JPH03225974A - Processing method of superconducting thin film - Google Patents
Processing method of superconducting thin filmInfo
- Publication number
- JPH03225974A JPH03225974A JP2019267A JP1926790A JPH03225974A JP H03225974 A JPH03225974 A JP H03225974A JP 2019267 A JP2019267 A JP 2019267A JP 1926790 A JP1926790 A JP 1926790A JP H03225974 A JPH03225974 A JP H03225974A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- superconducting
- superconducting thin
- pattern
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 99
- 238000003672 processing method Methods 0.000 title description 9
- 239000002887 superconductor Substances 0.000 claims abstract description 28
- 239000010408 film Substances 0.000 claims abstract description 20
- 239000012212 insulator Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000004065 semiconductor Substances 0.000 claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 239000013078 crystal Substances 0.000 claims abstract description 7
- 239000007769 metal material Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000007772 electrode material Substances 0.000 claims description 3
- 230000007613 environmental effect Effects 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910000510 noble metal Inorganic materials 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000001755 magnetron sputter deposition Methods 0.000 abstract description 2
- 230000006866 deterioration Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910021521 yttrium barium copper oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、超伝導薄膜の加工方法に関する。特に、高温
超伝導体薄膜の微細加工に有効な超伝導薄膜の加工方法
に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for processing superconducting thin films. In particular, the present invention relates to a superconducting thin film processing method that is effective for microfabrication of high-temperature superconductor thin films.
[従来の技術及び発明が解決しようとする問題点]従来
の超伝導体を用いた素子作成方法は、先ず、単結晶基板
上に超伝導薄膜を形成し、フォトリソ技術により、所定
の超伝導パターンを形成する。このパターンの上に、絶
縁体薄膜や半導体薄膜、金属薄膜を形成し、更に、フォ
トリソ技術(こより、電極を形成する方法であった。こ
の加工処理方法では、超伝導薄膜が加工処理に供される
回数が多く超伝導薄膜表面が加工時にフォトレジストや
現像液と反応して変質したり、表面に不純物が付着する
ことにより、超伝導特性の劣化が観察される場合が多か
った。[Prior art and problems to be solved by the invention] In the conventional method for producing devices using superconductors, a superconducting thin film is first formed on a single crystal substrate, and a predetermined superconducting pattern is formed using photolithography. form. On this pattern, an insulating thin film, a semiconductor thin film, and a metal thin film were formed, and then photolithography was used to form electrodes. In this processing method, a superconducting thin film was subjected to processing. The surface of the superconducting thin film reacts with the photoresist or developer during processing, resulting in deterioration of the superconducting properties due to the adhesion of impurities to the surface.
また、超伝導薄膜の」ニに形成された絶縁体薄膜上に電
極を形成する場合、電極接続時に薄膜を破壊することが
多かった。そこで、超伝導体を用いた素子を作成するに
際して、超伝導特性の劣化しない加工処理方法の開発又
は製造方法の簡略化が望まれていた。Furthermore, when electrodes are formed on an insulating thin film formed on the side of a superconducting thin film, the thin film is often destroyed when the electrodes are connected. Therefore, when creating an element using a superconductor, it has been desired to develop a processing method that does not deteriorate superconducting properties or to simplify the manufacturing method.
本発明は、上記のような技術的課題を解決するために、
高温超伝導体を素子にする加工方法において、超伝導特
性の劣化を防止し、且つ、簡便な超伝導素子の製造加工
方法を提供することを目的にする。In order to solve the above technical problems, the present invention has the following features:
An object of the present invention is to provide a method for fabricating a high-temperature superconductor into an element, which prevents deterioration of superconducting properties and is simple and easy to manufacture and process a superconducting element.
[問題点を解決するための手段]
本発明は、上記の技術的な課題の解決のために、単結晶
基板上に、第1工程として、素子用電極の金属パターン
を形成し、第2工程として、超伝導体の構成する成分と
反応して絶縁体又は半導体に形成1−る成分を、第1王
程で設けた電極金属を利用する所定パターンに堆積し、
ここで、堆積されたパターンは、半導体又は絶縁体であ
り、堆積きれていない領域のみが、超伝導領域になり、
次に、第3工程として、第2工程までで作成したパター
ン上に直接に超伝導薄膜を形成し、更に、第4工程とし
て、第3工程までで得られた薄膜の上に絶縁体又は半導
体並びに超伝導体の薄膜を所定に応じて、堆積し、第5
工程として、形成された電極パターン上部に形成された
薄膜をエツチングにより、取り除き、電極接続部を形成
することを特徴とする超伝導薄膜の加工方法を提供する
。[Means for Solving the Problems] In order to solve the above-mentioned technical problems, the present invention forms a metal pattern of an element electrode on a single crystal substrate as a first step, and then performs a second step. As a result, a component that reacts with the components constituting the superconductor to form an insulator or semiconductor is deposited in a predetermined pattern using the electrode metal provided in the first process,
Here, the deposited pattern is a semiconductor or an insulator, and only the undeposited region becomes a superconducting region,
Next, as a third step, a superconducting thin film is formed directly on the pattern created up to the second step, and as a fourth step, an insulator or semiconductor is formed on the thin film obtained up to the third step. and a superconductor thin film according to the predetermined conditions.
The present invention provides a method for processing a superconducting thin film, characterized in that, as a step, a thin film formed on the formed electrode pattern is removed by etching to form an electrode connection portion.
また、その第に[程で形成される電極パターンは、超伝
導体と反応しないか或いは反応の少ない金属材料(或い
は貴金属材料)で、超伝導薄膜を堆積する条件下で、電
極が腐食又は溶融、蒸発しない成分であり、更に、前記
基板との付着力を高めるため、元来付着力の強い材料(
例えば、Cr)を堆積した後に、その上に、所望により
、wj記の材料を堆積し、更に、前記電極の金属材料に
は、酸化物又は他の導電性の化合物を用いることが好適
である。そして、その第2工程においては、多層膜を堆
積し、熱処理することにより、超伝導体薄膜パターンを
形成することが好適である。また、その第4工程におい
ては、該超伝導薄膜の上に、耐環境性にすぐれる薄膜を
形成し、超伝導薄膜を加工するときの保護膜として利用
することが好適である。そして、その第4工程で得られ
た該薄膜上に絶縁体、半導体又は超伝導体の層を多層に
積層することができる。In addition, the electrode pattern formed in the first step is made of a metal material (or noble metal material) that does not react with the superconductor or has a low reaction with the superconductor, so that the electrode will not corrode or melt under the conditions in which the superconducting thin film is deposited. , a component that does not evaporate;
For example, after depositing Cr), it is preferable to deposit the materials listed below, if desired, and further to use an oxide or other conductive compound as the metal material of the electrode. . In the second step, it is preferable to form a superconductor thin film pattern by depositing a multilayer film and subjecting it to heat treatment. Further, in the fourth step, it is preferable to form a thin film with excellent environmental resistance on the superconducting thin film and use it as a protective film when processing the superconducting thin film. Then, multiple layers of an insulator, a semiconductor, or a superconductor can be laminated on the thin film obtained in the fourth step.
従来の超伝導素子の作成方法としては、先ず、超伝導薄
膜を作製した後、加工及び電極を作成している。In a conventional method for producing a superconducting element, a superconducting thin film is first produced, and then processed and electrodes are produced.
これに対して、本発明の加に方法では、単結晶基板上に
電極用の金属パターン及び絶縁体パターン又は半導体パ
ターンとなる領域をあらかしめパターニングした後に、
超伝導薄膜を形成する方法である。On the other hand, in the additional method of the present invention, after rough patterning a region to be a metal pattern for an electrode and an insulator pattern or a semiconductor pattern on a single crystal substrate,
This is a method for forming superconducting thin films.
従って、超伝導薄膜の形成後の処理数を著しく減じるこ
とが可能になり、素子を作成するに際して、加工処理が
原因となる超伝導薄膜特性の劣化を抑えることが可能に
なった。Therefore, it has become possible to significantly reduce the number of processing steps required after the formation of the superconducting thin film, and it has become possible to suppress deterioration of the superconducting thin film properties caused by the processing steps when producing an element.
また、従来は、超伝導薄膜の上に電極を形成しており、
電極を接続する際に、薄膜を破壊することが多かったが
、本発明の加工処理方法では、電極は薄膜の下にあり、
基板に直接接合しており、電極を接続する際に、超伝導
薄膜を痛めることがなくなった。In addition, conventionally, electrodes were formed on top of a superconducting thin film.
When connecting electrodes, the thin film was often destroyed, but in the processing method of the present invention, the electrode is under the thin film,
Since it is directly bonded to the substrate, there is no need to damage the superconducting thin film when connecting the electrodes.
本発明による超伝導体の微細加−L方法の説明のために
、YBatCusOxを例にとると、一般に、単結晶基
板例えばMgO単結晶基板上に、第1工程として、素子
用電極の金属パターン例えばゲート電極を形成し、第2
工程として、超伝導体の構成する成分と反応して絶縁体
又は半導体に形成する成分を、第1工程で設けた電極金
属を利用する所定パターンに堆積し、ここで、堆積され
たパターンは、半導体又は絶縁体であり、堆積諮れてい
ない領域のみが、超伝導領域になり、次に、第3工程と
して、第2工程までで作成したパターン上に直接に超伝
導薄膜を形成し、更に、第4工程として、第3王程まで
で得られた薄膜の上に絶縁体又は半導体並びに超伝導体
の薄膜を所定に応して、堆積し、第5工程として、形成
された電極パターン」二部に形成された薄膜をエツチン
グにより、取り除き、電極接続部を取り出すものである
。To explain the superconductor micro-addition L method according to the present invention, taking YBatCusOx as an example, generally, as a first step, a metal pattern of an element electrode, e.g. forming a gate electrode;
As a step, a component that reacts with components constituting the superconductor to form an insulator or semiconductor is deposited in a predetermined pattern using the electrode metal provided in the first step, where the deposited pattern is Only the regions that are semiconductors or insulators and are not subject to deposition become superconducting regions.Next, in the third step, a superconducting thin film is formed directly on the pattern created up to the second step, and then As a fourth step, a thin film of an insulator, a semiconductor, or a superconductor is deposited as required on the thin film obtained up to the third step, and as a fifth step, an electrode pattern is formed. The thin film formed on the two parts is removed by etching to take out the electrode connection part.
第1工程で堆積される電極パターンは、超伝導体と反応
しないか或いは反応の少ない金属材料(或いは貴金属材
料)で、超伝導薄膜上に堆積する条件で、電極が腐食又
は溶融、蒸発しない成分であり、更に、前記基板との付
着力を高めるため、元来付着力の強い材料、例えばCr
を堆積し、その上に、所望の電極材料を堆積することが
、好適である。The electrode pattern deposited in the first step is made of a metal material (or noble metal material) that does not react with the superconductor or has a low reaction rate, and contains components that will not corrode, melt, or evaporate the electrode under the conditions in which it is deposited on the superconducting thin film. Furthermore, in order to increase the adhesion with the substrate, a material with inherently strong adhesion, such as Cr, is used.
It is preferred to deposit the desired electrode material thereon.
更に、この電極材料としては、酸化物又は他の導電性の
化合物を用いることができる。Furthermore, oxides or other conductive compounds can be used as the electrode material.
更に、第2二[程において、超伝導体多層膜を堆積し、
熱処理する。このとき、mf記のパターン化された箇所
では、超伝導体が反応し、絶縁体パタンを形成し、それ
に対しで、残りの部分が、超伝導体パターンを構成し、
超伝導体薄膜パターンを形成することができる。Furthermore, in the second step, a superconductor multilayer film is deposited,
Heat treatment. At this time, the superconductor reacts and forms an insulator pattern at the patterned part indicated by mf, whereas the remaining part constitutes a superconductor pattern,
A superconductor thin film pattern can be formed.
更に、その超伝導体薄膜の上に、耐環境性にすぐれた薄
膜、例えば、MgO薄膜を形成し、超伝導薄膜パターン
による装置を加工するときの保護膜として、利用するこ
とができる。即ち、ゲート電極のための絶縁体膜を形成
することができる。Furthermore, a thin film with excellent environmental resistance, such as an MgO thin film, can be formed on the superconductor thin film and used as a protective film when processing a device using a superconducting thin film pattern. That is, an insulator film for the gate electrode can be formed.
この絶縁体膜の上に、絶縁体、半導体又は超伝導体の薄
膜の層を多層に積層し、超伝導膜による装置を多層に、
或いは立体的に構成することができる。On this insulator film, multiple layers of thin films of insulators, semiconductors, or superconductors are stacked to form a multilayer device using superconducting films.
Alternatively, it can be configured three-dimensionally.
本発明による超伝導薄膜の加工方法により、再現性良く
、超伝導特性のすぐれた酸化物超伝導複合体の作製が可
能となった。The method of processing a superconducting thin film according to the present invention makes it possible to produce an oxide superconducting composite with excellent superconducting properties with good reproducibility.
更に、本発明の超伝導薄膜加工方法は、例えば、光検出
素子、トランジスタ等の酸化物超伝導素子の作製に賽易
に有用である。Furthermore, the superconducting thin film processing method of the present invention is easily useful for producing oxide superconducting devices such as photodetecting devices and transistors, for example.
次に、本発明による超伝導薄膜の加工方法を、YBa、
Cu、O,(YBCO)膜を例示として、具体的に実施
例により説明するが、本発明はそれらによって限定され
るものではない。Next, the method for processing a superconducting thin film according to the present invention will be explained using YBa,
The present invention will be specifically explained by examples using a Cu, O, (YBCO) film as an example, but the present invention is not limited thereto.
[実施例]
超伝導薄膜としてYBatCusOxを用いて、絶縁体
層としてMgO薄膜を用いたFET装置を作製した。そ
の作製手順を第1図に示し、その完成したFET装置の
構造を第2図に示す。[Example] An FET device was manufactured using YBatCusOx as a superconducting thin film and a MgO thin film as an insulating layer. The manufacturing procedure is shown in FIG. 1, and the structure of the completed FET device is shown in FIG.
基板として、(100)MgO単結晶基板1を用い、そ
の上フォトレジスト層2として、レジスト(AZ−13
50J:ヘキストジャパン製)を塗布し、レジスト層を
形成し、それに対して、マスクを用いて、露光し、更に
現像した後に、Crを蒸着し、Cr薄膜3を形成し、引
き続いて、Auを蒸着し、Au薄膜4を形成し、A u
/ Crの積層膜4/3を形成する。即ち、S−D埋
込み電極(A u / Cr )を第1図Aに示すよう
に、形成した。次に、リフトオフし、形成した前記の電
極金属パターン4/3のみを第1図Aに示すように、残
した。次に、その上に、フォトリソ法を用いて、SiO
薄膜パターン12を第1図Bに示すように、形成した。A (100) MgO single crystal substrate 1 is used as a substrate, and a resist (AZ-13) is used as a photoresist layer 2 thereon.
50J: manufactured by Hoechst Japan) to form a resist layer, which was exposed to light using a mask and further developed, Cr was evaporated to form a Cr thin film 3, and then Au was applied. evaporation to form an Au thin film 4,
/ Cr laminated film 4/3 is formed. That is, an SD buried electrode (A u /Cr) was formed as shown in FIG. 1A. Next, lift-off was performed, leaving only 4/3 of the formed electrode metal pattern as shown in FIG. 1A. Next, on top of that, SiO
A thin film pattern 12 was formed as shown in FIG. 1B.
次に、そのA u / Cr積層膜4/3及びSi0薄
膜12の形成された基板上に、マグネトロンスパッター
装置を用いて、YBazCusOx層5を2000人厚
となるように、スパッタリングし、超伝導膜を形成した
。これにより、第1図Cに示すように、各層が形成され
た。このときに、MgO基板表面が露出した領域は、超
伝導体YBa*Cu5Oxのエピタキシャル成長薄膜5
となっていた。Next, on the substrate on which the A u /Cr laminated film 4/3 and the Si0 thin film 12 were formed, a YBazCusOx layer 5 was sputtered to a thickness of 2000 using a magnetron sputtering device, thereby forming a superconducting film. was formed. As a result, each layer was formed as shown in FIG. 1C. At this time, the area where the MgO substrate surface is exposed is the epitaxially grown thin film 5 of the superconductor YBa*Cu5Ox.
It became.
また、電極3/4上部も超伝導薄膜5となっているが、
SiO薄膜12の上面は、SiOとYBa*Cu5Ox
との反応生成物により、半導体又は絶縁体になっている
。In addition, the upper part of the electrode 3/4 is also a superconducting thin film 5,
The upper surface of the SiO thin film 12 is made of SiO and YBa*Cu5Ox
It becomes a semiconductor or an insulator due to the reaction product with.
更に、以上のように形成した薄膜をスパッタ装置を開け
ることなく、MgO薄膜6をその上に、500人厚に形
成した。次に、フォトリソ技術により、フォトレジスト
層7を形成し、パター一ングし、Al薄膜を蒸着し、第
1図Eに示すように、ゲート電極8を形成した。Furthermore, an MgO thin film 6 was formed on the thin film formed as described above to a thickness of 500 mm without opening the sputtering apparatus. Next, a photoresist layer 7 was formed by photolithography, patterned, and an Al thin film was deposited to form a gate electrode 8 as shown in FIG. 1E.
最後に、第1工程で形成したソース、ドレイン用電極膜
3/4の上に、形成されたYBa*Cu5Ox薄膜及び
MgO4膜をフォトリソ技術により、パタ1
ニングした後に、10%リン酸溶液でエツゾングして取
り除き、第1図Fに示すような断面を得た。更に、フォ
トレジスト層9を取り除いて、第1図Gに示すような断
面を得た。各電極から引き出し線で図示のようにボンデ
ィングし、装置を完成した。Finally, after patterning the formed YBa*Cu5Ox thin film and MgO4 film by photolithography on 3/4 of the source and drain electrode films formed in the first step, etsonization was performed with a 10% phosphoric acid solution. The cross-section shown in FIG. 1F was obtained. Furthermore, the photoresist layer 9 was removed to obtain a cross section as shown in FIG. 1G. Bonding was performed as shown in the figure using lead wires from each electrode to complete the device.
完成したFET装置は、第2図A、Bの断面図及び平面
図に示すものである。尚、Sはソース電極、Dはドレイ
ン電極、Gはゲート電極を示す。The completed FET device is shown in the sectional and plan views of FIGS. 2A and 2B. Note that S represents a source electrode, D represents a drain electrode, and G represents a gate electrode.
各々の電極を接続して、その特性を測定した。Each electrode was connected and its characteristics were measured.
ここで、MgO基板上に形成したYBa+Cu5Ox薄
膜のX線回折図を第3図に示し、Cr / A u積層
電極パターンの上に形成きれた超伝導体YBatCu+
OxのX線回折図を第4図に示す。各々のC軸配向した
超伝導薄膜であることが明らかにされた。Figure 3 shows the X-ray diffraction pattern of the YBa+Cu5Ox thin film formed on the MgO substrate, and shows the superconductor YBatCu+ formed on the Cr/Au laminated electrode pattern.
The X-ray diffraction diagram of Ox is shown in FIG. It was revealed that each superconducting thin film was C-axis oriented.
また、MgO基板上に形成された超伝導体YBa+Cu
xOx薄膜の抵抗−温度特性を測定した結果を第5図に
示す。In addition, the superconductor YBa+Cu formed on the MgO substrate
FIG. 5 shows the results of measuring the resistance-temperature characteristics of the xOx thin film.
これに対して、全加工処理を終rし℃作成した試料装置
について、ソース−ドレイン間の抵抗2
温度特性を測定した結果を第6図に示した。この2つの
結果に差は見られず、加工処理による超伝導特性の劣化
は見られないことが分かった。On the other hand, FIG. 6 shows the results of measurements of the source-drain resistance and temperature characteristics of a sample device fabricated at ℃ after completing all processing. No difference was observed between these two results, indicating that no deterioration of superconducting properties was observed due to processing.
[発明の効果]
本発明による超伝導薄膜の加工処理方法により、次のよ
うな顕著な技術的効果が得られた。[Effects of the Invention] The following remarkable technical effects were obtained by the method of processing a superconducting thin film according to the present invention.
第1に、従来の高温超伝導薄膜の加工方法に比べ、超伝
導薄膜形成後の加工処理工程を極端に少なくすることが
可能である加工方法を提供できる。First, compared to conventional methods for processing high-temperature superconducting thin films, it is possible to provide a processing method that can significantly reduce the number of processing steps after forming a superconducting thin film.
第2に、更に、本発明による加工方法では、超伝導体薄
膜を加工した後にも、その超伝導特性の劣化を防市でき
る超伝導薄膜の加重[方法を提供した。Second, the processing method according to the present invention provides a method for loading a superconducting thin film that can prevent deterioration of superconducting properties even after processing the superconducting thin film.
第3に、電極が直接に基板上に接合されであるために、
超伝導薄膜の上に積層きれた絶縁体薄膜上に形成された
電極とコンタクトをとるときに見られる、絶縁体薄膜の
破壊を生じる危険がなくなる。Third, since the electrodes are bonded directly onto the substrate,
There is no risk of destruction of the insulator thin film, which occurs when contact is made with an electrode formed on an insulator thin film laminated on top of a superconducting thin film.
第4に、更に、本発明の超伝導薄膜の加工方法により、
寸法的な精密き、緻密さを要求される超伝導素子の作製
方法として応用できる技術を提供する。Fourthly, further, according to the method of processing a superconducting thin film of the present invention,
We provide a technology that can be applied as a method for manufacturing superconducting elements that require dimensional precision and density.
第1図は、本発明による超伝導素子の作成方法を説明す
る工程順による断面図である。
第2図A、Bは、本発明により超伝導薄膜を素子化、作
成きれたFET装置を示す断面図及び平面図である。
第3図は、本発明によるMgO薄膜の−1−に堆積した
超伝導薄膜YBatCunOxのX線回折図である。
第4図は、本発明による電極パターンの上に堆積した超
伝導薄膜Y B a @ Cu s OxのX線回折図
である。
第5図は、MgO基板の上に堆積した超伝導薄膜YBa
、Cu、Oアの抵抗−温度特性を示すグラフである。
第6図は、本発明による超伝導薄膜の加工処理方法によ
り作製した装置において、ソース−ドレイン間の抵抗−
温度特性を示すグラフである。
(
く
口
θ
…
し。
()
第3
図
X手卑回J牟Rクーン(M90蔓j8上10積イ眞し爾
幻暫tγBCθNl)第4
図
第5図
柩抗/l温膚依存狂
2却
12.6に
ぶ
v
2m
〃O
第
図
自吸4a A4*JmN+(!k /+t−1−rl
−J \)lL’4 )ス浪曝回揃−ノV7−ン(隻手
)押上ぽに培j資し尺γBCθに1うπ
荀
6θ
π
勿
0
ご7.6に
50
πO
スで
3θθFIG. 1 is a cross-sectional view showing the order of steps for explaining the method for producing a superconducting element according to the present invention. FIGS. 2A and 2B are a cross-sectional view and a plan view showing an FET device in which a superconducting thin film is fabricated according to the present invention. FIG. 3 is an X-ray diffraction diagram of the superconducting thin film YBatCunOx deposited on -1- of the MgO thin film according to the present invention. FIG. 4 is an X-ray diffraction diagram of a superconducting thin film YBa@CusOx deposited on an electrode pattern according to the present invention. Figure 5 shows a superconducting thin film of YBa deposited on an MgO substrate.
, Cu, and Oa are graphs showing resistance-temperature characteristics. FIG. 6 shows the resistance between source and drain in a device fabricated by the superconducting thin film processing method according to the present invention.
It is a graph showing temperature characteristics. (Kuchu θ...shi. () Fig. 3 12.6 nibuv 2m 〃O Diagram self-priming 4a A4*JmN+(!k /+t-1-rl
-J \)lL'4)Sunami exposed rotation set-ノV7-N (one hand) Oshiage Pon is cultivated, and the length γBCθ is 1upπ.
Claims (1)
属パターンを形成し、第2工程として、超伝導体の構成
する成分と反応して絶縁体又は半導体に形成する成分を
、第1工程で設けた電極金属を利用する所定パターンに
堆積し、ここで、堆積されたパターンは、半導体又は絶
縁体であり、堆積されていない領域のみが、超伝導領域
になり、次に、第3工程として、第2工程までで作成し
たパターン上に直接に超伝導薄膜を形成し、更に、第4
工程として、第3工程までで得られた薄膜の上に絶縁体
又は半導体並びに超伝導体の薄膜を所定に応じて、堆積
し、第5工程として、形成された電極パターン上部に形
成された薄膜をエッチングにより、取り除き、電極接続
部を取り出すことを特徴とする超伝導薄膜の加工方法。 2、前記第1工程で形成される電極パターンは、超伝導
体と反応しないか或いは反応の少ない金属材料(或いは
貴金属材料)で、超伝導薄膜を堆積する条件下で、電極
が腐食又は溶融、蒸発しない成分であり、更に、前記基
板との付着力を高めるため、元来付着力の強い材料(例
えば、Cr)を堆積した後に、その上に、所望により、
前記の材料を堆積し、更に、前記電極材料には、酸化物
又は他の導電性の化合物を用いることができることを特
徴とする請求項1に記載の超伝導薄膜の加工方法。 3、前記の第2工程において、多層膜を堆積し、熱処理
することにより、超伝導体薄膜パターンを形成すること
を特徴とする請求項1に記載の超伝導薄膜の加工処理方
法。 4、前記の第4工程において、該超伝導薄膜の上に、耐
環境性にすぐれる薄膜を形成し、超伝導薄膜を加工する
ときの保護膜として利用することを特徴とする請求項1
に記載の超伝導薄膜の加工処理方法。 5、前記第4工程で得られた該薄膜上に絶縁体、半導体
又は超伝導体の層を多層に積層することを特徴とする請
求項1に記載の超伝導薄膜の加工方法。[Claims] 1. In the first step, a metal pattern for an element electrode is formed on a single crystal substrate, and in the second step, it reacts with the components of the superconductor to form an insulator or semiconductor. The components to be formed are deposited in a predetermined pattern using the electrode metal provided in the first step, where the deposited pattern is a semiconductor or an insulator, and only the undeposited regions are superconducting regions. Then, as a third step, a superconducting thin film is formed directly on the pattern created up to the second step, and then a fourth step is performed.
As a step, a thin film of an insulator, a semiconductor, or a superconductor is deposited as specified on the thin film obtained up to the third step, and as a fifth step, a thin film is formed on the top of the formed electrode pattern. A method of processing a superconducting thin film, which is characterized by removing the electrode connection portion by etching. 2. The electrode pattern formed in the first step is made of a metal material (or noble metal material) that does not react with the superconductor or has a low reaction rate, and under the conditions in which the superconducting thin film is deposited, the electrode will not corrode or melt. After depositing a material (for example, Cr) which is a component that does not evaporate and which has an inherently strong adhesion in order to increase the adhesion with the substrate, if desired,
2. The method of processing a superconducting thin film according to claim 1, further comprising depositing said material and further comprising using an oxide or other conductive compound as said electrode material. 3. The method of processing a superconducting thin film according to claim 1, wherein in the second step, a superconducting thin film pattern is formed by depositing a multilayer film and subjecting it to heat treatment. 4. In the fourth step, a thin film having excellent environmental resistance is formed on the superconducting thin film, and the thin film is used as a protective film when processing the superconducting thin film.
A method for processing a superconducting thin film described in . 5. The method for processing a superconducting thin film according to claim 1, characterized in that multiple layers of an insulator, a semiconductor, or a superconductor are laminated on the thin film obtained in the fourth step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019267A JP2566028B2 (en) | 1990-01-31 | 1990-01-31 | Manufacturing method of superconducting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019267A JP2566028B2 (en) | 1990-01-31 | 1990-01-31 | Manufacturing method of superconducting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03225974A true JPH03225974A (en) | 1991-10-04 |
JP2566028B2 JP2566028B2 (en) | 1996-12-25 |
Family
ID=11994668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019267A Expired - Lifetime JP2566028B2 (en) | 1990-01-31 | 1990-01-31 | Manufacturing method of superconducting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2566028B2 (en) |
-
1990
- 1990-01-31 JP JP2019267A patent/JP2566028B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2566028B2 (en) | 1996-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2798361B2 (en) | Superconducting field effect device having grain boundary channel and method of manufacturing the same | |
US5434127A (en) | Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer | |
US4900709A (en) | Method of patterning superconducting oxide thin films | |
US5446016A (en) | Method for forming a patterned oxide superconductor thin film | |
JPH05251771A (en) | Artificial grain boundary type josephson junction element and manufacture thereof | |
JPH05335638A (en) | Josephson junction structure body and manufacture thereof | |
JPH03225974A (en) | Processing method of superconducting thin film | |
US5663081A (en) | Method for making a high-temperature superconducting field-effect transistor with thick superconducting channel layer | |
JPH01117376A (en) | Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof | |
JP2682136B2 (en) | Method of manufacturing Josephson device | |
JPS61181178A (en) | Josephson junction element and manufacture thereof | |
JP3084045B2 (en) | Josephson element | |
JPH0594961A (en) | Manufacture of superconductive wiring | |
JP2774576B2 (en) | Superconductor device and method of manufacturing the same | |
JPH06132577A (en) | Formation of oxide suprconducting josephson element | |
JPS61271877A (en) | Manufacture of josephson element | |
JPH03124077A (en) | Manufacture of superconducting element | |
JPS58134484A (en) | Manufacture of josephson junction element | |
JPS592391B2 (en) | Josephson junction device and its manufacturing method | |
JPS60226160A (en) | Manufacture for thin film resistance device | |
JPH04287382A (en) | Mask material for forming oxide thin film, forming method for pattern of oxide thin film using same, and manufacture of superconducting element | |
JPS592390B2 (en) | Josephson junction device and its manufacturing method | |
JPS63194376A (en) | Josephson junction element | |
JPH0479383A (en) | Superconductive element and manufacture thereof | |
JPH05190926A (en) | Forming method of superconducting device and superconducting device formed by the same |