JPH03124077A - Manufacture of superconducting element - Google Patents

Manufacture of superconducting element

Info

Publication number
JPH03124077A
JPH03124077A JP1261491A JP26149189A JPH03124077A JP H03124077 A JPH03124077 A JP H03124077A JP 1261491 A JP1261491 A JP 1261491A JP 26149189 A JP26149189 A JP 26149189A JP H03124077 A JPH03124077 A JP H03124077A
Authority
JP
Japan
Prior art keywords
thin film
superconducting thin
oxide superconducting
oxide
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1261491A
Other languages
Japanese (ja)
Inventor
Saburo Tanaka
三郎 田中
Hideo Itozaki
糸崎 秀夫
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1261491A priority Critical patent/JPH03124077A/en
Priority to CA002027067A priority patent/CA2027067C/en
Priority to EP90402787A priority patent/EP0421889B1/en
Priority to DE69026179T priority patent/DE69026179T2/en
Publication of JPH03124077A publication Critical patent/JPH03124077A/en
Priority to US08/064,331 priority patent/US5418213A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily form a superconducting element by processing a superconducting thin film fine by a method wherein one part of an oxide superconducting thin film is etched to form the oxide superconducting thin film whose thickness is partially different. CONSTITUTION:An oxide superconducting thin film 1 400nm thick is formed on a substrate 2 by a sputtering method; a metal film 3 100nm thick is formed on its surface by a vacuum deposition method. After that, a photoresist film 5 is formed in the central part on the film 3, and is etched by using an Ar ion beam until a thickness in both-end parts of the film 1 becomes 100nm. In this manner, a superconducting element can be formed by using a processing method for the oxide superconducting thin film which does not deteriorate a superconducting characteristic.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導素子の作製方法に関する。より詳細に
は、部分的に厚さの異なる酸化物超電導薄膜を形成し、
超電導素子を作製する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a superconducting element. More specifically, forming an oxide superconducting thin film with partially different thicknesses,
The present invention relates to a method for manufacturing a superconducting element.

従来の技術 いわゆるジョセフソン素子、超電導トランジスタ等の超
電導デバイスを作製する場合、超電導体を薄膜化し、さ
らに所望の形状に加工しなければならない。
BACKGROUND ART When producing a superconducting device such as a so-called Josephson element or a superconducting transistor, a superconductor must be made into a thin film and further processed into a desired shape.

上記の超電導デバイスの超電導体にYIBa2CuzO
t−xに代表されるいわゆるY−Ba−Cu−O系酸化
物超電導体、B125r2Ca2Cu30yて代表され
るBi −3r −Ca−0糸束合酸化物超電導体、T
12Ba2Ca2Cu30zで代表されるTI −Ba
−Ca−Cu−○系酸化物超電導体等の酸化物超電導体
を用いる場合、上記の薄膜化および加工は以下のように
行われていた。
YIBa2CuzO is used as the superconductor of the above superconducting device.
So-called Y-Ba-Cu-O based oxide superconductor represented by t-x, Bi-3r-Ca-0 yarn bundle composite oxide superconductor represented by B125r2Ca2Cu30y, T
TI-Ba represented by 12Ba2Ca2Cu30z
When using an oxide superconductor such as a -Ca-Cu-○-based oxide superconductor, the above-mentioned thinning and processing have been performed as follows.

薄膜化は、通常スパッタリング法、分子ビームエピタキ
シ法等の物理的蒸着法またはMO−CVD法等に代表さ
れる化学的蒸着法で行われる。成膜後に、特性を向上さ
せるための熱処理を行うこともある。また、いずれの方
法で薄膜を作製する場合でも、薄膜を構成する酸化物超
電導体の結晶方向が揃うようにする必要がある。これは
、上記の酸化物超電導体が、一般にその超電導臨界電流
密度に方向性を有するからである。
The thinning is usually performed by a physical vapor deposition method such as a sputtering method or a molecular beam epitaxy method, or a chemical vapor deposition method such as an MO-CVD method. After film formation, heat treatment may be performed to improve properties. In addition, no matter which method is used to produce the thin film, it is necessary to ensure that the crystal directions of the oxide superconductors forming the thin film are aligned. This is because the above-mentioned oxide superconductor generally has directionality in its superconducting critical current density.

また、部分的に厚さの異なる超電導薄膜を作製する場合
は、最初に最も薄い部分の厚さに等しい厚さの薄膜を形
成し、不要部分をマスクしてさらにその上に超電導薄膜
を堆債する方法が採られていた。第2図(a)〜(C)
を参照して、従来の酸化物超電導薄膜の加工方法を説明
する。第2図(a)〜(C)には、中央部の厚さが40
0nmで両Q:M G、乙の厚さが1100nの酸化物
超電導薄膜を基板上に形成する手順を示している。従来
の方法では、まず、第2図(a)に示すよう基板2上に
厚さ1100nの酸化物超電導薄膜1をスパッタリング
法等で形成する。次に第2図(1))に示すよう、フォ
トレジスト5により、酸化物超電導薄膜1の中央部10
以外の部分をマスクし、再びスパッタリング法等で酸化
物超電導薄膜を堆債させ、中央部のみを厚さ400nm
の酸化物超電導薄膜11とする。
In addition, when creating a superconducting thin film with partially different thicknesses, first form a thin film with a thickness equal to the thickness of the thinnest part, mask the unnecessary parts, and then deposit the superconducting thin film on top of it. A method was adopted to do so. Figure 2 (a) to (C)
A conventional method for processing oxide superconducting thin films will be explained with reference to . In Figures 2 (a) to (C), the thickness of the central part is 40 mm.
This figure shows a procedure for forming an oxide superconducting thin film with a thickness of 0 nm, both Q:MG, and a thickness of 1100 nm on a substrate. In the conventional method, first, as shown in FIG. 2(a), an oxide superconducting thin film 1 having a thickness of 1100 nm is formed on a substrate 2 by sputtering or the like. Next, as shown in FIG.
Mask the other parts and deposit an oxide superconducting thin film again by sputtering, etc., to a thickness of 400 nm only in the central part.
The oxide superconducting thin film 11 is as follows.

発明が解決しようとする課題 上記従来の方法では、最初に最も薄い部分と等しい厚さ
の酸化物超電導薄膜を全体に形成し、不要部分をマスク
し、必要な部分にさらに超電導薄膜を堆積させて、部分
的に厚さの異なる超電導薄膜を形成する。そのため、マ
スクに使用するフォトレジスト5と最初に形成した酸化
物超電導薄膜1との界面で反応が起こり、酸化物超電導
体の特性が劣化するという問題があった。また、フォト
リンゲラフィブロセスにおいて、アルカリ性の現像液、
レジスト剥離液および洗浄用の水に触れた酸化物超電導
薄膜の表面上に再び酸化物超電導薄膜を堆積させても、
界面が不連続となり、−様な超電導薄膜とはならない。
Problems to be Solved by the Invention In the conventional method described above, an oxide superconducting thin film with a thickness equal to the thinnest part is first formed over the entire surface, unnecessary parts are masked, and superconducting thin films are further deposited on necessary parts. , forming a superconducting thin film with partially different thicknesses. Therefore, there was a problem in that a reaction occurred at the interface between the photoresist 5 used for the mask and the oxide superconducting thin film 1 formed first, resulting in deterioration of the characteristics of the oxide superconductor. In addition, in Photoringella fibrosis, alkaline developer,
Even if the oxide superconducting thin film is deposited again on the surface of the oxide superconducting thin film that has been exposed to resist stripping solution and cleaning water,
The interface becomes discontinuous, and a negative-like superconducting thin film cannot be obtained.

そこで本発明の目的は、上記従来技術の問題点を解決し
た特性を悪化させない酸化物超電導薄膜の加工方法によ
る超電導素子の作製方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a superconducting element using a method for processing an oxide superconducting thin film that does not deteriorate the characteristics, which solves the problems of the prior art described above.

課題を解決するための手段 本発明に従うと、酸化物超電導薄膜の一部をエツチング
し、部分的に厚さの異なる酸化物超電導薄膜を形成し、
超電導素子を作製することを特徴とする超電導素子の作
製方法が提供される。
Means for Solving the Problems According to the present invention, a part of an oxide superconducting thin film is etched to form an oxide superconducting thin film having partially different thicknesses,
A method for manufacturing a superconducting element is provided, the method comprising manufacturing a superconducting element.

聡」 本発明の方法は、超電導素子の作製に際して、部分的に
厚さが異なる酸化物超電導薄膜を作製する場合に、全体
に形成した厚さが大きい薄膜の一部をエンチングして、
薄い部分を形成するところにその主要な特徴がある。す
なわち、本発明の方法で、ある面上に部分的に厚さの異
なる酸化物超電導薄膜を作製する場合、酸化物超電導薄
膜を成長させる工程は1回である。この薄膜の成長工、
程では、最も厚い部分と等しい厚さの薄膜を形成する。
``Satoshi'' The method of the present invention, when producing an oxide superconducting thin film with partially different thicknesses when producing a superconducting element, etches a part of the thin film that is formed as a whole and has a large thickness,
Its main feature is that it forms a thin section. That is, when producing an oxide superconducting thin film having partially different thicknesses on a certain surface using the method of the present invention, the step of growing the oxide superconducting thin film is performed only once. This thin film growth process,
In this step, a thin film with a thickness equal to the thickest part is formed.

薄い部分、あるいは不要な部分は、この薄膜をエツチン
グして形成する。
Thin or unnecessary portions are formed by etching this thin film.

上記の酸化物超電導薄膜の成長工程が1回であるという
ことは、ある1層または1枚の酸化物超電導薄膜を1回
の工程で成長させるという意味である。従って、トンネ
ル型超電導弱接合のように2層の超電導薄膜の間に非超
電導体が挟まれている構成の場合には、それぞれの酸化
物超電導薄膜を1回の工程で成長させる。また、このよ
うに複数の層の酸化物超電導薄膜と非超電導体等の薄膜
が積層されている場合は、途中の段階で空気に触れさせ
ないよう、最上層の薄膜を形成するまで成膜装置のチャ
ンバから外部へ搬出しないようにすることが好ましい。
The above-mentioned growth process of the oxide superconducting thin film is performed once, which means that one layer or one sheet of the oxide superconducting thin film is grown in one process. Therefore, in the case of a structure in which a non-superconductor is sandwiched between two layers of superconducting thin films, such as a tunnel-type superconducting weak junction, each oxide superconducting thin film is grown in one step. In addition, when multiple layers of oxide superconducting thin films and non-superconducting thin films are laminated like this, the deposition equipment should be turned off until the topmost thin film is formed, so as not to expose it to air in the middle of the process. It is preferable to prevent it from being carried out from the chamber.

本発明の方法で、上記のように薄膜成長工程を1回にす
るのは、結晶性のよい、−様な酸化物超電導薄膜を形成
するためである。また、超電導弱接合等の酸化物超電導
薄膜と他の薄膜との接合を形成する場合においては、−
様な酸化物超電導薄膜を形成するためだけでな(、上記
の接合の界面状態を良好にするためである。
In the method of the present invention, the thin film growth step is performed only once as described above in order to form a -like oxide superconducting thin film with good crystallinity. In addition, when forming a junction between an oxide superconducting thin film and another thin film, such as a superconducting weak junction, -
This is not only to form an oxide superconducting thin film like this (but also to improve the interface condition of the above-mentioned junction).

すなわち、酸化物超電導薄膜は、その超電導特性が結晶
方向、組成等に非常に影響される。従って、何回にも分
けて堆積した酸化物超電導薄膜は、結晶が連続的になら
ず、界面が生じ、超電導特性も一様ではない。従って、
このような酸化物超電導薄膜は、超電導弱接合を形成す
るのに不適当であることはいうまでもない。また、超電
導弱接合は、その特性が接合界面の状態に大きく影響を
受ける。従って、界面となる部分が作製工程中に外気に
触れ、表面性状が変化すると、所望の特性の超電導弱接
合が得られない。本発明の方法は、これらの問題を解決
する。
That is, the superconducting properties of oxide superconducting thin films are greatly influenced by crystal orientation, composition, and the like. Therefore, in an oxide superconducting thin film deposited several times, the crystals are not continuous, interfaces are formed, and the superconducting properties are not uniform. Therefore,
Needless to say, such an oxide superconducting thin film is inappropriate for forming a superconducting weak junction. Furthermore, the characteristics of superconducting weak junctions are greatly affected by the state of the junction interface. Therefore, if the interface portion is exposed to the outside air during the manufacturing process and the surface properties change, a superconducting weak junction with desired characteristics cannot be obtained. The method of the invention solves these problems.

本発明の方法は任意の酸化物超電導薄膜に適用できる。The method of the present invention can be applied to any oxide superconducting thin film.

具体的には、Y、Ba2Cu307−X に代表される
いわゆるY −Ba−Cu−〇系酸化物超電導薄膜、B
i25r2Ca2Cu30.で代表されるBi −5r
 −Ca −0糸束合酸化物超電導薄膜、T12Ba2
Ca2cu30□で代表されるTI −Ba−Ca−C
u −0系酸化物超電導薄膜等が挙げられるが、これら
に限定されるものではない。
Specifically, the so-called Y-Ba-Cu-〇-based oxide superconducting thin film represented by Y, Ba2Cu307-X, and B
i25r2Ca2Cu30. Bi-5r represented by
-Ca -0 yarn bundle composite oxide superconducting thin film, T12Ba2
TI-Ba-Ca-C represented by Ca2cu30□
Examples include, but are not limited to, u-0 type oxide superconducting thin films.

本発明の方法において、エツチング法は、Ar等の不活
性ガスを用いたイオンビームエツチング、ECRエツチ
ング、RFプラズマエツチング等のいわゆるドライエツ
チングが好ましい。上記の各エツチング法は、荷電粒子
による物理的なエツチングであり、化学的な作用がない
ため、酸化物超電導体に与える影響が少ないので好まし
い。本発明の方法で例えば、Arイオンビームエッチン
クヲ行う場合には、Arイオンの加速電圧は600〜8
00■が好ましい。Arイオンの加速電圧が、600V
未満では、エツチング時間が非常に長くなり、また、8
00Vを超えると表面近傍の酸化物超電導体結晶を破壊
するためである。
In the method of the present invention, the etching method is preferably so-called dry etching such as ion beam etching using an inert gas such as Ar, ECR etching, or RF plasma etching. Each of the above-mentioned etching methods is a physical etching using charged particles, and since there is no chemical action, it is preferable because it has little influence on the oxide superconductor. For example, when performing Ar ion beam etching using the method of the present invention, the acceleration voltage of Ar ions is 600 to 8
00■ is preferred. The acceleration voltage of Ar ions is 600V
If the etching time is less than 8, the etching time will be very long.
This is because if the voltage exceeds 00V, the oxide superconductor crystal near the surface will be destroyed.

本発明の方法では、最初に酸化物超電導薄膜を成長させ
た後、薄膜表面を酸化物超電導体に悪影響を与えない金
属薄膜で被覆して保護することも好ましい。これは、特
にフォトリングラフィ技術でパターニングを行ってエツ
チングをする場合に有効である。金属薄膜で保護するこ
とにより、酸化物超電導薄膜はアルカリ性の現像液、レ
ジスト剥離液および洗浄用の水に触れないので、加工後
も超電導特性は劣化しない。上記の金属薄膜に使用する
金属材料は、Agが反応性が低いことおよび接触抵抗が
低いこと、密着性がよいことで優れているが、AI、 
In、 Zn、 Cu、 Ni5Au、 Pt、 Ti
、 Pd等、酸化物超電導体との反応性が低い金属なら
ば使用可能である。また、この金属薄膜は蒸着法等によ
り形成することができる。
In the method of the present invention, it is also preferable that after the oxide superconducting thin film is grown first, the surface of the thin film is protected by coating with a metal thin film that does not adversely affect the oxide superconductor. This is particularly effective when etching is performed by patterning using photolithography technology. By protecting it with a metal thin film, the oxide superconducting thin film does not come into contact with alkaline developing solution, resist stripping solution, or cleaning water, so its superconducting properties do not deteriorate even after processing. Among the metal materials used for the above metal thin film, Ag is excellent because of its low reactivity, low contact resistance, and good adhesion, but AI,
In, Zn, Cu, Ni5Au, Pt, Ti
, Pd, and other metals that have low reactivity with the oxide superconductor can be used. Further, this metal thin film can be formed by a vapor deposition method or the like.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 本発明の方法で酸化物超電導薄膜の加工を行い、加工後
の超電導特性を測定した。第1図(a)〜(d)を参照
して、本実施例で行った本発明の方法の手順を説明する
。第1図(a)〜(d)は、第2図の従来法で作製した
ものと同様な中央部の厚さが400nmで両端部の厚さ
が1100nの酸化物超電導薄膜を、基板上に形成する
手順を示している。最初に第1図(a)に示すよう基板
2上に、スパッタリング法で厚さ400nmの酸化物超
電導薄膜1を形成する。次に、第1図(b)に示すよう
酸化物超電導薄膜1の表面上に厚さ1100nの金属薄
膜3を真空蒸着法で形成する。その後、第1図(C)に
示すよう金属薄膜3上の中央部にフォトレジスト膜5を
形成し、第1図(d)に示すよう酸化物超電導薄膜1の
両端部分の厚さが1100nになるまでArイオンビー
ムエツチングを行った。酸化物超電導薄膜1には、Y1
Ba2CLI307−x酸化物超電導体、B125r2
Ca2Cu30y酸化吻超電導体およびT12Ba2C
a2Cu30.酸化物超電導体をそれぞれ使用した。ま
た、基板2には:4g○単結晶基板を金属薄膜3には、
Auを使用した。
EXAMPLE An oxide superconducting thin film was processed using the method of the present invention, and the superconducting properties after processing were measured. The procedure of the method of the present invention carried out in this example will be explained with reference to FIGS. 1(a) to 1(d). Figures 1 (a) to (d) show an oxide superconducting thin film with a thickness of 400 nm at the center and 1100 nm at both ends, similar to that produced by the conventional method in Figure 2, on a substrate. It shows the steps to form. First, as shown in FIG. 1(a), an oxide superconducting thin film 1 having a thickness of 400 nm is formed on a substrate 2 by sputtering. Next, as shown in FIG. 1(b), a metal thin film 3 having a thickness of 1100 nm is formed on the surface of the oxide superconducting thin film 1 by vacuum evaporation. Thereafter, a photoresist film 5 is formed at the center of the metal thin film 3 as shown in FIG. 1(C), and the thickness of both ends of the oxide superconducting thin film 1 is 1100 nm as shown in FIG. 1(d). Ar ion beam etching was performed until it became clear. The oxide superconducting thin film 1 contains Y1
Ba2CLI307-x oxide superconductor, B125r2
Ca2Cu30y oxidized rostral superconductor and T12Ba2C
a2Cu30. Oxide superconductors were used in each case. In addition, for the substrate 2: 4g○ single crystal substrate, for the metal thin film 3,
Au was used.

尚、比較のため、第2図に示した従来の方法で同様な形
状の酸化物超電導薄膜を形成し、超電導特性を調べた。
For comparison, an oxide superconducting thin film having a similar shape was formed using the conventional method shown in FIG. 2, and its superconducting properties were investigated.

それぞれの酸化物超電導薄膜の加工後の超電導特性を併
せて第1表に示す。
The superconducting properties of each oxide superconducting thin film after processing are also shown in Table 1.

第1表 (Jcの測定は77、3 Kで行った)本発明の方法で
加工した酸化物超電導薄膜は、従来のものより優れた超
電導特注を有する。
Table 1 (Measurements of Jc were carried out at 77.3 K) Oxide superconducting thin films processed by the method of the present invention have superior superconductivity customization than conventional ones.

3・・・金属薄膜、 5・・・フォトレジスト 発明の詳細 な説明したように、本発明に従うと、超電導特性を悪化
させない酸化物超電導薄膜の加工方法による超電導素子
の作製方法が提供される。本発明により、超電導薄膜の
微細加工による超電導素子の作製が容易になり、超電導
技術の応用がさらに促進される。
3. Metal thin film, 5. Photoresist As described above, according to the present invention, there is provided a method for manufacturing a superconducting element using a method for processing an oxide superconducting thin film that does not deteriorate superconducting properties. The present invention facilitates the production of superconducting elements by microfabrication of superconducting thin films, further promoting the application of superconducting technology.

Claims (1)

【特許請求の範囲】[Claims]  酸化物超電導薄膜の一部をエッチングし、部分的に厚
さの異なる酸化物超電導薄膜を形成し、超電導素子を作
製することを特徴とする超電導素子の作製方法。
1. A method for producing a superconducting element, which comprises etching a part of an oxide superconducting thin film to form an oxide superconducting thin film having partially different thicknesses to produce a superconducting element.
JP1261491A 1989-10-06 1989-10-06 Manufacture of superconducting element Pending JPH03124077A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1261491A JPH03124077A (en) 1989-10-06 1989-10-06 Manufacture of superconducting element
CA002027067A CA2027067C (en) 1989-10-06 1990-10-05 Method for forming a continuous oxide superconductor layer having different thickness portions for superconductor device
EP90402787A EP0421889B1 (en) 1989-10-06 1990-10-08 Method for forming a continuous oxide superconductor layer having different thickness portions for superconductor device
DE69026179T DE69026179T2 (en) 1989-10-06 1990-10-08 Method for producing a continuous superconducting layer with different thickness ranges for superconducting devices
US08/064,331 US5418213A (en) 1989-10-06 1993-05-18 Method for forming continuous oxide superconducting layer having difference thickness portions for superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1261491A JPH03124077A (en) 1989-10-06 1989-10-06 Manufacture of superconducting element

Publications (1)

Publication Number Publication Date
JPH03124077A true JPH03124077A (en) 1991-05-27

Family

ID=17362649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1261491A Pending JPH03124077A (en) 1989-10-06 1989-10-06 Manufacture of superconducting element

Country Status (1)

Country Link
JP (1) JPH03124077A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032785A (en) * 2006-07-26 2008-02-14 Kobayashi Create Co Ltd Label slip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032785A (en) * 2006-07-26 2008-02-14 Kobayashi Create Co Ltd Label slip

Similar Documents

Publication Publication Date Title
EP0480814B1 (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
US6476413B1 (en) High temperature superconducting Josephson junctions and SQUIDs
US5418213A (en) Method for forming continuous oxide superconducting layer having difference thickness portions for superconducting device
JP3278638B2 (en) High-temperature superconducting Josephson junction and method of manufacturing the same
EP0545816A2 (en) Method for manufacturing a Josephson junction device having weak link of artificial grain boundary
EP0325765B1 (en) Josephson device having a josephson junction structure suitable for an oxide superconductor
US5525582A (en) Josephson junction device formed of oxide superconductor and process for preparing the same
EP0660428B1 (en) Method for forming a step on a deposition surface of a substrate for a superconducting device utilizing an oxide superconductor
EP0419361B2 (en) Method for forming an electrode for electrical connection to oxide superconductor
US5354734A (en) Method for manufacturing an artificial grain boundary type Josephson junction device
EP0341501A2 (en) Methods of forming passivation films on superconductors
JPH03124077A (en) Manufacture of superconducting element
JPS5978585A (en) Josephson integrated circuit
US5462919A (en) Method for manufacturing superconducting thin film formed of oxide superconductor having non superconducting region and device utilizing the superconducting thin film
JP2682136B2 (en) Method of manufacturing Josephson device
JP2861235B2 (en) Superconducting element
JPH05152625A (en) Superconducting josephson junction element
JP2899308B2 (en) Superconducting element manufacturing method
JPH03106080A (en) Manufacture of superconducting device
EP0545777A2 (en) Method for manufacturing superconducting thin film formed of oxide superconductor having a portion of a reduced thickness, superconducting thin film manufactured thereby, and superconducting device utilizing the superconducting thin film
JPS58134484A (en) Manufacture of josephson junction element
JPH0828538B2 (en) Method for forming superconducting thin film pattern
JPH03124076A (en) Manufacture of superconducting element
JPS60148178A (en) Tunnel type josephson junction element and manufacture thereof
JPH05190926A (en) Forming method of superconducting device and superconducting device formed by the same