JPH03225837A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPH03225837A
JPH03225837A JP2006290A JP2006290A JPH03225837A JP H03225837 A JPH03225837 A JP H03225837A JP 2006290 A JP2006290 A JP 2006290A JP 2006290 A JP2006290 A JP 2006290A JP H03225837 A JPH03225837 A JP H03225837A
Authority
JP
Japan
Prior art keywords
gate electrode
layer
region
forming
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006290A
Other languages
Japanese (ja)
Inventor
Masayoshi Miyauchi
宮内 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006290A priority Critical patent/JPH03225837A/en
Publication of JPH03225837A publication Critical patent/JPH03225837A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent characteristic deterioration due to short-channel effect by enabling only a high-concentration n-type layer of a source electrode region to be self-aligned to a gate electrode and by forming the high-concentration n-type layer of a drain electrode region away from the gate electrode. CONSTITUTION:A gate electrode 14G is formed at a side wall of a first insulation film 11, metal layers 12 and 13 at a region other than this are eliminated, ion is implanted at a mask of the metal layers 12 and 13 and the first insulation film 11, thus forming a second high-concentration n-type layer 15 between the gate electrode 14G and a source electrode 145. Thus, since only the high- concentration n-type layer 15 of the region of the source electrode 14G is self- aligned to the gate electrode 14G and a high-concentration n-type layer 107 of a drain electrode 14D region is formed away from the gate electrode 14G, the gap between the high-concentration n-type layers 107 and 15 can be fully wide even if the gate length is shortened. Thus, even if the gate length is reduced, characteristic deterioration due to short-channel effect can be prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は電界効果トランジスタの製造方法に係り、特に
高融点ゲート電極にソース電極領域のみが自己整合した
高濃度n型層を有する電界効果トランジスタの製造方法
に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a field effect transistor, and in particular to a highly doped n-type layer in which only a source electrode region is self-aligned with a high melting point gate electrode. The present invention relates to a method of manufacturing a field effect transistor having the following.

(従来の技術) 近年、■−■族化合物半導体、特にGaAsを用いた電
界効果トランジスタ(以下FETと略称)では、性能の
向上、特性の均一性、再現性の点で有望視されている自
己整合型FET、例えば高融点ゲート電極と自己整合し
た高濃度n型層(n+)を有するFETが多く開発され
ている。これはゲート電極に近接した高濃度n型層を形
成することで、素子の直列抵抗(Rs)が低減される利
点があり、またゲート電極と高濃度n型層とのマスク合
わせが不要なため、特性の均一性、再現性に優れた特徴
がある。
(Prior art) In recent years, field-effect transistors (hereinafter referred to as FETs) using ■-■ group compound semiconductors, especially GaAs, are showing promise in terms of improved performance, uniformity of characteristics, and reproducibility. Many matched FETs, such as FETs having a highly doped n-type layer (n+) self-aligned with a high melting point gate electrode, have been developed. This is because forming a highly doped n-type layer close to the gate electrode has the advantage of reducing the series resistance (Rs) of the device, and also eliminates the need for mask alignment between the gate electrode and the heavily doped n-type layer. It is characterized by excellent uniformity of characteristics and reproducibility.

しかし、ドレイン側の高濃度n型層がゲート電極に接す
るためにゲート、ドレイン間耐圧が低くなる上に、ゲー
ト長が1.0声以下では2つの高濃度n型層間隔の近接
によりショートチャネル効果が顕著となり、トレインコ
ンダクタンスが増大するために、高周波増幅用素子とし
ては必ずしも良好な特性が得られなかった。そこでゲー
ト電極の側壁に絶縁膜を形成し、これをマスクにしてイ
オン注入することで高濃度n型層とゲート電極端を分離
する方法も試みられている。この様な試みの一例を以下
第2図((a)〜(h))を参照して説明する。
However, since the highly doped n-type layer on the drain side is in contact with the gate electrode, the withstand voltage between the gate and the drain becomes low, and when the gate length is less than 1.0 volts, the distance between the two highly doped n-type layers is close, resulting in a short channel. Since the effect becomes noticeable and the train conductance increases, good characteristics cannot necessarily be obtained as a high frequency amplification element. Therefore, attempts have been made to form an insulating film on the side walls of the gate electrode and use this as a mask for ion implantation to separate the highly doped n-type layer from the end of the gate electrode. An example of such an attempt will be described below with reference to FIGS. 2(a) to (h).

半絶縁性GaAs基板101の一方の主面に加速エネル
ギ80KeV、注入4i4 X 1012cm−2の条
件でSiイオンの注入を施し、850℃、15m1nの
キャップレスアニールによりn型動作層102を形成す
る(第2図(a))。
Si ions are implanted into one main surface of the semi-insulating GaAs substrate 101 under conditions of an acceleration energy of 80 KeV and implantation of 4i4 x 1012 cm-2, and an n-type active layer 102 is formed by capless annealing at 850° C. and 15 m1n ( Figure 2(a)).

前記GaAs基板101の主面に反応性スパッタリング
法により高融点金属層1例えば窒化タングステン(WN
)層103および、これに積層して低比抵抗金属、例え
ばAu層104を形成する(第2図(b))。
A high melting point metal layer 1, for example, tungsten nitride (WN
) layer 103 and a low resistivity metal such as an Au layer 104 laminated thereon (FIG. 2(b)).

前記金属層上のゲート電極形成領域にレジストマスク1
00を形成する(第2図(C))。
A resist mask 1 is placed on the gate electrode formation region on the metal layer.
00 is formed (FIG. 2(C)).

このマスクを用いてイオンミリング法でAu層104に
、また反応性イオンエツチング(RIE)法で−N層1
03にそれぞれ異方性エツチングを施し、ゲート電極1
05Gを形成する(第2図(d))。
Using this mask, the Au layer 104 was etched by ion milling, and the -N layer 1 was etched by reactive ion etching (RIE).
03 is anisotropically etched, and the gate electrode 1
05G is formed (FIG. 2(d)).

GaAs基板101の主面に第1の絶縁膜として例えば
SiO□膜を3000人程度形成した後、RIE法によ
り異方性エツチングを施し、前記ゲート電極の側壁にS
in、膜106を形成する(第2図(e))。
After forming, for example, a SiO □ film on the main surface of the GaAs substrate 101 as a first insulating film, anisotropic etching is performed by RIE, and S is formed on the side walls of the gate electrode.
In, a film 106 is formed (FIG. 2(e)).

次に、加速エネルギ250KeV、注入量4X10’3
cm−”の条件でSiイオン注入を施し、高濃度n型層
107を形成する(第2図(f))。
Next, the acceleration energy was 250 KeV, the implantation amount was 4×10'3
Si ion implantation is performed under the condition of "cm-" to form a heavily doped n-type layer 107 (FIG. 2(f)).

GaAs基板101の主面に第2の絶縁膜として例えば
PSG膜(108)を堆積した後、850℃、5 se
cのフランシュアニールを施して、前記高濃度n型層1
07の活性化を行う(第2図(g))。
After depositing, for example, a PSG film (108) as a second insulating film on the main surface of the GaAs substrate 101, it is heated at 850°C for 5 seconds.
The high concentration n-type layer 1 is subjected to Franche annealing of c.
07 is activated (Fig. 2 (g)).

オーム性電極1例えばAu−Ge / Pt金属層を形
成し、熱処理を施すことでソース電極105S、ドレイ
ン電極105Dが形成され、自己整合型GaAsFET
が完成する(第2図(h))。
Ohmic electrode 1 For example, by forming an Au-Ge/Pt metal layer and performing heat treatment, a source electrode 105S and a drain electrode 105D are formed, and a self-aligned GaAsFET is formed.
is completed (Fig. 2 (h)).

上記自己整合型GaAsFETはゲート電極と高濃度n
型層が絶縁膜108で分離されているため、ゲート・ド
レイン間耐圧が向上し、また高濃度n型層間隔が広くで
きるためショートチャネル効果による特性劣化を防止す
ることができる。
The above self-aligned GaAsFET has a gate electrode and a high concentration n
Since the type layer is separated by the insulating film 108, the gate-drain breakdown voltage is improved, and since the spacing between the high concentration n-type layers can be widened, characteristic deterioration due to the short channel effect can be prevented.

一方、FETの特性を向上させるためにはゲート電極寸
法を短縮する必要があるが、上記従来の自己整合型Ga
AsFETにおいてはゲート長を短縮すると、必然的に
高濃度n型層間隔が狭くなるためにショートチャネル効
果によるドレインコンダクタンスの増大が顕著となり却
って特性の劣化を招いていた。
On the other hand, in order to improve the characteristics of FETs, it is necessary to shorten the gate electrode dimensions, but the conventional self-aligned Ga
In AsFETs, when the gate length is shortened, the spacing between the heavily doped n-type layers inevitably becomes narrower, resulting in a noticeable increase in drain conductance due to the short channel effect, which actually causes deterioration of the characteristics.

(発明が解決しようとする課題) 以上述へたように従来の自己整合型GaAsFETでは
高濃度n型層間隔がゲート長に大きく依存するため、ゲ
ート長が0.5−以下では高濃度n型層間隔が狭くなり
、ショートチャネル効果による特性の劣化の問題があっ
た。この問題を解決するためには、ソース側の高濃度n
型層とゲート電極とを自己整合により接近して形成する
ことによりRsを低減し、ドレイン側の高濃度n型層と
ゲート電極とは距離を隔てて形成することにより耐圧低
下を防止する構造が望まれるが、従来、これに適する適
当な製造方法がなかった。
(Problems to be Solved by the Invention) As mentioned above, in conventional self-aligned GaAsFETs, the spacing between high-concentration n-type layers largely depends on the gate length. There was a problem that the layer spacing became narrower and the characteristics deteriorated due to the short channel effect. To solve this problem, a high concentration of n on the source side is required.
The structure reduces Rs by forming the type layer and the gate electrode close to each other through self-alignment, and prevents a drop in breakdown voltage by forming the highly doped n-type layer on the drain side and the gate electrode at a distance. Although this is desired, there has been no suitable manufacturing method to date.

本発明は上記の欠点を除去すべく成されたもので、ゲー
ト電極に自己整合した高濃度n型層を有する短ゲート電
極FETのショートチャネル効果を防止するように、ド
レイン側高濃度n型層とゲート電極の間隔を広げられる
電界効果トランジスタの製造方法に提供することを目的
とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks.The present invention has been made to eliminate the above-mentioned drawbacks. An object of the present invention is to provide a method for manufacturing a field effect transistor in which the distance between the gate electrode and the gate electrode can be increased.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために本発明では、ソース電極領域
の高濃度n型層のみをゲート電極に自己整合させるため
に、ゲート電極領域のドレイン側からドレイン領域にか
けて絶縁膜を形成しその絶縁層の側壁にゲート電極とな
る高融点金属を先ず形成する。次に、ゲート電極と絶縁
膜をマスクとしてイオン注入をおこないソース電極領域
のみにゲート電極に自己整合した高濃度n型層を形成す
るもので、■−■族化合物半導体基板上にゲート電極領
域となるn型動作層と、ソース電極領域およびドレイン
電極となる夫々の第一の高濃度n型層を形成する工程と
、前記半導体基板上のn型動作層および第一の高濃度n
型層の各々を被覆する第1の絶縁膜を形成する工程と、
前記n型動作層領域のうちゲート電極が形成される領域
からソース電極領域にかけての第1の絶縁膜を除去する
工程と、前記n型動作層に対してショットキー接触する
高融点金属または高融点金属を含む金属層を形成する工
程と、前記金属層に異方性エツチングを施し、前記第一
の絶縁膜の側壁にゲート電極を形成するとともにこれ以
外の領域の金属層を除去する工程と、前記金属層および
第一の絶縁膜をマスクにイオン注入を施してゲート電極
とソース電極領域の間に第2の高濃度n型層を形成する
工程を含む事を特徴とする。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, in order to self-align only the highly doped n-type layer in the source electrode region with the gate electrode, from the drain side of the gate electrode region to the drain region, An insulating film is formed, and a high melting point metal that will become a gate electrode is first formed on the sidewalls of the insulating film. Next, ion implantation is performed using the gate electrode and the insulating film as a mask to form a highly doped n-type layer that is self-aligned to the gate electrode only in the source electrode region. forming an n-type active layer on the semiconductor substrate and a first high-concentration n-type layer forming a source electrode region and a drain electrode;
forming a first insulating film covering each of the mold layers;
a step of removing a first insulating film from a region where a gate electrode is formed to a source electrode region in the n-type active layer region; and a high-melting point metal or a high-melting point metal that makes Schottky contact with the n-type active layer. forming a metal layer containing metal; performing anisotropic etching on the metal layer to form a gate electrode on the sidewall of the first insulating film and removing the metal layer in other areas; The method is characterized by including a step of performing ion implantation using the metal layer and the first insulating film as a mask to form a second highly doped n-type layer between the gate electrode and the source electrode region.

(作 用) ソース電極領域の高濃度n型層のみをゲート電極に自己
整合させ、ドレイン電極領域の高濃度n型層はゲート電
極から距離を隔てて形成できるため、高濃度n型層間隔
はゲート長が短くなっても十分な間隔を持たせることが
でき、従ってゲート長を短縮してもショートチャネル効
果による特性劣化を防止できる。さらに、本発明では、
Rsを低く保ったまま、高いゲート・ドレイン間耐圧が
得られる。
(Function) Only the high-concentration n-type layer in the source electrode region can be self-aligned with the gate electrode, and the high-concentration n-type layer in the drain electrode region can be formed at a distance from the gate electrode, so the spacing between the high-concentration n-type layers can be reduced. Even if the gate length is shortened, sufficient spacing can be maintained, and therefore, even if the gate length is shortened, characteristic deterioration due to short channel effect can be prevented. Furthermore, in the present invention,
A high gate-drain breakdown voltage can be obtained while keeping Rs low.

(実施例) 以下1本発明にかかる電界効果トランジスタの製造方法
の一実施例につき図面を参照して説明する。
(Example) An example of the method for manufacturing a field effect transistor according to the present invention will be described below with reference to the drawings.

第1図(a)〜(f)は一実施例の製造方法を工程順に
断面図で示すものである。
FIGS. 1(a) to 1(f) are cross-sectional views showing the manufacturing method of one embodiment in the order of steps.

まず、半絶縁性GaAs基板101の一方の主面に加速
エネルギ80KeV、注入量4 X 10”cm−2お
よび加速エネルギ250KeV、注入量4 X 101
10l3”の条件でそれぞれSiイオン注入を施しn型
動作層102および2つの第1の高濃度n型層107,
107を形成する(第1図(a))。
First, one main surface of a semi-insulating GaAs substrate 101 was implanted with an acceleration energy of 80 KeV and an implantation amount of 4 x 10"cm-2, and an acceleration energy of 250KeV and an implantation amount of 4 x 10"cm-2.
Si ion implantation was performed under the condition of 10l3'' to form an n-type active layer 102 and two first high concentration n-type layers 107,
107 (FIG. 1(a)).

次に前記GaAs基板101の表面に第1の絶縁膜とし
て例えば5i02膜11を堆積した後、レジストマスク
を用いてn型動作層領域のうちゲート電極が形成される
領域からソース電極領域にかけての5in2膜のエツチ
ングを行う、 GaAs基板101の表面上に反応性ス
パッタ法により高融点金属として例えばい層12および
これに堆積してAu層13を形成する(第1図(b))
Next, after depositing, for example, a 5i02 film 11 as a first insulating film on the surface of the GaAs substrate 101, a resist mask is used to form a 5in2 film from the region of the n-type active layer region where the gate electrode is formed to the source electrode region. For film etching, a layer 12 of a high melting point metal, for example, is deposited on the surface of the GaAs substrate 101 by reactive sputtering, and an Au layer 13 is deposited thereon (FIG. 1(b)).
.

次に、イオンミリング法により前記Au層13に、また
反応性イオンエツチング(RIE)法によりWN層12
にそれぞれ異方性エツチングを施し、5in2膜11に
おけるトレイン側の側壁にゲート電極14Gを形成する
(第1図(C))。
Next, the Au layer 13 is etched by ion milling, and the WN layer 12 is etched by reactive ion etching (RIE).
Anisotropic etching is applied to each of the gate electrodes 14G to form a gate electrode 14G on the side wall of the 5in2 film 11 on the train side (FIG. 1(C)).

次に、加速エネルギ250にeV、注入量2X10”c
m−2の条件で前記ゲート電極14Gの側方に真出した
前記n型動作層102.  および前記第1の高濃度n
型層107のソース側の一方にSiイオン注入を施し、
第2の高濃度n型層15を形成する(第1図(d))。
Next, the acceleration energy is 250 eV, the implantation amount is 2×10”c
The n-type active layer 102.m-2 is formed on the side of the gate electrode 14G under the condition of .m-2. and the first high concentration n
Si ion implantation is performed on one side of the source side of the mold layer 107,
A second high concentration n-type layer 15 is formed (FIG. 1(d)).

次に、前記5in2膜11を除去した後、GaAs基板
101の主面に第2の絶縁膜として例えばPSG膜1膜
製6積した後、850℃、5 secのフラッシュアニ
ールを施して、前記第1および第2の高濃度n型層10
7.15の活性化を行う(第1図(e))。
Next, after removing the 5in2 film 11, a second insulating film made of, for example, 6 PSG films is deposited on the main surface of the GaAs substrate 101, and then flash annealing is performed at 850° C. for 5 seconds to remove the second insulating film. 1 and 2nd high concentration n-type layer 10
7. Activation of 15 is performed (Fig. 1(e)).

最後に、ソース側およびドレイン側の高濃度n型層10
7上にオーム性電極、例えば、Au−Ge/Pt金属層
を形成し、熱処理を施すことでソース電極14s、ドレ
イン電極140がぞれぞれ形成され、自己整合型GaA
sFETが完成する(第1図(f))。
Finally, the highly doped n-type layer 10 on the source side and drain side
By forming an ohmic electrode, for example, an Au-Ge/Pt metal layer on 7 and performing heat treatment, a source electrode 14s and a drain electrode 140 are formed, respectively, and the self-aligned GaA
The sFET is completed (FIG. 1(f)).

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、ソース電極領域の高
濃度n型層のみをゲート電極に自己整合させ、ドレイン
電極領域の高濃度n型層はゲート電極から距離を隔てて
形成できるため、高濃度n型層間隔はゲート電極が短く
なっても十分な距離を持たせることができ、従ってゲー
ト長を短縮してもショートチャネル効果による特性劣化
を防止できる。
As described above, according to the present invention, only the high concentration n-type layer in the source electrode region can be self-aligned with the gate electrode, and the high concentration n-type layer in the drain electrode region can be formed at a distance from the gate electrode. The high concentration n-type layer spacing can provide a sufficient distance even when the gate electrode is shortened, and therefore, even when the gate length is shortened, characteristic deterioration due to the short channel effect can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明にかかる電界効果トラン
ジスタの製造方法の一実施例を工程順に示すいずれも断
面図、第2図(a)〜(h)は従来例の電界効果トラン
ジスタの製造方法の一例を工程順に示すいずれも断面図
である。 11・5in2膜(第1の絶縁膜)、12・・vN層、
13−Au層、 1.4G=ゲート電極、145・ソー
ス電極、14D・・・ドレイン電極、15  第2の高
濃度n型層、 16−PSG膜(第2の絶縁膜)、 101・・・半絶縁性GaAs基板、102・・・n型
動作層、107・・第1の高濃度n型層。
FIGS. 1(a) to 1(f) are cross-sectional views showing one embodiment of the method for manufacturing a field effect transistor according to the present invention in order of steps, and FIGS. 2(a) to (h) are field effect transistors of the conventional example. All are cross-sectional views showing an example of a method for manufacturing a transistor in the order of steps. 11·5in2 film (first insulating film), 12··vN layer,
13-Au layer, 1.4G=gate electrode, 145-source electrode, 14D...drain electrode, 15-second high concentration n-type layer, 16-PSG film (second insulating film), 101... Semi-insulating GaAs substrate, 102... n-type operating layer, 107... first high concentration n-type layer.

Claims (1)

【特許請求の範囲】[Claims] III−V族化合物半導体基板上にゲート電極領域となる
n型動作層と、ソース電極領域およびドレイン電極とな
る夫々の第一の高濃度n型層を形成する工程と、前記半
導体基板上のn型動作層および第一の高濃度n型層の各
々を被覆する第1の絶縁膜を形成する工程と、前記n型
動作層領域のうちゲート電極が形成される領域からソー
ス電極領域にかけての第1の絶縁膜を除去する工程と、
前記n型動作層に対してショットキー接触する高融点金
属または高融点金属を含む金属層を形成する工程と、前
記金属層に異方性エッチングを施し、前記第一の絶縁膜
の側壁にゲート電極を形成するとともにこれ以外の領域
の金属層を除去する工程と、前記金属層および第一の絶
縁膜をマスクにイオン注入を施してゲート電極とソース
電極領域の間に第2の高濃度n型層を形成する工程を含
む事を特徴とする電界効果トランジスタの製造方法。
forming an n-type active layer that will become a gate electrode region and a first high concentration n-type layer that will become a source electrode region and a drain electrode on a III-V group compound semiconductor substrate; forming a first insulating film covering each of the type active layer and the first high concentration n-type layer, and forming a first insulating film covering each of the n-type active layer region from the region where the gate electrode is formed to the source electrode region a step of removing the first insulating film;
forming a high melting point metal or a metal layer containing a high melting point metal that makes Schottky contact with the n-type operating layer; and performing anisotropic etching on the metal layer to form a gate on the sidewall of the first insulating film. A step of forming an electrode and removing the metal layer in other regions, and performing ion implantation using the metal layer and the first insulating film as a mask to form a second high concentration n between the gate electrode and the source electrode region. A method for manufacturing a field effect transistor, comprising the step of forming a mold layer.
JP2006290A 1990-01-30 1990-01-30 Manufacture of field effect transistor Pending JPH03225837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290A JPH03225837A (en) 1990-01-30 1990-01-30 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290A JPH03225837A (en) 1990-01-30 1990-01-30 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPH03225837A true JPH03225837A (en) 1991-10-04

Family

ID=12016603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290A Pending JPH03225837A (en) 1990-01-30 1990-01-30 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPH03225837A (en)

Similar Documents

Publication Publication Date Title
US4711858A (en) Method of fabricating a self-aligned metal-semiconductor FET having an insulator spacer
JPH02148738A (en) Manufacture of field effect transistor
JPH11354541A (en) Semiconductor device and its manufacture
JPS6344770A (en) Field effect transistor and manufacture of the same
US4700455A (en) Method of fabricating Schottky gate-type GaAs field effect transistor
JP2549206B2 (en) Field effect transistor
JPH03225837A (en) Manufacture of field effect transistor
JP3023934B2 (en) Method for manufacturing semiconductor device
JP3034546B2 (en) Method for manufacturing field effect transistor
JP3277910B2 (en) Field effect transistor and method of manufacturing the same
JP2895634B2 (en) Method for manufacturing field effect transistor
JPH04291732A (en) Manufacture of field-effect transistor
JPH0523497B2 (en)
JPH0969611A (en) Semiconductor device and its manufacturing method
JPH0737905A (en) Manufacture of semiconductor device
JP2642769B2 (en) Compound semiconductor device
KR0170513B1 (en) Mos transistor and its fabrication
JP3030123B2 (en) Method for manufacturing semiconductor device
JP2000277533A (en) Compound semiconductor device and manufacture thereof
JP3032458B2 (en) Method for manufacturing field effect transistor
JPH06260510A (en) Field effect transistor and its manufacturing method
JPH1197452A (en) Semiconductor device
JPS63281473A (en) Field-effect semiconductor device and manufacture thereof
JPH028454B2 (en)
JPH01155665A (en) Semiconductor integrated circuit