JPH03224683A - Electrochemical treatment of water to be treated - Google Patents
Electrochemical treatment of water to be treatedInfo
- Publication number
- JPH03224683A JPH03224683A JP10911890A JP10911890A JPH03224683A JP H03224683 A JPH03224683 A JP H03224683A JP 10911890 A JP10911890 A JP 10911890A JP 10911890 A JP10911890 A JP 10911890A JP H03224683 A JPH03224683 A JP H03224683A
- Authority
- JP
- Japan
- Prior art keywords
- water
- electrolytic cell
- treated
- fish
- electrolytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 120
- 238000011282 treatment Methods 0.000 title claims abstract description 35
- 244000005700 microbiome Species 0.000 claims abstract description 8
- 238000009372 pisciculture Methods 0.000 claims description 32
- 239000007789 gas Substances 0.000 claims description 18
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 16
- 229910001882 dioxygen Inorganic materials 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- 241000251468 Actinopterygii Species 0.000 abstract description 51
- 239000001301 oxygen Substances 0.000 abstract description 28
- 229910052760 oxygen Inorganic materials 0.000 abstract description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 27
- 241000894006 Bacteria Species 0.000 abstract description 17
- 230000001954 sterilising effect Effects 0.000 abstract description 10
- 238000002407 reforming Methods 0.000 abstract description 2
- 241000233866 Fungi Species 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 73
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 238000009360 aquaculture Methods 0.000 description 12
- 244000144974 aquaculture Species 0.000 description 12
- 239000002245 particle Substances 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000007769 metal material Substances 0.000 description 8
- 210000005056 cell body Anatomy 0.000 description 7
- 238000004659 sterilization and disinfection Methods 0.000 description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 239000003575 carbonaceous material Substances 0.000 description 6
- 239000003989 dielectric material Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- -1 platinum group metal oxide Chemical class 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 241000252229 Carassius auratus Species 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000003429 antifungal agent Substances 0.000 description 4
- 229940121375 antifungal agent Drugs 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 239000000417 fungicide Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000012777 electrically insulating material Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- 206010014405 Electrocution Diseases 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000003899 bactericide agent Substances 0.000 description 2
- 239000000645 desinfectant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000006056 electrooxidation reaction Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 235000021050 feed intake Nutrition 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 239000008233 hard water Substances 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910001924 platinum group oxide Inorganic materials 0.000 description 1
- 229920002755 poly(epichlorohydrin) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000384 rearing effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、微生物を含有する微生物、例えば養漁場用水
の殺菌や性能向上のための電解処理方法及び装置に関し
、より詳細には養殖場や釣堀等の養漁場の魚の育成に使
用する養漁場用水等を電解槽特に三次元電極電解槽を使
用してガス発生を行いながら電解処理することにより細
菌類や黴類の殺菌等の性能向上を行うとともに溶存酸素
量を増大させ、魚の育成及び成長を促進するための方法
及び装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electrolytic treatment method and apparatus for sterilizing and improving the performance of water containing microorganisms, such as water used in fish farms, and more particularly, Performance improvements such as sterilization of bacteria and mold can be achieved by electrolytically treating water used for raising fish in fishing ponds and other fishing grounds while generating gas using an electrolytic tank, especially a three-dimensional electrode electrolytic tank. The present invention relates to a method and apparatus for increasing the amount of dissolved oxygen and promoting the cultivation and growth of fish.
(従来技術)
各種魚類資源として海や川に繁殖している天然の魚類の
他に最近では養殖場等における養殖魚類が注目され、養
殖魚が市場に数多く供給されている。養殖場におけるこ
れら魚類の飼育の際には、養魚用水の多く含まれる細菌
類や黴類が魚類の成長を阻害したり死滅させたりするこ
とがあるが、細菌類等が少ない場合でも魚類を汚染しあ
るいは魚類に付着してその商品価値を低下させる。これ
らの悪影響を抑制するために殺菌剤等の防黴剤が前記養
魚用水へ多量に添加され、更に該防黴剤による魚類の損
傷を最小源に抑えるために抗生物質が投与される。又抵
抗力を高めるためビタミン剤等の多量の栄養剤が魚類に
投与され、その上に餌が与えられる。従って飼育されて
いる魚類は全体の摂取量に対する育成に必要な餌の量が
少ないため、養殖では必須とされる成育速度が遅くなり
、更に防黴剤が蓄積して成長が阻害されたりあるいは人
体に有害な防黴剤で汚染された魚類が市場に供給される
ことになる。(Prior Art) In addition to natural fish that breed in the sea and rivers as various fish resources, farmed fish in aquaculture farms have recently attracted attention, and a large number of farmed fish are being supplied to the market. When raising these fish in aquaculture farms, the bacteria and mold that are often contained in the fish farming water can inhibit the growth of the fish or kill them, but even when there are few bacteria, the fish can still be contaminated. or adhere to fish, reducing their commercial value. In order to suppress these adverse effects, large amounts of antifungal agents such as bactericides are added to the fish farming water, and antibiotics are also administered to minimize damage to fish caused by the antifungal agents. Also, to increase resistance, large amounts of nutrients such as vitamins are administered to the fish, and on top of that, they are fed. Therefore, the amount of feed needed for reared fish is small compared to the total intake, which slows down the growth rate required for aquaculture, and furthermore, fungicides accumulate and inhibit growth, or the human body Fish contaminated with fungicides that are harmful to humans will be supplied to the market.
更に養魚用水中には通常の水と同様に3ppm程度の溶
存酸素が存在し、魚類はこの酸素を摂取して成育してい
く。多量の薬品の投与はこの酸素の溶解量を減少させた
り、溶存酸素と反応して溶存酸素量を減少させて成長を
阻害する。Furthermore, like normal water, there is about 3 ppm of dissolved oxygen in fish farming water, and fish ingest this oxygen to grow. Administration of large amounts of chemicals reduces the amount of dissolved oxygen or reacts with dissolved oxygen to reduce the amount of dissolved oxygen and inhibit growth.
養漁場用水以外にも防黴を行い又溶存酸素量を増大させ
る被処理水がある。In addition to water used for fishing farms, there is water to be treated to prevent mold and increase the amount of dissolved oxygen.
(発明が解決すべき問題点)
上述の防黴剤による魚類の保護は、魚類自体の汚染の問
題だけでなく、養魚用水の量が真人であるため使用する
防黴剤の量も多くなり、そのコストが嵩むという問題も
生じさせている。更に該防黴剤の使用に付随して生ずる
栄養剤のコストも真人になり、魚類の成育には直接結び
つかず、むしろ悪影響を生じさせる前記防黴剤の使用を
回避できれば低コストで人体にも無害な魚類を短期間に
成長させて商品化できるためその利点は多大のものがあ
る。(Problems to be Solved by the Invention) The protection of fish using the above-mentioned anti-mold agent not only involves the problem of contamination of the fish itself, but also the amount of anti-mold agent used because the amount of water used for fish cultivation is critical. Another problem is that the cost increases. Furthermore, the cost of nutritional supplements associated with the use of these fungicides will also be reduced, and if we can avoid the use of fungicides that are not directly linked to the growth of fish, but rather cause negative effects, it will be possible to reduce costs and improve human health. This method has many advantages because harmless fish can be grown and commercialized in a short period of time.
更に養魚用水の溶存酸素濃度を上昇させることが出来れ
ば、魚類の活動が活発になりそれに応じて餌の摂取量が
増加して前記魚類の成育が著しく促進される。溶存酸素
濃度を低コストで上昇させることが出来れば通常の養殖
魚よりサイズが大きく商品価値の高い魚類を短期間に育
成して市場に供給することができる。Furthermore, if it is possible to increase the dissolved oxygen concentration in fish farming water, the activity of fish will become more active, the amount of feed intake will increase accordingly, and the growth of the fish will be significantly promoted. If dissolved oxygen concentration can be increased at low cost, fish that are larger in size and have higher commercial value than conventionally farmed fish can be raised in a short period of time and supplied to the market.
更に養漁場用水以外の被処理水の防黴の場合にも防黴剤
の使用は同様の欠点を生じさせ、かつ溶存酸素量の増大
が種々の利点を生じさせることが多い。Furthermore, in the case of mold prevention of water to be treated other than fishing ground water, the use of mold inhibitors often causes similar disadvantages, and an increase in the amount of dissolved oxygen often brings about various advantages.
(発明の目的)
本発明は、防黴剤等を使用することなくしかも比較的簡
単に養魚用水等の殺菌を行い溶存酸素濃度を高める処理
等を行うための方法及び装置を提供することを目的とす
る。(Objective of the Invention) An object of the present invention is to provide a method and apparatus for sterilizing fish farming water, etc., and increasing the dissolved oxygen concentration, etc., relatively easily and without using antifungal agents. shall be.
(問題点を解決するための手段)
本発明は、第1に微生物を含有する被処理水を三次元電
極型電解槽に供給し、該被処理水を前記電解槽で酸素ガ
スを発生させながら電解処理する被処理水の電解処理方
法であり、第2に微生物を含有する被処理水が流通可能
でガス発生を行いながら前記被処理水を処理する複極式
固定床を有する三次元電極式電解槽を含んで成る被処理
水の電解処理装置である。(Means for Solving the Problems) The present invention firstly supplies water to be treated containing microorganisms to a three-dimensional electrode type electrolytic cell, and supplies the water to be treated while generating oxygen gas in the electrolytic cell. This is an electrolytic treatment method for water to be treated which is electrolytically treated, and the second is a three-dimensional electrode type having a bipolar fixed bed that allows the water to be treated containing microorganisms to flow and treats the water to be treated while generating gas. This is an electrolytic treatment device for water to be treated, which includes an electrolytic cell.
以下本発明の詳細な説明する。The present invention will be explained in detail below.
本発明は、養魚用水等の被処理水を三次元電極式電解槽
に供給し、該電解槽に直流電圧あるいは低周波数の交流
電圧を印加して電解によるガスを生じさせながら前記養
魚用水等の殺菌処理等を行うことを特徴とするものであ
る。従来電解殺菌の効果は確認されているものの実用化
はされていない。本発明方法又は本発明の電解処理装置
により、養魚用水等が殺菌されあるいはその性能が改質
される理由は必ずしも明確ではないが、次のように推測
することができる。The present invention supplies water to be treated such as fish farming water to a three-dimensional electrode type electrolytic cell, and applies a DC voltage or a low frequency AC voltage to the electrolytic cell to generate gas by electrolysis. It is characterized by performing sterilization treatment, etc. Although the effectiveness of conventional electrolytic sterilization has been confirmed, it has not been put to practical use. The reason why the method of the present invention or the electrolytic treatment apparatus of the present invention sterilizes fish culture water or improves its performance is not necessarily clear, but it can be inferred as follows.
本発明の被処理水特に養魚用水は適度な温度を有しかつ
栄養剤が添加されていて黴や細菌等が繁殖し易い環境に
ある。従来の電解又は電気化学的処理では、黴や細菌類
がイオン化しないため電極表面における酸化還元反応を
受けて死滅する数は極めて限定された数となり、完全に
滅菌されることがなく、電解又は電気化学的処理に強い
耐性を有する菌がかえって繁殖するといった状況が形成
されているものと推測される。The water to be treated according to the present invention, particularly the water for fish farming, has an appropriate temperature and contains nutrients, and is in an environment where molds, bacteria, etc. can easily grow. In conventional electrolysis or electrochemical treatment, molds and bacteria are not ionized, so the number of molds and bacteria that undergo redox reactions on the electrode surface and die is extremely limited, and complete sterilization is not achieved. It is presumed that a situation has been created in which bacteria that are highly resistant to chemical treatments are actually multiplying.
本発明により該被処理水に直流電圧や低周波数の交流電
圧を印加すると、該被処理水中のイオン化しない黴や細
菌類も液流動によって三次元電極式電解槽の陽極や陰極
あるいは後述する誘電体や粒子等の極めて表面積の大き
い三次元構造を有する三次元電極に充分に接触しそれら
の表面で酸化還元反応を受けてその細胞が破壊されて死
滅したりすると考えられる。従って従来の殺菌剤や防黴
剤を使用せずに同等の殺菌又は防黴効果を生じさせるこ
とができる。According to the present invention, when a DC voltage or a low-frequency AC voltage is applied to the water to be treated, non-ionized mold and bacteria in the water to be treated are also removed from the anode or cathode of the three-dimensional electrode type electrolytic cell or the dielectric described later. It is thought that when the cells sufficiently come into contact with a three-dimensional electrode having a three-dimensional structure with an extremely large surface area, such as a cell or a particle, the cell undergoes an oxidation-reduction reaction on the surface, causing the cell to be destroyed and die. Therefore, it is possible to produce the same bactericidal or antifungal effect without using conventional bactericidal or antifungal agents.
更に被処理水が硬水であるとカルシウムイオンやマグネ
シウムイオン等の不純物が含有されている。該被処理水
を電解処理すると電解槽や三次元電極式電解槽の陰極や
三次元電極上で還元されてそれらの水酸化物として該陰
極上等に析出して被処理水から除去され“C例えば魚類
等に悪影響を与えることがなくなる。Furthermore, if the water to be treated is hard water, it will contain impurities such as calcium ions and magnesium ions. When the water to be treated is electrolytically treated, it is reduced on the cathode or three-dimensional electrode of an electrolytic cell or three-dimensional electrode type electrolytic cell, and is deposited on the cathode as hydroxide and removed from the water to be treated. For example, there will be no negative impact on fish and the like.
本発明では、陽陰極間に印加される直流電圧又は低周波
数交流電圧の値は特に限定されず、電極表面でガス発生
が生ずる高電流密度電解処理が生ずる任意の値とするこ
とが出来、交流電圧を使用する場合の周波数は10ヘル
ツ以下とすることが望ましい。本発明によりガス発生を
行いながら前記被処理水の処理を行うと、陽極あるいは
陽分極した粒子等から発生する該酸素の一部がそのまま
電解処理を行っている養魚用水等の被処理水に溶解して
溶存酸素濃度を通常の値より高い値に上昇さ・U、かつ
細菌類の死滅により該細菌類が消費していた酸素の消費
がなくなるため酸素濃度が更に上昇して魚類の成育等に
好ましい酸素濃度とすることができる。陽極電位が+0
.2から+1.5 V Cvs。In the present invention, the value of the DC voltage or low frequency AC voltage applied between the anode and cathode is not particularly limited, and can be any value that causes high current density electrolytic treatment that generates gas on the electrode surface. When using voltage, it is desirable that the frequency be 10 hertz or less. When the water to be treated is treated while generating gas according to the present invention, a part of the oxygen generated from the anode or anodically polarized particles is directly dissolved in the water to be treated such as fish farming water undergoing electrolytic treatment. This causes the dissolved oxygen concentration to rise to a higher value than the normal value, and as the bacteria die, the oxygen consumed by the bacteria is no longer consumed, so the oxygen concentration further increases, which is detrimental to the growth of fish, etc. A preferable oxygen concentration can be achieved. Anode potential is +0
.. 2 to +1.5 V Cvs.
5IIE)の範囲で養魚用水等の殺菌処理及び不純物除
去が出来るが、実質的な酸素ガス発生は+1.0V以上
で生ずるため、本発明では陽極電位を+1.0V以上、
好ましくは+1.2V以上とする。なお好ましい陰極電
位は一〇、5 V (vs、5llE)より責な範囲で
あり、この範囲で処理すべき養魚用水等の殺菌処理及び
不純物除去が出来る。+1.2■以上の陽極電位で酸素
ガス発生とともに若干量のオゾンガスの副生が伴い、両
ガスは魚類の成育等に好影響を与える。5IIE), it is possible to sterilize water for fish farming and remove impurities, but substantial oxygen gas generation occurs at +1.0V or higher, so in the present invention, the anode potential is set at +1.0V or higher.
Preferably it is +1.2V or more. The preferred cathode potential is within a range of more than 10.5 V (vs. 5llE), and within this range, fish farming water and the like to be treated can be sterilized and impurities removed. At an anode potential of +1.2■ or more, oxygen gas is generated and a small amount of ozone gas is produced as a by-product, and both gases have a positive effect on the growth of fish.
水電解により発生するガスつまり酸素ガスと水素ガスは
通常爆発限界内の混合比で発生するため、比較的大きい
直流電圧を印加してガスが発生する場合は爆発の危険を
回避するために空気等の不活性ガスで希釈することが好
ましい。例えば電解槽出口に発生する電解ガスの分離手
段と分離後の該電解ガスを空気で希釈して電解ガス濃度
が4容量%以下になるよう希釈する手段を設置すること
が好ましいが、通常の場合本発明の電解処理装置は容量
が比較的小さく発生するガス量も少ないため、前記ガス
分離手段は設置しなくてもよい。The gases generated by water electrolysis, that is, oxygen gas and hydrogen gas, are usually generated at a mixing ratio within the explosive limit, so if a relatively large DC voltage is applied and gas is generated, air must be used to avoid the risk of explosion. It is preferable to dilute with an inert gas. For example, it is preferable to install a means for separating the electrolytic gas generated at the outlet of the electrolytic cell and a means for diluting the separated electrolytic gas with air so that the electrolytic gas concentration becomes 4% by volume or less. Since the electrolytic treatment apparatus of the present invention has a relatively small capacity and generates a small amount of gas, it is not necessary to install the gas separation means.
本発明装置に含まれる電解槽は、複極式画定原型三次元
電極電解槽とし、本発明方法に使用する電解槽は該複極
型固定床式二次元電極電解槽を含む全ての電解槽とする
。本発明による被処理水処理では、処理される該被処理
水が電極あるいは後述する誘電体あるいは粒子等と接触
する機会が多いほど処理効率が上昇する。従って電極等
の表面積が大きい複極式固定床三次元電極電解槽を使用
すると他の電解槽を使用する場合よりも処理効率を上昇
させることができ、これにより同一の処理効率を達成す
るために必要な装置サイズを他の電解槽よりも小さくで
きる点で有利である。The electrolytic cell included in the device of the present invention is a bipolar defined prototype three-dimensional electrode electrolytic cell, and the electrolytic cell used in the method of the present invention includes all electrolytic cells including the bipolar fixed-bed two-dimensional electrode electrolytic cell. do. In the treatment of water to be treated according to the present invention, the treatment efficiency increases as the number of opportunities for the water to be treated to come into contact with electrodes, dielectrics, particles, etc. described later, increases. Therefore, using a multi-electrode fixed bed three-dimensional electrode electrolytic cell with a large surface area of electrodes, etc. can increase the processing efficiency compared to using other electrolytic cells. It is advantageous in that the required equipment size can be smaller than other electrolytic cells.
本発明の三次元電極電解槽における三次元電極は、前記
被処理水がyi過可能な多孔質材料、例えば粒状、球状
、フェルト状、織布状、多孔質ブロック状、多数の貫通
孔を形成した中実体等の形状を有する活性炭、グラファ
イト、炭素繊維等の炭素系材料から、あるいは同形状を
有するニッケル、銅、ステンレス、鉄、チタン等の金属
材料、更にそれら金属材料に貴金属のコーティングを施
した材料から形成された複数個の誘電体から成ることが
好ましく、該三次元電極は直流電場内に置かれ、両端に
設置した平板状又はエキスバンドメソシュ状やバーフォ
レーティソドプレート状等の多孔板体から成る給電用陽
陰極間に直流電圧や低周波交流電圧を印加して前記誘電
体を分極させ該誘電体の一端及び他端にそれぞれ正及び
負の電荷が形成されて分極する。この他に給電用陽極及
び陰極とは別個に、単独で陽極としであるいは陰極とし
て機能する三次元材料を交互に短絡しないように設置し
かつ電気的に接続して複極型固定床弐電解槽とすること
ができる。なお前述の多数の貫通孔を形成した中実体を
三次元電極として使用する場合には、流通する被処理水
の移動を妨害しないようにその開口率を10%以上95
%以下好ましくは20%以上80%以下とする。The three-dimensional electrode in the three-dimensional electrode electrolytic cell of the present invention is made of a porous material through which the water to be treated can pass through, for example, granular, spherical, felt, woven cloth, porous block, and has a large number of through holes. Carbon-based materials such as activated carbon, graphite, carbon fiber, etc. that have the shape of solid bodies, or metal materials such as nickel, copper, stainless steel, iron, titanium, etc. that have the same shape, and those metal materials coated with precious metals. Preferably, the three-dimensional electrode is made of a plurality of dielectric materials made of a dielectric material. A direct current voltage or a low frequency alternating current voltage is applied between the anode and cathode for power feeding made of a plate to polarize the dielectric, and positive and negative charges are formed at one end and the other end of the dielectric, respectively, and the dielectric is polarized. In addition, separate from the power supply anode and cathode, three-dimensional materials that function as an anode or a cathode are installed alternately so as not to short-circuit and are electrically connected to form a double-electrode fixed-bed two-electrolytic cell. It can be done. In addition, when using the aforementioned solid body with a large number of through holes as a three-dimensional electrode, the aperture ratio should be 10% or more.
% or less, preferably 20% or more and 80% or less.
前記誘電体として活性炭、グラファイト、炭素繊維等の
炭素系材料を使用して被処理水を処理する場合には、前
記誘電体が発生する酸素ガスにより酸化され炭酸ガスと
して溶解し易くなる。これを防止するためには前記誘電
体の陽分極する側にチタン等の基材上に酸化イリジウム
、酸化ルテニウム等の白金族金属酸化物を被覆し通常不
溶性金属電極として使用される多孔質材料を接触状態で
設置し、酸素発生が主として該多孔質材料上で生ずるよ
うにすればよい。When treating water using a carbon-based material such as activated carbon, graphite, or carbon fiber as the dielectric material, the dielectric material is easily oxidized by the generated oxygen gas and dissolved as carbon dioxide gas. In order to prevent this, a porous material that is usually used as an insoluble metal electrode is coated with a platinum group metal oxide such as iridium oxide or ruthenium oxide on a base material such as titanium on the anodic polarization side of the dielectric. They may be placed in contact so that oxygen evolution occurs primarily on the porous material.
前記誘電体又は給電用陽陰極以外の陽極及び陰極を接近
させて電圧の低下を意図する際には、短絡防止のため電
気絶縁性のスペーサとして例えば有機高分子材料で作製
した網状スペーサ等を挿入することが好ましい。When an anode and a cathode other than the dielectric or the power supply anode and cathode are brought close together to lower the voltage, an electrically insulating spacer such as a mesh spacer made of an organic polymer material is inserted to prevent short circuits. It is preferable to do so.
処理すべき養漁場用水等の被処理水が流れる電解槽内に
該被処理水が前記誘電体や陽極又は陰極に接触せずに流
通できる比較的大きな空隙があると被処理水の処理効率
が低下するため、前記誘電体等は電解槽内の前記被処理
水の流れがショートバスしないように配置することが望
ましい。If there is a relatively large gap in the electrolytic cell through which the water to be treated, such as water for fishing farms, flows, through which the water to be treated can flow without coming into contact with the dielectric, the anode, or the cathode, the treatment efficiency of the water to be treated will be improved. Therefore, it is desirable that the dielectric material etc. be arranged so that the flow of the water to be treated in the electrolytic cell will not be short-circuited.
このような構成から成る三次元電極電解槽は、被処理水
が養漁場用水の場合には養殖場や釣堀等に近接して設置
し、該養殖場等の養魚用水の一部を循環させて前記電解
槽等で殺菌等の処理を行った後に前記養殖場に戻すよう
にして使用することができ、更に家庭用の観賞魚等の水
槽に隣接して設置し、該水槽の水を循環させて殺菌等の
処理を行うこともできる。A three-dimensional electrode electrolytic cell with such a configuration is installed close to a fish farm, fishing pond, etc. when the water to be treated is water for fish farming, and circulates a part of the water for fish farming in the fish farm, etc. It can be used by returning to the aquaculture farm after performing sterilization etc. in the electrolytic tank, etc., and can also be installed adjacent to an aquarium for household ornamental fish, etc., to circulate the water in the aquarium. It is also possible to perform treatments such as sterilization.
なお電解槽に供給される被処理水が層流であると誘電体
等の表面と充分に接触することなく前記電解槽を通過す
ることがあるため、電解槽内を通過する被処理水は10
0以上の特に好ましくは500以上のレイノルズ数を有
する乱流として、横方向の移動を十分に行わせながら前
記電解槽等を通過させることがより好ましい。Note that if the treated water supplied to the electrolytic cell is a laminar flow, it may pass through the electrolytic cell without making sufficient contact with the surface of the dielectric, etc., so the treated water passing through the electrolytic cell may be
It is more preferable that the turbulent flow has a Reynolds number of 0 or more, particularly 500 or more, and is allowed to pass through the electrolytic cell or the like while sufficiently moving in the lateral direction.
なお電解槽を1回通過させるだけでは十分に細菌類が除
去されない場合は処理済の被処理水を再度電解槽を通す
ようにしてもよく、又養殖池の養魚用水等を順に電解槽
に供給して全体的な処理効率を上昇させるようにしても
よい。In addition, if bacteria cannot be removed sufficiently by passing through the electrolytic tank once, the treated water may be passed through the electrolytic tank again, or water for cultivating fish, etc. from the aquaculture pond can be sequentially supplied to the electrolytic tank. may be used to increase overall processing efficiency.
又本発明の電解槽を養漁場用水の処理として使用する場
合に、該電解槽に漏洩電流が生じ該漏洩電流が養魚場内
の魚を感電死させたりあるいは電解槽から処理すべき養
魚用水を通して他の金属製部材例えば水槽に流れ込み、
該部材に溶出等の電気化学的な腐食を生じさせることが
ある。そのため電解槽内の給電用陽陰極が相対しない該
電橿背面部及び/又は前記電解槽の出入口配管内に、前
記養魚用水より導電性の高い部材をその一端を接地可能
なように設置して前記漏洩電流を遮断することができる
。該導電性部材を使用せずに養漁場用水特に家庭用の水
槽に近接させて前記電解槽を設置して電解処理を行うと
、漏洩電流が約30mAに達する付近から前記水槽内の
金魚等に異常が生じ始め約50mへになると金魚が感電
死を起こすため、前記漏洩電流は50mA未満好ましく
は30mA未満に抑えることが望ましく、前記導電性部
材を使用すると該漏洩電流を数μmまで減少させること
が出来る。In addition, when the electrolytic cell of the present invention is used to treat water for fish farming, a leakage current is generated in the electrolytic cell, which may cause electrocution of fish in the fish farm or may cause water to pass through the fish farming water to be treated from the electrolytic cell. metal parts, such as flowing into a water tank,
Electrochemical corrosion such as elution may occur in the member. Therefore, a member with higher conductivity than the fish farming water is installed at the back of the electric rod where the power feeding anode and cathode in the electrolytic cell do not face each other and/or in the inlet/outlet piping of the electrolytic cell so that one end thereof can be grounded. The leakage current can be cut off. If the electrolytic tank is installed close to fishing farm water, especially a home aquarium, and electrolytic treatment is performed without using the conductive member, the leakage current will reach about 30 mA and the goldfish etc. in the aquarium will be affected. If an abnormality starts to occur and the distance reaches about 50 m, goldfish will be electrocuted, so it is desirable to suppress the leakage current to less than 50mA, preferably less than 30mA, and if the conductive member is used, the leakage current can be reduced to several μm. I can do it.
又養魚用水等には藻類などが含まれこれをそのまま前記
電解槽等に供給すると該電解槽の電極に付着して処理効
率を低下させることがあるため、前記電解槽にフィルタ
ーを設置して前記養魚用水の電解処理の前に濾過処理を
行うことが望ましい。In addition, fish farming water, etc. contains algae, and if this water is supplied as is to the electrolytic tank, it may adhere to the electrodes of the electrolytic tank and reduce the treatment efficiency. Therefore, a filter is installed in the electrolytic tank and the It is desirable to perform filtration treatment before electrolytic treatment of fish farming water.
次に添付図面に基づいて本発明に使用できる電解槽の好
ましい例を説明するが、本発明方法に使用される電解槽
は、この電解槽に限定されるものではない。Next, a preferred example of an electrolytic cell that can be used in the present invention will be described based on the accompanying drawings, but the electrolytic cell that can be used in the method of the present invention is not limited to this electrolytic cell.
第1図は、本発明の電解槽として使用可能な復権型固定
床式電解槽の一例を示す概略縦断面図、第2図は、第1
図の電解槽を養殖場の養殖池に近接させて設置した状態
を示す概略図である。FIG. 1 is a schematic longitudinal cross-sectional view showing an example of a fixed-bed electrolytic cell that can be used as the electrolytic cell of the present invention, and FIG.
FIG. 2 is a schematic diagram showing a state in which the electrolytic cell shown in the figure is installed in close proximity to an aquaculture pond in an aquaculture farm.
上下にフランジ1を有する円筒形の電解槽本体2の内部
上端近傍及び下端近傍にはそれぞれメソシュ状の給電用
陽極3と給電用陰極4が設けられている。電解槽本体2
は、長期間の使用又は再度の使用にも耐え得る電気絶縁
材料で形成することが好ましく、特に合成樹脂であるポ
リエピクロルヒドリン、ポリビニルメタクリレート、ポ
リエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩
化エチレン、フェノール−ホルムアルデヒド樹脂等が好
ましく使用できる。正の直流電圧を与える前記給電用陽
極3は、例えば炭素材(例えば活性炭、炭、コークス、
石炭等)、グラファイト材(例えば炭素繊維、カーボン
クロス、グラファイト等)、炭素複合材(例えば炭素に
金属を粉状で混ぜ焼結したもの等)、活性炭素繊維不織
布(例えばK E −1000フエルト、東洋紡株式会
社)、又はこれに白金、白金、パラジウムやニッケルを
1旦持させた材料、更に寸法安定性電極(白金族酸化物
被覆チタン材)、白金被覆チタン材、ニッケル材、ステ
ンレス材、鉄材等から形成される。又給電用陽極3に対
向し負の直流電圧を与える給電用陰極4は、例えば白金
、ステンレス、チタン、ニッケル、ハステロイ、グラフ
ァイト、炭素材、軟鋼あるいは白金族金属をコーティン
グした金属材料等から形成されている。A mesoche-shaped power feeding anode 3 and a power feeding cathode 4 are provided near the upper and lower ends of a cylindrical electrolytic cell body 2 having flanges 1 on the upper and lower sides, respectively. Electrolytic cell body 2
is preferably made of an electrically insulating material that can withstand long-term use or repeated use, and is particularly made of synthetic resins such as polyepichlorohydrin, polyvinyl methacrylate, polyethylene, polypropylene, polyvinyl chloride, polyethylene chloride, and phenol-formaldehyde. Resins etc. can be preferably used. The power feeding anode 3 that provides a positive DC voltage is made of, for example, a carbon material (such as activated carbon, charcoal, coke,
coal, etc.), graphite materials (e.g. carbon fiber, carbon cloth, graphite, etc.), carbon composite materials (e.g. carbon mixed with metal powder and sintered), activated carbon fiber nonwoven fabrics (e.g. K E-1000 felt, Toyobo Co., Ltd.), or materials with platinum, platinum, palladium or nickel added thereto, dimensionally stable electrodes (platinum group oxide coated titanium materials), platinum coated titanium materials, nickel materials, stainless steel materials, iron materials It is formed from etc. The power supply cathode 4 which faces the power supply anode 3 and applies a negative DC voltage is made of, for example, platinum, stainless steel, titanium, nickel, Hastelloy, graphite, carbon material, mild steel, or a metal material coated with a platinum group metal. ing.
前記再給電用電極3.4間には複数個の、図示の例では
3個の固定床5が積層され、かつ該固定床5間及び該固
定床5と前記再給電用電極3.4間に4枚の多孔質の隔
膜あるいはスペーサー6が挟持されている。各固定床5
は電解槽本体2の内壁に密着し固定床5の内部を通過−
Uず、固定床5と電解槽本体2の側壁との間を流れる養
魚用水の漏洩流がなるべく少なくなるように配置されて
いる。隔膜を使用する場合には該隔膜として織布、素焼
板、粒子焼結プラスチック、多孔板、イオン交換膜等が
用いられ、スペーサーとして電気絶縁性材料で製作され
た織布、多孔板、網、棒状材等が使用される。A plurality of fixed beds 5, three in the illustrated example, are stacked between the repowering electrodes 3.4, and between the fixed beds 5 and between the fixed beds 5 and the repowering electrodes 3.4. Four porous diaphragms or spacers 6 are sandwiched between them. Each fixed bed 5
is in close contact with the inner wall of the electrolytic cell body 2 and passes through the fixed bed 5.
First, the arrangement is such that the leakage flow of fish farming water flowing between the fixed bed 5 and the side wall of the electrolytic cell body 2 is minimized. When a diaphragm is used, a woven fabric, an unglazed plate, a particle sintered plastic, a perforated plate, an ion exchange membrane, etc. are used as the diaphragm, and a woven fabric, a perforated plate, a mesh, etc. made of an electrically insulating material are used as the spacer. A rod-shaped material is used.
このような構成から成る電解槽2は、第2図に示すよう
に例えば養殖場の養殖池11の縁部にフィルター12と
ともに設置される。該養殖池11の義勇用水13は、ポ
ンプ14により供給配管15を通して前記フィルター1
4に供給されて藻類等の固形不純物が濾過され除去され
た後、前記した構成を有する電解槽2内に導入される。As shown in FIG. 2, the electrolytic cell 2 having such a configuration is installed, for example, at the edge of the aquaculture pond 11 of an aquaculture farm together with a filter 12. The volunteer water 13 of the aquaculture pond 11 is passed through the supply pipe 15 by a pump 14 to the filter 1.
4, solid impurities such as algae are filtered and removed, and then introduced into the electrolytic cell 2 having the above-described configuration.
該電解槽2に供給された養魚用水を第1図に矢印で示す
ように下方から供給しながら通電を行うと、前記各固定
床5が図示の如く下面が正に上面が負に分極して固定床
5内及び固定床5間に電位が生じ、該電解槽内を流通す
る養魚用水はこの電位により正又は負に分極された固定
床5に接触して該養魚用水中の黴や細菌の殺菌等の改質
処理が行われる。更に印加電位が高く正の分極した部分
から酸素ガス発生があると、発生する酸素ガスが前記養
魚用水中に溶解して電解槽2に供給される前の養魚用水
より高濃度の溶存酸素ガスを有する養魚用水として前記
電解槽2の上方から取り出されて、第2図に示すように
戻し配管16を通って養殖池11に循環される。When the fish farming water supplied to the electrolytic cell 2 is supplied from below as shown by the arrow in FIG. 1 and electricity is supplied, each of the fixed beds 5 is polarized with the lower surface being positively polarized and the upper surface being negatively polarized as shown in the figure. An electric potential is generated within the fixed bed 5 and between the fixed beds 5, and the fish farming water flowing through the electrolytic cell comes into contact with the fixed bed 5 which is polarized positively or negatively due to this potential, and removes mold and bacteria in the fish farming water. Modification treatments such as sterilization are performed. Furthermore, when oxygen gas is generated from a positively polarized portion with a high applied potential, the generated oxygen gas dissolves in the fish farming water, creating a dissolved oxygen gas with a higher concentration than the fish farming water before being supplied to the electrolytic cell 2. The water for fish farming is taken out from above the electrolytic cell 2 and circulated to the aquaculture pond 11 through a return pipe 16 as shown in FIG.
第3図は、本発明に使用できる複極型固定床式電解槽の
他の例を示すもので、該電解槽は第1図の電解槽の固定
床5の給電用陰極4に向かう側つまり陽分極する側にメ
ソシュ状の不溶性金属材料7を密着状態で設置したもの
であり、他の部材は第1図と同一であるので同一符号を
付して説明を省略する。FIG. 3 shows another example of a bipolar fixed bed type electrolytic cell that can be used in the present invention. A mesoche-like insoluble metal material 7 is installed in close contact with the side to be positively polarized, and since the other members are the same as those in FIG. 1, they are given the same reference numerals and their explanation will be omitted.
直流電圧が印加された固定床5はその両端部において最
も大きく分極が生じ、ガス発生が伴う場合には該両端部
において最も激しくガス発生が生ずる。従って最も強く
陽分極するつまり最も激しく酸素ガスが発生する固定床
5の給電用陰極4に向かう端部には最も速(溶解が生1
じる。図示の通りこの部分に不溶性金属材料7を設置し
ておくと、該不溶性金属材料7の過電圧が固定床5を形
成する炭素系材料の過電圧より低いため殆どの酸素ガス
が前記不溶性金属材料7から発生し固定床5は殆ど酸素
ガスと接触しなくなるため、前記固定床5の溶解は効果
的に抑制される。又該電解槽2に供給された養魚用水は
第1図及び第2図の場合と同様に処理され殺菌等が行わ
れる。The fixed bed 5 to which a DC voltage is applied is most polarized at both ends thereof, and when gas is generated, the most intense gas generation occurs at both ends. Therefore, the end of the fixed bed 5 facing the power supply cathode 4, where the strongest anodic polarization occurs, that is, where oxygen gas is generated most violently, has the fastest (dissolution occurs)
Jiru. As shown in the figure, if the insoluble metal material 7 is installed in this part, most of the oxygen gas will be removed from the insoluble metal material 7 because the overvoltage of the insoluble metal material 7 is lower than the overvoltage of the carbon-based material forming the fixed bed 5. Since the fixed bed 5 hardly comes into contact with oxygen gas, the dissolution of the fixed bed 5 is effectively suppressed. The fish farming water supplied to the electrolytic cell 2 is treated and sterilized in the same manner as in FIGS. 1 and 2.
第4図は、本発明に使用できる複極型固定床式電解槽の
他の例を示すものである。FIG. 4 shows another example of a bipolar fixed bed electrolytic cell that can be used in the present invention.
上下にフランジ21を有する円筒形の電解槽本体22の
内部上端近傍及び下端近傍にはそれぞれメツシュ状の給
電用陽極23と給電用陰極24が設けられている。電解
槽本体22は、長期間の使用又は再度の使用にも耐え得
る電気絶縁材料特に合成樹脂で形成することが好ましい
。A mesh-shaped power feeding anode 23 and a power feeding cathode 24 are provided near the upper and lower ends of the cylindrical electrolytic cell body 22 having flanges 21 on the top and bottom, respectively. The electrolytic cell body 22 is preferably made of an electrically insulating material, particularly a synthetic resin, which can withstand long-term use or repeated use.
前記両給電用電極23.24間には、導電性材料例えば
炭素系材料で形成された多数の固定床形成用粒子25と
該固定床形成用粒子25より少数の例えば合成樹脂製の
絶縁粒子28とがほぼ均一に混在している。該絶縁粒子
28は、前記給電用陽極23及び給電用陰極24が完全
に短絡することを防止する機能を有している。Between the two power supply electrodes 23 and 24, there are a large number of fixed bed forming particles 25 made of a conductive material such as a carbon material, and a smaller number of insulating particles 28 made of synthetic resin, for example, than the fixed bed forming particles 25. are almost evenly mixed. The insulating particles 28 have a function of preventing the power feeding anode 23 and the power feeding cathode 24 from being completely short-circuited.
このような構成から成る電解槽に下方から矢印で示すよ
うに養魚用水を供給しながら通電を行うと、前記各固定
床形成用粒子25が給電用vJj極2極側3側に又給電
用陰極24側が正に分極して表面積が真人な三次元電極
として機能し、第1図及び第3図の電解槽と同様にして
前記養魚用水の黴や細菌の殺菌等の改質処理あるいは溶
存酸素の高濃度化が行われて該電解槽の上方から取り出
される。When electricity is supplied to the electrolytic cell having such a structure while supplying water for fish farming from below as shown by the arrow, each fixed bed forming particle 25 is transferred to the power supply vJj electrode 2 pole side 3 side and the power supply cathode side 3. The 24 side is positively polarized and functions as a three-dimensional electrode with a large surface area, and in the same way as the electrolytic cells shown in Figs. High concentration is performed and taken out from above the electrolytic cell.
(実施例)
以下に本発明方法による養魚用水改質処理の実施例を記
載するが、該実施例は本発明を限定するものではない。(Example) Examples of fish farming water reforming treatment according to the method of the present invention will be described below, but the examples are not intended to limit the present invention.
失旌廻上
遇明な硬質ポリ塩化ビニル樹脂製の高さ10(Jam、
内径5011のフランジ付円筒形である第1図に示した
電解槽を、金魚を飼育している水槽の養魚水循環系にフ
ィルター及びポンプとともに設置した。Height 10 (Jam,
The electrolytic cell shown in FIG. 1, which has a cylindrical flanged shape with an inner diameter of 5011 mm, was installed together with a filter and a pump in the fish water circulation system of an aquarium in which goldfish are kept.
該電解槽内には、炭素繊維から成る直径5011、厚さ
10鶴の固定床5個を、開口率80%で直径50龍及び
厚さ1.2鶴のポリエチレン樹脂製隔膜6枚で挟み込み
、上下両端の隔膜にそれぞれ白金をその表面にメツキし
たチタン製である直径481−厚さ1.0mmのメソシ
ュ状給電用陽極及び給電用陰極を接触させて設置した。Inside the electrolytic cell, 5 fixed beds made of carbon fiber with a diameter of 5011 mm and a thickness of 10 mm were sandwiched between 6 polyethylene resin diaphragms with a diameter of 50 mm and a thickness of 1.2 mm with an open area ratio of 80%. A mesoche-shaped power feeding anode and a power feeding cathode made of titanium whose surfaces were plated with platinum and having a diameter of 481 mm and a thickness of 1.0 mm were placed in contact with the upper and lower diaphragms at both ends.
水槽の養魚用水を0.517分の速度で前記電解槽に給
電し、かつ前記給電用電極間に第1表に示す陽極及び陰
極電圧を印加して前記養魚用水の処理を行った。電解槽
通過前後の養魚用水中の細菌数及び溶存酸素濃度を第1
表に纏めた。The fish water in the aquarium was fed to the electrolytic tank at a rate of 0.517 min, and the anode and cathode voltages shown in Table 1 were applied between the power supply electrodes to treat the fish water. First, the number of bacteria and dissolved oxygen concentration in the fish culture water before and after passing through the electrolytic tank.
Summarized in the table.
第
表
第1表から養魚用水は電解槽で処理されることにより細
菌数が大幅に減少し、更に発生酸素ガスが多くなるほど
溶存酸素濃度が高くなることが判る。From Table 1, it can be seen that the number of bacteria in fish farming water is significantly reduced by treating it in an electrolytic bath, and that the dissolved oxygen concentration increases as the amount of oxygen gas generated increases.
30日経過後に通電を停止し電解槽を解体して固定床の
状態を観察したところ電解槽に変化は見られなかった。After 30 days, the electricity supply was stopped, the electrolytic cell was disassembled, and the state of the fixed bed was observed, and no change was observed in the electrolytic cell.
(発明の効果)
本発明方法は、微生物を含有する被処理水を複極型三次
元電極式電解槽や二次元電極式電解槽等の電解槽に供給
し、酸素ガスを発生させながら前記被処理水を該酸素ガ
スや前記三次元電極や三次元電極等と接触させて電解処
理する被処理水の電解処理方法である(請求項1)。(Effects of the Invention) The method of the present invention supplies treated water containing microorganisms to an electrolytic cell such as a bipolar three-dimensional electrode type electrolytic cell or a two-dimensional electrode type electrolytic cell, and generates oxygen gas while supplying the treated water containing microorganisms. This is a method for electrolytically treating water to be treated, in which treated water is brought into contact with the oxygen gas, the three-dimensional electrode, the three-dimensional electrode, etc., and subjected to electrolytic treatment (claim 1).
被処理水を本発明により処理すると、殺菌剤や防黴剤を
使用することなく細菌類や黴類を殺菌して防黴剤等のコ
ストを節約出来るだげでなく、発生する酸素ガスが前記
被処理水中に溶解して高濃度の溶存酸素を含む被処理水
を得ることが出来る。When the water to be treated is treated according to the present invention, not only can bacteria and molds be sterilized without using disinfectants or moldproofing agents, thereby saving the cost of moldproofing agents, but also the generated oxygen gas can be It is possible to obtain treated water containing a high concentration of dissolved oxygen by dissolving it in the treated water.
従って該被処理水が養漁場用水であると(請求項2)、
該養漁場用水を本発明により処理することにより、養魚
用水中の溶存酸素濃度が上昇して飼育すべき魚類力9亥
溶存酸素により活動度が上昇して成育が促進され、商品
価値の高いサイズの大きな養殖魚類等を市場に提供する
ことが可能になる。しかも前記防黴剤等は人体に無害と
はいえず、従来法で飼育される魚類中には該防黴剤等が
蓄積していることが多いのに対し、本発明方法により処
理された養漁場用水で飼育することにより味が好く健康
に悪影響を及ぼすことのない魚類を市場に供給すること
が可能になる。Therefore, if the water to be treated is water for fish farming (Claim 2),
By treating the water for fish farming according to the present invention, the concentration of dissolved oxygen in the water for fish farming increases, and the dissolved oxygen increases the activity of the fish to be raised, promoting growth, and increasing the size of the fish with high commercial value. This makes it possible to provide large-scale farmed fish to the market. Moreover, the above-mentioned anti-mold agents cannot be said to be harmless to the human body, and the anti-mold agents etc. often accumulate in fish reared by conventional methods, whereas the anti-mold agents etc. are not harmful to the human body. By rearing fish in fishing ground water, it becomes possible to supply the market with fish that taste good and do not adversely affect health.
そして被処理水として養漁場用水を使用する場合には電
解槽からの漏洩電流が高い値に達すると金魚や養殖魚類
に異常を来し時には感電死させることがあるため、該漏
洩電流は50mA未満とすることが望ましいく請求項3
)。When using fishing farm water as the water to be treated, if the leakage current from the electrolyzer reaches a high value, it may cause abnormalities in goldfish and farmed fish, and sometimes cause electrocution, so the leakage current should be less than 50 mA. It is desirable that claim 3
).
被処理水が流通可能な複極式固定床を有する三次元電極
式電解槽を含んで成る被処理水の電解処理装置(請求項
4)である本発明装置を使用して被処理水の処理を行う
と、本発明方法と同様に殺菌剤や防黴剤を使用すること
なく細菌類や黴類を殺菌して防黴剤のコストを節約する
とともに、溶存酸素濃度の高い被処理水を得ることが出
来る。Treatment of water to be treated using the device of the present invention, which is an electrolytic treatment device for water to be treated (claim 4) comprising a three-dimensional electrode type electrolytic cell having a bipolar fixed bed through which water to be treated can flow. By doing this, as in the method of the present invention, bacteria and molds can be sterilized without using disinfectants or moldproofing agents, thereby saving the cost of moldproofing agents and obtaining treated water with a high concentration of dissolved oxygen. I can do it.
更に使用する電解槽が二次元電極式電解槽と比較して真
人な表面積を有する複極式固定床を有する三次元電極式
電解槽であるため、処理すべき被処理水の処理効率が高
く維持される。Furthermore, since the electrolytic cell used is a three-dimensional electrode electrolytic cell with a bipolar fixed bed that has a larger surface area than a two-dimensional electrode electrolytic cell, the treatment efficiency of the water to be treated remains high. be done.
電解槽内を流れる被処理水が層流であると該被処理水が
電極等と十分に接触することなく三次元電極電解槽を通
り抜けてしまうため、前記被処理水はレイノルズ数が5
00以上の乱流として(請求項5)前記被処理水が横方
向にも移動して十分に前記電極等と接触するようにする
が好ましい。If the treated water flowing in the electrolytic cell is a laminar flow, the treated water will pass through the three-dimensional electrode electrolytic cell without making sufficient contact with the electrodes, etc., so the treated water will have a Reynolds number of 5.
It is preferable that the turbulent flow is 0.00 or more (Claim 5) so that the water to be treated moves also in the lateral direction and sufficiently contacts the electrodes and the like.
更に本発明の電解槽では前述の通り、該電解槽に漏洩電
流が生じ該漏洩電流が他の金属製部材に流れ込んで該部
材に溶出等の電気化学的な腐食を生じさせたり、あるい
は養殖魚類等に異常を来すことがある。これを防止する
ためには給電用団陰極が相対しない適切な箇所に、前記
被処理水より導電性の高い部材をその一端を接地可能な
よ・うに設置して(請求項6)前記漏洩電流を遮断する
ことが好ましい。Furthermore, as described above, in the electrolytic cell of the present invention, a leakage current occurs in the electrolytic cell, and the leakage current flows into other metal members, causing electrochemical corrosion such as elution in the members, or causing damage to farmed fish. It may cause abnormalities. In order to prevent this, a member having higher conductivity than the water to be treated is installed at an appropriate location where the power feeding group cathode does not face each other, so that one end of the member can be grounded (Claim 6). It is preferable to block it.
第1図は、本発明の電解槽として使用可能な複極型固定
床式電解槽の一例を示す縦断面図、第2図は、第1図の
電解槽の設置状況を示す概略図、第3図は、他の複極型
固定床式電解槽の一例を示す縦断面図、第4図は、更に
他の複極型固定床式電解槽の一例を示す縦断面図である
。
1.21・・フランジ 2.22・・電解槽本体3.2
3・・給電用陽極 4.24・・給電用陰極5・・・固
定床 6・・・スペーサー7・・・不溶性金属材料
11・・・養殖池 12・・・フィルター13・・・養
魚用水 14・・・ポンプ15・・・供給配管 工6・
・・戻し配管25・・固定床形成用粒子 2日・・絶縁
粒子第1図
第2図FIG. 1 is a longitudinal sectional view showing an example of a bipolar fixed bed electrolytic cell that can be used as the electrolytic cell of the present invention, and FIG. 2 is a schematic diagram showing the installation situation of the electrolytic cell shown in FIG. FIG. 3 is a longitudinal sectional view showing an example of another bipolar fixed bed electrolytic cell, and FIG. 4 is a longitudinal sectional view showing yet another example of a bipolar fixed bed electrolytic cell. 1.21...Flange 2.22...Electrolytic cell body 3.2
3...Anode for power supply 4.24...Cathode for power supply 5...Fixed bed 6...Spacer 7...Insoluble metal material 11...Aquaculture pond 12...Filter 13...Fish culture water 14 ... Pump 15 ... Supply piping work 6.
...Return pipe 25...Particles for forming a fixed bed 2 days...Insulating particles Fig. 1 Fig. 2
Claims (6)
に供給し、該被処理水を前記電解槽で酸素ガスを発生さ
せながら電解処理する被処理水の電解処理方法。(1) An electrolytic treatment method for water to be treated, in which water to be treated containing microorganisms is supplied to a three-dimensional electrode type electrolytic cell, and the water to be treated is electrolytically treated while generating oxygen gas in the electrolytic cell.
解処理方法。(2) The electrolytic treatment method according to claim 1, wherein the water to be treated is water for fish farming.
求項1又は2に記載の電解処理方法。(3) The electrolytic treatment method according to claim 1 or 2, wherein the amount of leakage current from the electrolytic cell is 50 mA or less.
を行いながら前記被処理水を処理する複極式固定床を有
する三次元電極式電解槽を含んで成る被処理水の電解処
理装置。(4) An electrolytic treatment device for water to be treated that includes a three-dimensional electrode type electrolytic cell having a bipolar fixed bed that allows the water to be treated containing microorganisms to flow therethrough and processes the water to be treated while generating gas. .
0以上である請求項4に記載の電解処理装置。(5) The Reynolds number of the water to be treated flowing in the electrolytic cell is 50.
The electrolytic treatment apparatus according to claim 4, wherein the electrolytic treatment apparatus is 0 or more.
背面部及び/又は前記電解槽の出入口配管内に、被処理
水より導電性の高い部材がその一端を接地可能に設置さ
れている請求項4又は5に記載の電解処理装置。(6) A member with higher conductivity than the water to be treated is installed at the back of the electrode where the anode and cathode do not face each other in the three-dimensional electrode type electrolytic cell and/or in the inlet/outlet piping of the electrolytic cell so that one end thereof can be grounded. The electrolytic treatment apparatus according to claim 4 or 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10911890A JPH03224683A (en) | 1989-12-16 | 1990-04-25 | Electrochemical treatment of water to be treated |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32684689 | 1989-12-16 | ||
JP1-326846 | 1989-12-16 | ||
JP10911890A JPH03224683A (en) | 1989-12-16 | 1990-04-25 | Electrochemical treatment of water to be treated |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03224683A true JPH03224683A (en) | 1991-10-03 |
Family
ID=26448904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10911890A Pending JPH03224683A (en) | 1989-12-16 | 1990-04-25 | Electrochemical treatment of water to be treated |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03224683A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111320240A (en) * | 2020-02-27 | 2020-06-23 | 石河子大学 | Preparation method and application of Fe-Mt three-dimensional particle electrode for treating dye wastewater |
CN117623461A (en) * | 2023-12-18 | 2024-03-01 | 乐昌佳亚农业新技术有限公司 | Circulating water treatment system based on ecological breeding |
-
1990
- 1990-04-25 JP JP10911890A patent/JPH03224683A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111320240A (en) * | 2020-02-27 | 2020-06-23 | 石河子大学 | Preparation method and application of Fe-Mt three-dimensional particle electrode for treating dye wastewater |
CN117623461A (en) * | 2023-12-18 | 2024-03-01 | 乐昌佳亚农业新技术有限公司 | Circulating water treatment system based on ecological breeding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107509678B (en) | Aquaculture system | |
CN103663838A (en) | Integrated and comprehensive water treatment equipment for electrochemical water | |
JPH03224683A (en) | Electrochemical treatment of water to be treated | |
JPH06233983A (en) | Three dimensional electrode-type electrolytic tank | |
JPH08164390A (en) | Electrochemical treatment of water to be treated | |
JP3020553B2 (en) | Fixed-bed type three-dimensional electrode type electrolytic cell | |
JPH0416280A (en) | Electrochemical treatment of water containing microorganism | |
JPH0688271A (en) | Carbonaceous electrode type electrolytic cell | |
CN203807293U (en) | Integrated and comprehensive water-treating equipment utilizing electrified water | |
JPH04118090A (en) | Electrolytic treatment of water to be treated | |
JP3214724B2 (en) | Fixed-bed type three-dimensional electrode type electrolytic cell | |
JP3014427B2 (en) | Treatment of treated water | |
JPH09314149A (en) | Gasket for fixed bed type three dimensional electrode electrolytic bath, fixed bed type three dimensional electrode electrolytic bath, and water treatment method | |
JPH0671268A (en) | Electrochemical treatment of water to be treated | |
JPH0663558A (en) | Electrochemical treating method of water to be treated | |
JP3178728B2 (en) | 3D electrode type electrolytic cell | |
JP2971571B2 (en) | 3D electrode type electrolytic cell | |
JP3020551B2 (en) | Electrochemical treatment of treated water containing microorganisms | |
JP2922255B2 (en) | Electrochemical treatment of treated water containing microorganisms | |
JPH03224681A (en) | Electrochemical treatment of liquid to be treated | |
JPH0416282A (en) | Electrochemical treatment of water to be treated containing microorganism | |
JPH10165940A (en) | Bipolar fixed-bed three-dimensional electrode electrolyzer, water-treating method using the same, and water-treating apparatus and water-purifying apparatus | |
JPS6122926B2 (en) | ||
JP3664274B2 (en) | Electrolytic treatment method of water to be treated | |
JP2004188230A (en) | Method for exterminating water bloom |