrated circuit and its fabricating method
US6358795B1 (en) 2000-09-13 2002-03-19 Vanguard International Semiconductor Corp. Method of making stacked capacitor in memory device
US6589839B1 (en) * 1999-06-04 2003-07-08 Micron Technology Inc. Dielectric cure for reducing oxygen vacancies

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960011664B1 (en) * 1993-05-21 1996-08-24 김주용 Capacitor manufacturing method of semiconductor device
DE4442432C2 (en) * 1993-12-01 2000-11-23 Hyundai Electronics Ind A process for the manufacture of capacitors in semiconductor memory devices,
US5407534A (en) * 1993-12-10 1995-04-18 Micron Semiconductor, Inc. Method to prepare hemi-spherical grain (HSG) silicon using a fluorine based gas mixture and high vacuum anneal
US6121081A (en) * 1994-11-15 2000-09-19 Micron Technology, Inc. Method to form hemi-spherical grain (HSG) silicon
US5656531A (en) * 1993-12-10 1997-08-12 Micron Technology, Inc. Method to form hemi-spherical grain (HSG) silicon from amorphous silicon
KR0126799B1 (en) * 1993-12-31 1997-12-29 김광호 Manufacturing method of capacitor of semiconductor device
US5972771A (en) * 1994-03-11 1999-10-26 Micron Technology, Inc. Enhancing semiconductor structure surface area using HSG and etching
US5418180A (en) * 1994-06-14 1995-05-23 Micron Semiconductor, Inc. Process for fabricating storage capacitor structures using CVD tin on hemispherical grain silicon
KR0165496B1 (en) * 1995-03-22 1998-12-15 윤종용 Capacitor fabrication method of high integrated semiconductor device
US5550077A (en) * 1995-05-05 1996-08-27 Vanguard International Semiconductor Corporation DRAM cell with a comb-type capacitor
US5663088A (en) 1995-05-19 1997-09-02 Micron Technology, Inc. Method of forming a Ta2 O5 dielectric layer with amorphous diffusion barrier layer and method of forming a capacitor having a Ta2 O5 dielectric layer and amorphous diffusion barrier layer
US5665625A (en) * 1995-05-19 1997-09-09 Micron Technology, Inc. Method of forming capacitors having an amorphous electrically conductive layer
US5597754A (en) * 1995-05-25 1997-01-28 Industrial Technology Research Institute Increased surface area for DRAM, storage node capacitors, using a novel polysilicon deposition and anneal process
US5663090A (en) * 1995-06-29 1997-09-02 Micron Technology, Inc. Method to thermally form hemispherical grain (HSG) silicon to enhance capacitance for application in high density DRAMs
US5583070A (en) * 1995-07-07 1996-12-10 Vanguard International Semiconductor Corporation Process to form rugged polycrystalline silicon surfaces
US5913128A (en) * 1995-07-24 1999-06-15 Micron Technology, Inc. Method for forming texturized polysilicon
US6249019B1 (en) * 1997-06-27 2001-06-19 Micron Technology, Inc. Container capacitor with increased surface area and method for making same
US6187628B1 (en) * 1995-08-23 2001-02-13 Micron Technology, Inc. Semiconductor processing method of forming hemispherical grain polysilicon and a substrate having a hemispherical grain polysilicon layer
US5550076A (en) * 1995-09-11 1996-08-27 Vanguard International Semiconductor Corp. Method of manufacture of coaxial capacitor for dram memory cell and cell manufactured thereby
US5793076A (en) * 1995-09-21 1998-08-11 Micron Technology, Inc. Scalable high dielectric constant capacitor
US5801104A (en) * 1995-10-24 1998-09-01 Micron Technology, Inc. Uniform dielectric film deposition on textured surfaces
US5634974A (en) * 1995-11-03 1997-06-03 Micron Technologies, Inc. Method for forming hemispherical grained silicon
US5612558A (en) 1995-11-15 1997-03-18 Micron Technology, Inc. Hemispherical grained silicon on refractory metal nitride
KR100375428B1 (en) 1995-11-20 2003-05-17 가부시끼가이샤 히다치 세이사꾸쇼 Semiconductor storage device and process for manufacturing the same
US5801413A (en) * 1995-12-19 1998-09-01 Micron Technology, Inc. Container-shaped bottom electrode for integrated circuit capacitor with partially rugged surface
US5753559A (en) * 1996-01-16 1998-05-19 United Microelectronics Corporation Method for growing hemispherical grain silicon
US5754390A (en) 1996-01-23 1998-05-19 Micron Technology, Inc. Integrated capacitor bottom electrode for use with conformal dielectric
US5940713A (en) * 1996-03-01 1999-08-17 Micron Technology, Inc. Method for constructing multiple container capacitor
US5760434A (en) * 1996-05-07 1998-06-02 Micron Technology, Inc. Increased interior volume for integrated memory cell
US5618747A (en) * 1996-06-03 1997-04-08 Industrial Technology Research Institute Process for producing a stacked capacitor having polysilicon with optimum hemispherical grains
US6190992B1 (en) * 1996-07-15 2001-02-20 Micron Technology, Inc. Method to achieve rough silicon surface on both sides of container for enhanced capacitance/area electrodes
US5837579A (en) * 1996-08-21 1998-11-17 United Microelectronics Corporation Rugged polysilicon process for DRAM capacitors
US5688713A (en) * 1996-08-26 1997-11-18 Vanguard International Semiconductor Corporation Method of manufacturing a DRAM cell having a double-crown capacitor using polysilicon and nitride spacers
US5677227A (en) * 1996-09-09 1997-10-14 Vanguard International Semiconductor Corporation Method of fabricating single crown, extendible to triple crown, stacked capacitor structures, using a self-aligned capacitor node contact
US5679596A (en) * 1996-10-18 1997-10-21 Vanguard International Semiconductor Corporation Spot deposited polysilicon for the fabrication of high capacitance, DRAM devices
US6534409B1 (en) 1996-12-04 2003-03-18 Micron Technology, Inc. Silicon oxide co-deposition/etching process
US6069053A (en) 1997-02-28 2000-05-30 Micron Technology, Inc. Formation of conductive rugged silicon
US5937314A (en) * 1997-02-28 1999-08-10 Micron Technology, Inc. Diffusion-enhanced crystallization of amorphous materials to improve surface roughness
US5837581A (en) * 1997-04-04 1998-11-17 Vanguard International Semiconductor Corporation Method for forming a capacitor using a hemispherical-grain structure
US6066539A (en) * 1997-04-11 2000-05-23 Micron Technology, Inc. Honeycomb capacitor and method of fabrication
US6218260B1 (en) 1997-04-22 2001-04-17 Samsung Electronics Co., Ltd. Methods of forming integrated circuit capacitors having improved electrode and dielectric layer characteristics and capacitors formed thereby
US6255159B1 (en) 1997-07-14 2001-07-03 Micron Technology, Inc. Method to form hemispherical grained polysilicon
US5872041A (en) * 1997-07-18 1999-02-16 Nan Ya Technology Corp. Method for fabricating electrodes of a semiconductor capacitor
US6048763A (en) 1997-08-21 2000-04-11 Micron Technology, Inc. Integrated capacitor bottom electrode with etch stop layer
US5917213A (en) 1997-08-21 1999-06-29 Micron Technology, Inc. Depletion compensated polysilicon electrodes
US5915189A (en) * 1997-08-22 1999-06-22 Samsung Electronics Co., Ltd. Manufacturing method for semiconductor memory device having a storage node with surface irregularities
US5926719A (en) * 1997-10-29 1999-07-20 Vanguard International Semiconductor Corporation Method for fabricating a crown shaped capacitor structure
KR100273987B1 (en) 1997-10-31 2001-02-01 윤종용 Dynamic random access memory device and manufacturing method thereof
US6080633A (en) * 1998-02-07 2000-06-27 United Semiconductor Corp. Method for manufacturing capacitor's lower electrode
GB2337159B (en) * 1998-02-07 2000-12-06 United Microelectronics Corp Method for manufacturing capacitor's lower electrode
JP3187364B2 (en) * 1998-02-19 2001-07-11 日本電気株式会社 A method of manufacturing a semiconductor device
US6369432B1 (en) 1998-02-23 2002-04-09 Micron Technology, Inc. Enhanced capacitor shape
NL1009203C2 (en) * 1998-05-19 1999-11-22 United Semiconductor Corp Method for the production of the lower electrode of a capacitor.
US6737696B1 (en) 1998-06-03 2004-05-18 Micron Technology, Inc. DRAM capacitor formulation using a double-sided electrode
US6025624A (en) 1998-06-19 2000-02-15 Micron Technology, Inc. Shared length cell for improved capacitance
CN1298025C (en) * 1998-06-24 2007-01-31 三星电子株式会社 Method for fabricating capacitor of semiconductor memory device
US6204108B1 (en) * 1998-07-16 2001-03-20 United Semiconductor Corp. Method of fabricating a dynamic random access memory capacitor
US6576946B1 (en) * 1998-07-29 2003-06-10 Hitachi, Ltd. Semiconductor device comprising capacitor cells, bit lines, word lines, and MOS transistors in a memory cell area over a semiconductor substrate
US6174817B1 (en) 1998-08-26 2001-01-16 Texas Instruments Incorporated Two step oxide removal for memory cells
US6124164A (en) 1998-09-17 2000-09-26 Micron Technology, Inc. Method of making integrated capacitor incorporating high K dielectric
US6165830A (en) * 1998-11-02 2000-12-26 Vanguard International Semiconductor Corporation Method to decrease capacitance depletion, for a DRAM capacitor, via selective deposition of a doped polysilicon layer on a selectively formed hemispherical grain silicon layer
JP2000208728A (en) * 1999-01-18 2000-07-28 Mitsubishi Electric Corp Semiconductor device and its manufacture
KR100363083B1 (en) 1999-01-20 2002-11-30 삼성전자 주식회사 Hemispherical grain capacitor and forming method thereof
US6303956B1 (en) 1999-02-26 2001-10-16 Micron Technology, Inc. Conductive container structures having a dielectric cap
US6358793B1 (en) 1999-02-26 2002-03-19 Micron Technology, Inc. Method for localized masking for semiconductor structure development
KR100317042B1 (en) 1999-03-18 2001-12-22 윤종용 Cylindrical capacitor having hsg silicons on its inner surface and a method for fabricating thereof
KR100308622B1 (en) * 1999-04-12 2001-11-01 윤종용 Dram cell capacitor and manufacturing method thereof
JP3408450B2 (en) * 1999-04-20 2003-05-19 Necエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
KR100335775B1 (en) * 1999-06-25 2002-05-09 박종섭 Method of manufacturing a capacitor in a semiconductor device
US6281543B1 (en) 1999-08-31 2001-08-28 Micron Technology, Inc. Double layer electrode and barrier system on hemispherical grain silicon for use with high dielectric constant materials and methods for fabricating the same
US6060353A (en) * 1999-10-22 2000-05-09 Vanguard International Semiconductor Corporation Method of forming a ring shaped storage node structure for a DRAM capacitor structure
US6261901B1 (en) * 2000-06-30 2001-07-17 Vabguard International Semiconductor Corporation Method of manufacturing a DRAM capacitor with a dielectric column
DE10040464A1 (en) * 2000-08-18 2002-02-28 Infineon Technologies Ag Grave capacitor and process for its preparation
US6639266B1 (en) 2000-08-30 2003-10-28 Micron Technology, Inc. Modifying material removal selectivity in semiconductor structure development
US6750172B2 (en) * 2001-03-14 2004-06-15 Micron Technology, Inc. Nanometer engineering of metal-support catalysts
US6962846B2 (en) * 2003-11-13 2005-11-08 Micron Technology, Inc. Methods of forming a double-sided capacitor or a contact using a sacrificial structure
KR100645041B1 (en) 2004-07-12 2006-11-10 삼성전자주식회사 Semiconductor devices having a metal-insulator-metal capacitor and methods of forming the same
US7312120B2 (en) 2004-09-01 2007-12-25 Micron Technology, Inc. Method for obtaining extreme selectivity of metal nitrides and metal oxides
US7329576B2 (en) * 2004-09-02 2008-02-12 Micron Technology, Inc. Double-sided container capacitors using a sacrificial layer
CN101621028B (en) 2008-07-02 2011-07-06 中芯国际集成电路制造(上海)有限公司 Method for reducing defects in memory cell capacitor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474752A (en) * 1987-09-17 1989-03-20 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH0391957A (en) * 1989-09-04 1991-04-17 Sony Corp Manufacture of memory device
JPH03230561A (en) * 1990-02-06 1991-10-14 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US5082797A (en) * 1991-01-22 1992-01-21 Micron Technology, Inc. Method of making stacked textured container capacitor
US5126280A (en) * 1991-02-08 1992-06-30 Micron Technology, Inc. Stacked multi-poly spacers with double cell plate capacitor
US5150276A (en) * 1992-01-24 1992-09-22 Micron Technology, Inc. Method of fabricating a vertical parallel cell capacitor having a storage node capacitor plate comprising a center fin effecting electrical communication between itself and parallel annular rings
US5162248A (en) * 1992-03-13 1992-11-10 Micron Technology, Inc. Optimized container stacked capacitor DRAM cell utilizing sacrificial oxide deposition and chemical mechanical polishing
US5185282A (en) * 1989-11-23 1993-02-09 Electronics And Telecommunications Research Institute Method of manufacturing DRAM cell having a cup shaped polysilicon storage electrode
US5229314A (en) * 1990-05-01 1993-07-20 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing field effect transistor having a multilayer interconnection layer therein with tapered sidewall insulation
US5290729A (en) * 1990-02-16 1994-03-01 Mitsubishi Denki Kabushiki Kaisha Stacked type capacitor having a dielectric film formed on a rough surface of an electrode and method of manufacturing thereof
US5318920A (en) * 1991-10-17 1994-06-07 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing a capacitor having a rough electrode surface
US5366917A (en) * 1990-03-20 1994-11-22 Nec Corporation Method for fabricating polycrystalline silicon having micro roughness on the surface
JP3230561B2 (en) 1995-05-09 2001-11-19 シスメックス株式会社 Stirring device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474752A (en) * 1987-09-17 1989-03-20 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH0391957A (en) * 1989-09-04 1991-04-17 Sony Corp Manufacture of memory device
US5185282A (en) * 1989-11-23 1993-02-09 Electronics And Telecommunications Research Institute Method of manufacturing DRAM cell having a cup shaped polysilicon storage electrode
JPH03230561A (en) * 1990-02-06 1991-10-14 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US5290729A (en) * 1990-02-16 1994-03-01 Mitsubishi Denki Kabushiki Kaisha Stacked type capacitor having a dielectric film formed on a rough surface of an electrode and method of manufacturing thereof
US5366917A (en) * 1990-03-20 1994-11-22 Nec Corporation Method for fabricating polycrystalline silicon having micro roughness on the surface
US5229314A (en) * 1990-05-01 1993-07-20 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing field effect transistor having a multilayer interconnection layer therein with tapered sidewall insulation
US5082797A (en) * 1991-01-22 1992-01-21 Micron Technology, Inc. Method of making stacked textured container capacitor
US5126280A (en) * 1991-02-08 1992-06-30 Micron Technology, Inc. Stacked multi-poly spacers with double cell plate capacitor
US5318920A (en) * 1991-10-17 1994-06-07 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing a capacitor having a rough electrode surface
US5150276A (en) * 1992-01-24 1992-09-22 Micron Technology, Inc. Method of fabricating a vertical parallel cell capacitor having a storage node capacitor plate comprising a center fin effecting electrical communication between itself and parallel annular rings
US5162248A (en) * 1992-03-13 1992-11-10 Micron Technology, Inc. Optimized container stacked capacitor DRAM cell utilizing sacrificial oxide deposition and chemical mechanical polishing
JP3230561B2 (en) 1995-05-09 2001-11-19 シスメックス株式会社 Stirring device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"A Stacked Capacitor Cell with Ring Structure" by N. Shinmure et al., pp. 833-836. Central Research Laboratories, Sharp Corporation, Tenri, Nara 632, Japan.
"Crown-Shaped Stacked-Capacitor Cell for 1.5-V Operation 64-Mb DRAM's" by T. Kaga et al., pp. 255-261, 1991 IEEE.
A Stacked Capacitor Cell with Ring Structure by N. Shinmure et al., pp. 833 836. Central Research Laboratories, Sharp Corporation, Tenri, Nara 632, Japan. *
Crown Shaped Stacked Capacitor Cell for 1.5 V Operation 64 Mb DRAM s by T. Kaga et al., pp. 255 261, 1991 IEEE. *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020028552A1 (en) * 1998-10-17 2002-03-07 Ki-Young Lee Capacitor of semiconductor integrated circuit and its fabricating method
US6849494B2 (en) 1999-06-04 2005-02-01 Micron Technology Inc. Dielectric cure for reducing oxygen vacancies
US6878602B2 (en) 1999-06-04 2005-04-12 Micron Technology Inc. Dielectric cure for reducing oxygen vacancies
US6589839B1 (en) * 1999-06-04 2003-07-08 Micron Technology Inc. Dielectric cure for reducing oxygen vacancies
US20030209748A1 (en) * 1999-06-04 2003-11-13 Cem Basceri Dielectric cure for reducing oxygen vacancies
US6309923B1 (en) * 2000-07-20 2001-10-30 Vanguard International Semiconductor Corporation Method of forming the capacitor in DRAM
US6358795B1 (en) 2000-09-13 2002-03-19 Vanguard International Semiconductor Corp. Method of making stacked capacitor in memory device
US6218242B1 (en) 2000-09-13 2001-04-17 Vanguard International Semiconductor Corp. Method for fabricating capacitors in semiconductor integrated circuit

Also Published As

Publication number Publication date Type
US5278091A (en) 1994-01-11 grant

Similar Documents

Publication Publication Date Title
US5330614A (en) Manufacturing method of a capacitor having a storage electrode whose sidewall is positively inclined with respect to the horizontal surface
US5414655A (en) Semiconductor memory device having a stack-type capacitor
US5302540A (en) Method of making capacitor
US5491356A (en) Capacitor structures for dynamic random access memory cells
US5150276A (en) Method of fabricating a vertical parallel cell capacitor having a storage node capacitor plate comprising a center fin effecting electrical communication between itself and parallel annular rings
US5158905A (en) Method for manufacturing a semiconductor device with villus-type capacitor
US5959322A (en) Isolated SOI memory structure with vertically formed transistor and storage capacitor in a substrate
US5262662A (en) Storage node capacitor having tungsten and etched tin storage node capacitor plate
US5658381A (en) Method to form hemispherical grain (HSG) silicon by implant seeding followed by vacuum anneal
US5399518A (en) Method for manufacturing a multiple walled capacitor of a semiconductor device
US5747844A (en) Dynamic semiconductor memory device with higher density bit line/word line layout
US6507064B1 (en) Double sided container capacitor for DRAM cell array and method of forming same
US6063683A (en) Method of fabricating a self-aligned crown-shaped capacitor for high density DRAM cells
US5907782A (en) Method of forming a multiple fin-pillar capacitor for a high density dram cell
US5937294A (en) Method for making a container capacitor with increased surface area
US5065273A (en) High capacity DRAM trench capacitor and methods of fabricating same
US6033951A (en) Process for fabricating a storage capacitor for semiconductor memory devices
US5386382A (en) Semiconductor memory device and a manufacturing method thereof
US6294436B1 (en) Method for fabrication of enlarged stacked capacitors using isotropic etching
US5422295A (en) Method for forming a semiconductor memory device having a vertical multi-layered storage electrode
US5712813A (en) Multi-level storage capacitor structure with improved memory density
US5082797A (en) Method of making stacked textured container capacitor
US5851876A (en) Method of manufacturing dynamic random access memory
US5538592A (en) Non-random sub-lithography vertical stack capacitor
US5712202A (en) Method for fabricating a multiple walled crown capacitor of a semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: MERGER;ASSIGNOR:MICRON SEMICONDUCTOR, INC.;REEL/FRAME:008063/0950

Effective date: 19941027

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12