JPH01117376A - Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof - Google Patents

Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof

Info

Publication number
JPH01117376A
JPH01117376A JP62179622A JP17962287A JPH01117376A JP H01117376 A JPH01117376 A JP H01117376A JP 62179622 A JP62179622 A JP 62179622A JP 17962287 A JP17962287 A JP 17962287A JP H01117376 A JPH01117376 A JP H01117376A
Authority
JP
Japan
Prior art keywords
superconductor
thin film
single crystal
tunnel junction
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62179622A
Other languages
Japanese (ja)
Inventor
Masahide Inuishi
犬石 昌秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62179622A priority Critical patent/JPH01117376A/en
Publication of JPH01117376A publication Critical patent/JPH01117376A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a tunnel junction making use of a superconductor single crystal thin film so as to take advantage of a magnetic and electric anisotropic property of the single crystal by a method wherein a first superconductor single crystal thin film, an interlaminar insulating film, and a second superconductor single crystal thin film which is provided so as to form a step and junctioned with the first superconductor single crystal thin film through the intermediary of a thin insulating film are provided. CONSTITUTION:A first superconductor thin film 2 of La-Sr-Cu-O or the like is formed on a SrTiO2 (100) face of a cubic crystal perovskite structure through a sputtering evaporation. Next, the face vertical to the substrate is made to be a c axis when the first thin film 2 is subjected to a heat treatment at a temperature of 800 deg.C or higher so as to be a single crystal, then a SiO2 film 3 is formed thereon as an interlaminar insulating film through a CVD method after the single crystallization of the film 2 is completed. A process follows, where the SiO2 film 3 and the second superconductor layer 2 are etched through a resist employed as a mask for the formation of a pattern. Next, impurity ions are slantingly implanted so as to convert the composition of the superconductor for the formation of a thin film 4. Lastly, a second superconductor layer (La-Sr-Cu-O) 5 is evaporated through a sputtering and subjected to a heat treatment so as to be converted into a single crystal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は超伝導トンネル接合素子及びその製造方法に
関し、特にに、N、F、の結晶構造を有する物質から成
るエツジ接合型の単結晶薄膜超伝導体トンネル接合素子
とその製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a superconducting tunnel junction device and a method for manufacturing the same, and particularly to an edge junction type single crystal thin film made of a substance having a N, F crystal structure. This invention relates to a superconductor tunnel junction device and its manufacturing method.

〔従来の技術〕[Conventional technology]

従来の超伝導接合型トンネル素子としては第3図に示す
ものがあった。第3図(alは平面接合型超伝導トンネ
ル接合素子の断面図で、図において2は第1の超伝導体
層、5は第2の超伝導体層、4は薄いトンネル絶縁膜で
ある。第3図(b)は、エツジ接合型超伝導トンネル素
子で、2は第1の超伝導体層、5は第2の超伝導体層、
4は薄いトンネル用絶縁膜である。上記超伝導体層2,
5として従来はニオブなどの超伝導体金属が使用されて
いた。
A conventional superconducting junction tunnel element is shown in FIG. FIG. 3 (al is a cross-sectional view of a planar junction type superconducting tunnel junction element; in the figure, 2 is a first superconductor layer, 5 is a second superconductor layer, and 4 is a thin tunnel insulating film. FIG. 3(b) shows an edge junction type superconducting tunnel device, in which 2 is a first superconductor layer, 5 is a second superconductor layer,
4 is a thin tunnel insulating film. the superconductor layer 2,
Conventionally, superconducting metals such as niobium have been used as 5.

第3図(C)は従来の超伝導トンネル接合素子であり、
超伝導体薄膜の平面を利用して接合を形成したものであ
る。
Figure 3(C) shows a conventional superconducting tunnel junction element,
A junction is formed using the plane of a superconductor thin film.

従来の超伝導トンネル接合素子は以上のように超伝導ト
ンネル接合を基板に平行な面で形成するように構成され
ているので、これまでのニオブ(Nb)等の超伝導体多
結晶膜を使用するには適しているが、超伝導体の単結晶
薄膜から成る超伝導トンネル接合素子の形成には適して
いない。
Conventional superconducting tunnel junction elements are configured so that the superconducting tunnel junction is formed on a plane parallel to the substrate as described above, so conventional superconducting polycrystalline films such as niobium (Nb) are used. However, it is not suitable for forming superconducting tunnel junction devices consisting of single crystal thin films of superconductors.

1986年にIBM、チェーリッヒ研で発見され、その
後多数発見され出した高い超伝導転移温度を有する酸化
物超伝導体は、第4図に示すに! NtF4型の結晶構
造を有することが同定されたが、同結晶構造の物質La
(ランタン)−3r(ストロンチウム)−Cu−0(L
SCO)ではa軸方向にはC軸方向よりも約20倍電流
を流しやすいことや、a軸に平行に磁場を印加した場合
は、C軸に平行に磁場を印加した場合に比べ超伝導が消
滅する臨界磁場はかなり大きくなることが知られている
が、従来の素子の形成方法では単結晶膜から成るトンネ
ル接合素子は得られず、この電気的及び磁気的異方性は
利用できない等の問題があった。
Figure 4 shows the oxide superconductors with high superconducting transition temperatures that were discovered in 1986 at IBM's Cherich Laboratory and subsequently discovered in large numbers! It was identified that it has an NtF4 type crystal structure, but a substance La with the same crystal structure
(lanthanum)-3r(strontium)-Cu-0(L
SCO), it is about 20 times easier to flow current in the a-axis direction than in the c-axis direction, and when a magnetic field is applied parallel to the a-axis, superconductivity is higher than when a magnetic field is applied parallel to the c-axis. It is known that the critical magnetic field that disappears is quite large, but conventional device formation methods cannot produce tunnel junction devices made of single crystal films, and this electrical and magnetic anisotropy cannot be utilized. There was a problem.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は上記のような問題点を解消するためになされ
たもので、超伝導体単結晶薄膜を利用してトンネル接合
素子を形成でき、単結晶の磁気的・電気的異方性を利用
できる超伝導トンネル接合素子を得ること、さらには単
結晶成長のための熱処理を加えても熱応力が発生せずに
単結晶薄膜を形成でき、高温で動作可能な超伝導トンネ
ル接合素子を製造できる方法を得ることを目的としてい
る。
This invention was made to solve the above-mentioned problems, and it is possible to form a tunnel junction element using a superconducting single crystal thin film and utilize the magnetic and electrical anisotropy of the single crystal. Obtaining a superconducting tunnel junction element, and furthermore, a method for manufacturing a superconducting tunnel junction element that can form a single crystal thin film without generating thermal stress even after heat treatment for single crystal growth, and that can operate at high temperatures. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るエツジ接合型単結晶薄膜超伝導体トンネ
ル接合素子及びその製造方法は、超伝導体薄膜を格子定
数及び熱膨腸係数の差の少ない基板上に形成して単結晶
膜を成長させ、超伝導体の基板の面に対して垂直な面に
2つの超伝導体単結晶膜から成るトンネル接合面を形成
するとともに、エツジ接合部の絶縁膜を形成するのに斜
めイオン注入による接合部への不純物注入もしくは斜め
蒸着による方法を用い、トンネル接合面を特定の方向に
のみ揃えるようにしたものである。
The edge-junction type single-crystal thin-film superconductor tunnel junction device and the manufacturing method thereof according to the present invention include forming a superconductor thin film on a substrate with a small difference in lattice constant and thermal expansion coefficient, and growing a single-crystal film. , a tunnel junction consisting of two superconductor single crystal films is formed in a plane perpendicular to the plane of the superconductor substrate, and a junction is formed by oblique ion implantation to form an insulating film at the edge junction. The tunnel junction surface is aligned only in a specific direction by using impurity implantation or oblique vapor deposition.

〔作用〕[Effect]

この発明においては、S、Tj o、等の格子定数及び
熱膨張係数の差の少ない基板上にKtN*F4等の結晶
構造を有する超伝導体薄膜を形成してこれを熱処理によ
り単結晶化するようにしたから、基板の面に垂直な方向
を超伝導体のC軸方向とし、2つの超伝導体薄膜の段差
の側面に垂直な方向を超伝導体単結晶のa軸方向とする
ことができ、これにより単結晶の磁気的電気的異方性を
利用し、C軸方向に磁場を加えることにより超伝導体か
ら常伝導体に安定し自切り換えられるものが得られる。
In this invention, a superconductor thin film having a crystal structure such as KtN*F4 is formed on a substrate having a small difference in lattice constant and thermal expansion coefficient such as S, Tj o, etc., and this is made into a single crystal by heat treatment. Therefore, the direction perpendicular to the plane of the substrate can be taken as the C-axis direction of the superconductor, and the direction perpendicular to the side surface of the step between the two superconductor thin films can be taken as the a-axis direction of the superconductor single crystal. As a result, by utilizing the magnetic and electrical anisotropy of the single crystal and applying a magnetic field in the C-axis direction, it is possible to obtain a material that can stably and self-switch from a superconductor to a normal conductor.

またエツジ接合部の絶縁膜を形成するのに斜めイオン注
入又は斜め蒸着を用いることによりトンネル接合面を特
定の方向にのみそろえることができる。また本発明にお
いては上記のような基板及び超伝導体薄膜を用いること
により、単結晶成長のための熱処理を加えても熱応力が
発生せずに単結晶薄膜を形成でき、高温で動作可能な超
伝導トンネル接合素子を製造できる。
Furthermore, by using oblique ion implantation or oblique vapor deposition to form the insulating film at the edge junction, the tunnel junction surface can be aligned only in a specific direction. Furthermore, in the present invention, by using the substrate and superconductor thin film as described above, it is possible to form a single crystal thin film without generating thermal stress even when heat treatment is applied for single crystal growth, and it is possible to operate at high temperatures. Superconducting tunnel junction devices can be manufactured.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例によるエツジ接合型単結晶薄膜
超伝導体トンネル接合素子軸−躾場舎噸寺寺告の断面図
であり、1はS、Ti O。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a cross-sectional view of an edge-junction type single-crystal thin-film superconductor tunnel junction element axis-straining device according to an embodiment of the present invention, where 1 is S, TiO.

の単結晶基板で立方晶プロブスカイト構造を有し、(1
00)面を持つ、2はに! NI Fa槽構造有するL
a−31−Cu−0等の第1の単結晶超伝導体薄膜であ
る。3は層間絶縁膜、4は超伝導トンネル接合絶縁膜、
5はLa−3r−Cu−0系、の第2の単結晶超伝導体
薄膜である。
It has a cubic probskite structure with a single crystal substrate of (1
00) With a side, 2 ha ni! L with NI Fa tank structure
This is a first single crystal superconductor thin film such as a-31-Cu-0. 3 is an interlayer insulating film, 4 is a superconducting tunnel junction insulating film,
5 is a second single crystal superconductor thin film of La-3r-Cu-0 system.

第2図を用いて本実施例による超伝導トンネル接合素子
の製造方法について説明する。第2図(a)の立方晶ペ
ロブスカイト構造を有するS、Ti Ofの(100)
面上に第1のLa−3r−Cu−0等の超伝導体薄膜2
をスパッタ蒸着する0次に800℃以上の熱処理で単結
晶化させると基板に垂直な面がC軸になり、単結晶化の
あと層間絶縁膜層としてSin、膜3をCVDで形成す
る(第2図(b))、続いてレジストをマスクとしてS
in。
A method for manufacturing a superconducting tunnel junction device according to this example will be explained using FIG. 2. (100) of S, Ti with cubic perovskite structure in Figure 2(a)
A first superconductor thin film 2 such as La-3r-Cu-0 is formed on the surface.
When it is single-crystalized by a heat treatment of 800°C or more after sputter deposition, the plane perpendicular to the substrate becomes the C-axis, and after single-crystallization, a film 3 of Sin is formed as an interlayer insulating film layer by CVD. 2(b)), then S using the resist as a mask.
in.

膜3及び第1の超伝導体層2をエツチングしパターンを
形成する(第2図(C))、次に不純物を斜めにイオン
注入し、超伝導体の組成を変えることにより薄い絶縁層
4を形成する(第2図(d))、これは不純物イオン注
入の他に、斜め方向からS、O。
The film 3 and the first superconductor layer 2 are etched to form a pattern (FIG. 2(C)), and then impurities are ion-implanted obliquely to change the composition of the superconductor to form a thin insulating layer 4. (FIG. 2(d)), which involves not only impurity ion implantation but also S and O from an oblique direction.

等を蒸着してもよい、最後に第2の超伝導体層(La−
3r−Cu−0)5をスパッタ蒸着し、熱処理を加え、
単結晶化させる(第2図(11))、この方法によりト
ンネル接合の両側率は単結晶膜2.  。
Finally, a second superconductor layer (La-
3r-Cu-0)5 was sputter deposited, heat treated,
By this method, the double-sided ratio of the tunnel junction is made into a single crystal film (FIG. 2 (11)). .

5となる。It becomes 5.

このような本実施例の超伝導トンネル接合素子では、超
伝導トンネル接合の両側の超伝導膜を単結晶化し、基板
に垂直な方向をKtNムF、構造のC軸方向に、トンネ
ル接合の面に垂直な方向をa軸方向となるように構成し
たので、得られた超伝導体層2.5は多結晶体と異なり
、再現性良く同じ性質のものが得られる。しかも本装置
ではC軸方向の磁場を加えるとa軸方向に磁場を加える
場合に比べ、超伝導が消滅する臨界磁場はかなり小さく
なり、従ってこのようにC軸方向に磁場を加えることに
より、超伝導体から常伝導体に安定して切り換えること
ができる。
In the superconducting tunnel junction device of this example, the superconducting films on both sides of the superconducting tunnel junction are made into single crystals, and the direction perpendicular to the substrate is KtN, and the plane of the tunnel junction is aligned in the C-axis direction of the structure. Since the superconductor layer 2.5 is configured such that the direction perpendicular to the a-axis direction is the a-axis direction, the obtained superconductor layer 2.5 is different from a polycrystalline material and has the same properties with good reproducibility. Moreover, in this device, when a magnetic field is applied in the C-axis direction, the critical magnetic field at which superconductivity disappears is considerably smaller than when a magnetic field is applied in the a-axis direction. Therefore, by applying a magnetic field in the C-axis direction in this way, It is possible to stably switch from a conductor to a normal conductor.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係るエツジ接合型単結晶薄膜
超伝導体トンネル接合素子およびその製造方法によれば
、超伝導体薄膜を格子定数及び熱膨張係数の差の少ない
基板上に形成して単結晶膜を成長させ、超伝導体の基板
の面に対して垂直な面に2つの超伝導体単結晶膜から成
る!・ンネル接合面を形成するので、超伝導体単結晶薄
膜を利用したトンネル接合素子を形成でき、単結晶の磁
気的、電気的異方性を利用できる超伝導トンネル接合素
子を得ることができる。また単結晶成長のための熱処理
を加えても熱応力を発生せずに単結晶薄膜を形成でき、
高温で動作する超伝導トンネル接合素子が得られる効果
がある。
As described above, according to the edge junction type single crystal thin film superconductor tunnel junction device and the manufacturing method thereof according to the present invention, a superconductor thin film is formed on a substrate with a small difference in lattice constant and coefficient of thermal expansion. Grow a single crystal film, consisting of two superconductor single crystal films in a plane perpendicular to the plane of the superconductor substrate! - Since a tunnel junction surface is formed, a tunnel junction element using a superconductor single crystal thin film can be formed, and a superconducting tunnel junction element that can utilize the magnetic and electrical anisotropy of the single crystal can be obtained. Furthermore, even if heat treatment is applied for single crystal growth, single crystal thin films can be formed without generating thermal stress.
This has the effect of providing a superconducting tunnel junction device that operates at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるエツジ接合型単結晶
薄膜超伝導体トンネル接合素子を示す断面図、第2図(
a)〜(d)は上記素子の製造方法を示す断面図、第3
図は従来の超伝導トンネル接合素子を示す図、第4図は
に一、N、F、型結晶構造を存するLa−3r−Cu−
0の原子配置を示す図である。 1は基板、2は第1の超伝導体薄膜、3は層間絶縁膜、
4はトンネル絶縁膜、5は第2の超伝導体薄膜。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a sectional view showing an edge junction type single crystal thin film superconductor tunnel junction device according to an embodiment of the present invention, and FIG.
a) to (d) are cross-sectional views showing the manufacturing method of the above element;
The figure shows a conventional superconducting tunnel junction device, and Figure 4 shows a La-3r-Cu-
It is a figure showing the atomic arrangement of 0. 1 is a substrate, 2 is a first superconductor thin film, 3 is an interlayer insulating film,
4 is a tunnel insulating film, and 5 is a second superconductor thin film. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (7)

【特許請求の範囲】[Claims] (1)基板上に設けられた第1の超伝導体単結晶薄膜と
、 前記第1の超伝導体単結晶薄膜の側面に設けられた薄い
絶縁膜と、 前記第1の超伝導体単結晶薄膜の前記基板に平行な面上
に設けられた層間絶縁膜と、 前記基板上に上記薄い絶縁膜を介して上記第1の超伝導
体単結晶薄膜に接合しかつこれと段差を形成するよう設
けられた第2の超伝導体単結晶薄膜とを備えたことを特
徴とするエッジ接合型単結晶薄膜超伝導体トンネル接合
素子。
(1) A first superconductor single crystal thin film provided on a substrate, a thin insulating film provided on a side surface of the first superconductor single crystal thin film, and the first superconductor single crystal thin film. an interlayer insulating film provided on a surface of a thin film parallel to the substrate; and an interlayer insulating film that is bonded to the first superconductor single crystal thin film on the substrate via the thin insulating film and forms a step with the first superconductor single crystal thin film. An edge junction type single crystal thin film superconductor tunnel junction element, comprising: a second superconductor single crystal thin film provided therein.
(2)上記第1及び第2の超伝導体単結晶薄膜は、K_
2NiF_4の結晶構造を有し、基板の面に垂直な方向
は上記超伝導体のc軸方向であり、該両薄膜により形成
される上記段差の側面に垂直な方向は超伝導体単結晶の
a軸方向であることを特徴とする特許請求の範囲第1項
記載のエッジ接合型単結晶超伝導体薄膜トンネル接合素
子。
(2) The first and second superconductor single crystal thin films are K_
2NiF_4 crystal structure, the direction perpendicular to the surface of the substrate is the c-axis direction of the superconductor, and the direction perpendicular to the side surface of the step formed by both thin films is the a-axis direction of the superconductor single crystal. The edge junction type single crystal superconductor thin film tunnel junction element according to claim 1, characterized in that the tunnel junction element is in the axial direction.
(3)上記基板は格子定数の差、熱膨脹係数の差が小さ
いSrTiO_3等の物質であることを特徴とする特許
請求の範囲第1項又は第2項記載のエッジ接合型単結晶
薄膜超伝導体トンネル接合素子。
(3) The edge junction type single crystal thin film superconductor according to claim 1 or 2, wherein the substrate is a material such as SrTiO_3 with small differences in lattice constant and coefficient of thermal expansion. Tunnel junction element.
(4)トンネル接合部の絶縁膜は斜め蒸着を利用して形
成したことを特徴とする特許請求の範囲第1項ないし第
3項のいずれかに記載のエッジ接合型単結晶薄膜超伝導
体トンネル接合素子。
(4) The edge junction type single crystal thin film superconductor tunnel according to any one of claims 1 to 3, wherein the insulating film of the tunnel junction is formed using oblique evaporation. Junction element.
(5)トンネル接合を形成する接合面を一方向にのみ揃
えたことを特徴とする特許請求の範囲第1項ないし第4
項のいずれかに記載のエッジ接合型単結晶薄膜超伝導体
トンネル接合素子。
(5) Claims 1 to 4 characterized in that the joint surfaces forming the tunnel junction are aligned only in one direction.
2. The edge junction type single crystal thin film superconductor tunnel junction device according to any one of the above.
(6)トンネル接合部の絶縁膜層は不純物の斜めイオン
注入を利用して形成したことを特徴とする特許請求の範
囲第1項ないし第5項のいずれかに記載のエッジ接合型
単結晶薄膜超伝導体トンネル接合素子。
(6) The edge junction type single crystal thin film according to any one of claims 1 to 5, wherein the insulating film layer of the tunnel junction is formed using oblique ion implantation of impurities. Superconductor tunnel junction device.
(7)基板上に第1の超伝導体薄膜を形成する工程と、 上記基板上に形成した第1の熱伝導体薄膜を熱処理によ
り単結晶化させる工程と、 上記単結晶化した第1の超伝導体薄膜の上に層間絶縁膜
を形成する工程と、 上記第1の熱伝導体薄膜及び層間絶縁膜をエッチングし
パターンを形成する工程と、 上記両膜のパターンの側面に斜め蒸着又は不純物の斜め
イオン注入により薄い絶縁膜を形成する工程と、 その上に第2の超伝導体薄膜を上記第1の超伝導体薄膜
と段差を形成するように形成し、かつこれに熱処理を加
え、単結晶化する工程とを備えたことを特徴とするエッ
ジ接合型単結晶薄膜超伝導体トンネル接合素子の製造方
法。
(7) a step of forming a first superconductor thin film on the substrate; a step of making the first thermal conductor thin film formed on the substrate into a single crystal by heat treatment; a step of forming an interlayer insulating film on the superconductor thin film; a step of etching the first thermal conductor thin film and the interlayer insulating film to form a pattern; and obliquely depositing or doping impurities on the sides of the pattern of both films. forming a thin insulating film by oblique ion implantation, forming a second superconductor thin film thereon so as to form a step with the first superconductor thin film, and applying heat treatment thereto; 1. A method for manufacturing an edge-junction type single-crystal thin-film superconductor tunnel junction device, comprising the step of single-crystallization.
JP62179622A 1987-07-17 1987-07-17 Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof Pending JPH01117376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62179622A JPH01117376A (en) 1987-07-17 1987-07-17 Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62179622A JPH01117376A (en) 1987-07-17 1987-07-17 Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01117376A true JPH01117376A (en) 1989-05-10

Family

ID=16068982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62179622A Pending JPH01117376A (en) 1987-07-17 1987-07-17 Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01117376A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137378A (en) * 1988-11-18 1990-05-25 Nippon Telegr & Teleph Corp <Ntt> Tunnel junction element of high-temperature oxide superconductor
EP0476687A2 (en) * 1990-09-20 1992-03-25 Sumitomo Electric Industries, Limited Superconductor junction structure and process for fabricating the same
DE4124773A1 (en) * 1991-07-26 1993-01-28 Forschungszentrum Juelich Gmbh Josephson contact prod. having a layered electrode on a substrate - by depositing 1st layer on substrate having planes divided by stepwise lamp followed by barrier layer and then 2nd layer
JPH07144027A (en) 1993-11-22 1995-06-06 Besuto Life:Kk Tightening means for training muscular strength
JPH07183583A (en) * 1993-12-24 1995-07-21 Nec Corp Superconducting circuit using edge type josephson junction and manufacture thereof
US6541789B1 (en) 1998-09-01 2003-04-01 Nec Corporation High temperature superconductor Josephson junction element and manufacturing method for the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137378A (en) * 1988-11-18 1990-05-25 Nippon Telegr & Teleph Corp <Ntt> Tunnel junction element of high-temperature oxide superconductor
EP0476687A2 (en) * 1990-09-20 1992-03-25 Sumitomo Electric Industries, Limited Superconductor junction structure and process for fabricating the same
US5488030A (en) * 1990-09-20 1996-01-30 Sumitomo Electric Industries, Inc. Superconductor junction structure including two oxide superconductor layers separated by a non-superconducting layer
EP0476687B1 (en) * 1990-09-20 2000-03-15 Sumitomo Electric Industries, Limited Superconductor junction structure and process for fabricating the same
DE4124773A1 (en) * 1991-07-26 1993-01-28 Forschungszentrum Juelich Gmbh Josephson contact prod. having a layered electrode on a substrate - by depositing 1st layer on substrate having planes divided by stepwise lamp followed by barrier layer and then 2nd layer
JPH07144027A (en) 1993-11-22 1995-06-06 Besuto Life:Kk Tightening means for training muscular strength
JPH07183583A (en) * 1993-12-24 1995-07-21 Nec Corp Superconducting circuit using edge type josephson junction and manufacture thereof
US6541789B1 (en) 1998-09-01 2003-04-01 Nec Corporation High temperature superconductor Josephson junction element and manufacturing method for the same

Similar Documents

Publication Publication Date Title
JP2907832B2 (en) Superconducting device and manufacturing method thereof
JPH0577347B2 (en)
JPH01117376A (en) Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof
JPH05335638A (en) Josephson junction structure body and manufacture thereof
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
KR940003745B1 (en) Active device having an oxide super conductor and a fabrication process thereof
JPS63283086A (en) Manufacture of superconducting thin film
JPH01101677A (en) Electronic device
JP2804102B2 (en) Oxide superlattice material
JP3167768B2 (en) Grain boundary Josephson device and method of manufacturing the same
CA2047413C (en) Superconducting device having layered structure composed of oxide superconductor thin film and insulator thin film and method for manufacturing the same
JPH0195576A (en) Manufacture of thin-film superconducting device
JPH03275504A (en) Oxide superconductor thin film and its production
JP2976427B2 (en) Method of manufacturing Josephson device
JP2835203B2 (en) Superconducting element manufacturing method
JP3323278B2 (en) Method for manufacturing superconducting device
JPH0244782A (en) Superconductive element and manufacture thereof
JP2774576B2 (en) Superconductor device and method of manufacturing the same
KR100434287B1 (en) Manufacturing method for divice junction Josephson superconductor
JPH01211983A (en) Josephson element
Luo et al. Preparation of ferroelectric Pb (Zr0. 53Ti0. 47) O3 thin film on YBa2Cu3O7–δ film by magnetron sputtering
JPH03261608A (en) Manufacture of high-temperature superconducting thin film
JPH01115899A (en) Production of oxide superconductor film
JPH02172821A (en) Formation of superconducting thin film
JPH05251773A (en) Josephson element and manufacture thereof