JP3664274B2 - Electrolytic treatment method of water to be treated - Google Patents

Electrolytic treatment method of water to be treated Download PDF

Info

Publication number
JP3664274B2
JP3664274B2 JP29904795A JP29904795A JP3664274B2 JP 3664274 B2 JP3664274 B2 JP 3664274B2 JP 29904795 A JP29904795 A JP 29904795A JP 29904795 A JP29904795 A JP 29904795A JP 3664274 B2 JP3664274 B2 JP 3664274B2
Authority
JP
Japan
Prior art keywords
water
treated
microorganisms
electrode
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29904795A
Other languages
Japanese (ja)
Other versions
JPH09117766A (en
Inventor
伸隆 五嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP29904795A priority Critical patent/JP3664274B2/en
Publication of JPH09117766A publication Critical patent/JPH09117766A/en
Application granted granted Critical
Publication of JP3664274B2 publication Critical patent/JP3664274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、微生物を含有する各種被処理水の該微生物に起因する各種性能劣化を抑制するために前記被処理水を電解処理するための方法に関し、より詳細には写真処理液、各種工場の純水、超純水あるいはプール水、製紙洗浄水、熱交換器冷却水、飲料水、カップ式自動販売機用貯水、養魚用水、薬剤希釈水、浴場水及びガス洗浄塔用循環水等の微生物を含有しあるいは微生物発生の可能性のある各種被処理水を複極型固定床式電解槽を使用して電解処理することにより前記各被処理水中の微生物の制菌、殺菌や滅菌を経済的及び効果的に行うための方法に関する。
【0002】
【従来技術】
従来から各種用途に多種類の水溶液や他の物質を溶解していない単独の水(純水)が使用されている。これらの水溶液等は溶質が適度な養分を提供し、あるいは該水溶液の液温が繁殖に好ましい比較的高温度であると、細菌等の微生物が繁殖して該微生物は前記水溶液等の性能劣化を起こしたり、又製品に悪影響を与えたり、処理装置内に浮遊したり蓄積して処理装置の機能を損なうことが多い。通常の水道水中の微生物数は残留塩素を殺菌剤として残すことで20個/ミリリットル以下としているが、この水道水を例えば熱交換器用冷却水として使用すると前記微生物が飛躍的に繁殖して配管の腐食や悪臭の発生が生ずる。
これらの現象を防止するために従来は防黴剤や沈澱抑制剤等の各種薬剤を被処理水中に投入したり各種フィルタを配管途中に設置したりしているが、前記薬剤投入は前述の通り薬剤の残留による被処理水への悪影響や薬剤使用のコスト面での問題点が指摘されている。更に添加薬剤に対する抗菌が暫くすると発生し、次の薬剤を検討したり必要量以上に多量の薬剤を供給する等の必要が生ずるという問題点を抱えている。又フィルター操作で生菌を濾過分離することは原理的に不可能であり、永続する菌除去はできない。
【0003】
前述の各被処理水のうち、特に飲料水は人間の健康に直結するもので、それに含有される細菌の滅菌や黴の繁殖の防止つまり微生物の死滅除去は不可欠であり、該滅菌や防黴の方法としては塩素による方法が主流である。しかし都市部の水道滅菌はその原水となる河川水、湖水等が各種有機物等で汚染され微生物の死滅に必要な量以上の塩素を添加するため、有機ハロゲン化物等を生起したり、カルキ臭を発生する等の弊害を生じている。該塩素法による前記欠点を解消するために、塩素法以外の滅菌方法が提案されている。
本出願人は飲料水を含む前記各被処理水における前述の欠点を解消するために、複数の炭素質三次元固定床型電極(以下炭素質電極ともいう)が収容された電解槽に前記被処理水を供給し電解処理することにより該被処理水中の微生物を滅菌する水処理装置及び方法を提案した。
【0004】
【発明が解決しようとする問題点】
このいわゆる電解滅菌法は、前記炭素質電極に通電することにより該電極を分極させ主としてプラスに分極した電極部分に接触した微生物を滅菌するものであり、通電が継続されている限り微生物の滅菌が継続され、塩素やオゾン等の薬剤を使用しないため処理が長期間に亘っても微少量の電気代が増加するのみで経済的な運転が可能になるという長所がある。
しかしながら長期運転になると電気代も無視できずかつ通電時間に比例して前記炭素質電極の消耗も生じる。前記各被処理水の殆どは24時間継続して使用されるわけではなく必要に応じて電解槽に通電して被処理水の電解処理を行ない処理済の被処理水を得て各種用途に使用し、処理済水が不要の場合には電解槽への通電を停止して電気量の節約を図っている。
これにより必要最小限の電気量で所望の処理済水が得られるが、通電停止時には前記炭素質電極が分極していないため微生物が前記炭素質電極上で繁殖し、運転再開時に通電を開始しても通電停止時に繁殖した微生物を十分に滅菌できず、微生物が残存した処理済水しか得られなくなるという欠点がある。
【0005】
【発明の目的】
本発明は、前述の従来技術の欠点を解消し、最小必要電力量で通電停止による微生物繁殖を実質的に防止し、常に微生物を殆ど含まない清澄な処理済水を即時供給できる被処理水の電解処理方法を提供することを目的とする。
【0006】
【問題点を解決するための手段】
本発明は、微生物を含有する被処理水を、炭素質三次元固定床型電極が設置された電解槽に供給し、該電極に通電することにより分極させ、該分極した電極に前記微生物を接触させることにより前記微生物の滅菌を行なう被処理水の電解処理方法において、前記電解槽への被処理水非供給時の前記電極への通電量を被処理水供給時と比較して小さくすることを特徴とする方法である。なお本発明方法による水処理では電極表面上で実質的な酸化還元反応のような電気化学反応を生起していないことがあるので本発明方法による水処理及び本発明方法中の電解槽はそれそれ電気化学的処理及び電気化学的処理槽というべきであるが、一般呼称に従ってそれそれ電解処理及び電解槽と称する。
【0007】
以下本発明を詳細に説明する。
本発明方法は、写真処理液、各種工場の純水、超純水あるいはプール水、製紙洗浄水、熱交換器冷却水、飲料水、カップ式自動販売機用貯水、養魚用水、薬剤希釈水、浴場水及びガス洗浄塔用循環水等の微生物を含有しあるいは微生物発生の可能性のある各種被処理水を対象とし、該被処理水を複極型固定床式電解槽に供給し該電解槽に直流又は交流電圧を印加し前記被処理水中の微生物の制菌、殺菌あるいは滅菌を行う際の通電方法に関するものである。本発明の微生物には、細菌(バクテリア)、菌、糸状菌(黴)、大腸菌、酵母、変形菌、単細胞の藻類、原生動物、ウイルス等が含まれる。
【0008】
前記被処理水を、通電された炭素質電極が設置された電解槽に供給すると、該被処理水中の微生物は液流動によって分極した前記電極に接触しそれらの表面で高電位のエネルギー供給を受け強力な酸化還元反応が微生物細胞内で生じ、その活動が弱まったり微生物自身が死滅して滅菌が行われると考えられる。
このような被処理水の電解処理によると、前述した通り効果的に滅菌が行なわれるが、例えば被処理水が大量処理の必要があるプール水や半導体工場の洗浄純水では、本発明方法による滅菌処理に必要な電力量は処理コストの大部分を占めることが多い。電力量は、〔電力〕=〔電圧〕×〔電流〕で表され、処理すべき水量が莫大であるため消費電力量も莫大になる。
【0009】
一方飲料水などは電力量はさほど大きくならないが、電解槽を継続的に運転する場合の電力量は、〔電力〕=〔電圧〕×〔電流〕×〔時間〕で表され、単位時間当たりの通電量は小さくても通電を継続すると電力量は増大してしまう。従って処理済の被処理水が必要な場合にのみ電解槽に通電し不要な場合には通電を停止することにより電力量の節約が達成できる。特に家庭の水道の蛇口は80〜90%の時間閉じられており、顕著な電力量節減が可能である。
しかしながらこの方法では通電停止時に前記電極に未接触の微生物が繁殖し、該微生物は通電開始時に電極に接触しても該電極が十分な分極を達成するまでに比較的長い時間を要し、通電開始と同時に電解槽から取り出される処理済の被処理水中にはかなりの数の微生物が存在する。この欠点を解消するためには、通電開始後の一定時間電解槽から取り出される被処理水を廃棄しあるいは前記電解槽に循環して、定常状態に達した後に電解槽から取り出される処理済被処理水のみを必要な用途に使用すれば良い。しかしこの方法では処理済の被処理水が無駄になるだけでなく、電解槽の内壁等に付着している微生物が通電開始後、どの程度の時間で電解槽から取り出されるか不確定であるため、完全な解決法とは言い難い。
【0010】
電解槽への通電停止時つまり被処理水の供給量が零である場合(被処理水非供給時)には、電解槽外から微生物が供給されないため、微生物を滅菌する必要はなく、微生物の繁殖を防止できれば十分である。
前述の通り電極に通電することにより電極が分極しかつ酸素ガス及び水素ガス発生を伴いながら電解反応が進行し微生物の滅菌が行なわれるが、微生物の繁殖防止のためには通常運転時の微生物滅菌ほどの電位は必要としない。微生物滅菌のためにはガス発生は必須ではなく逆に発生ガスが電極表面上を覆ってしまい微生物が電極表面と接触し滅菌される効率を悪くするが、実際には僅かな発生ガスが生じかつそのガスが水溶液中で溶解する程度の電位を印加しながら被処理水の処理を行なうことが望ましい。
一方前述の微生物繁殖防止のためには、実質的な電解反応が生じない低い電位を電極表面に印加する程度で十分であるが、ガス発生を伴っても良い。
【0011】
電力を節約しながらこの微生物繁殖防止を達成するために、本発明では被処理水供給時の平均通電量より被処理水非供給時の平均通電量を小さくする。この平均通電量を小さくするためには、例えば被処理水非供給時の前記炭素質電極への印加電圧を被処理水供給時の印加電圧より小さい一定電圧とする手段がある。この被処理水非供給時の印加電圧を実質的なガス発生がないような最大値に設定すると、通電量が零に近い状態で前記電極の分極が生じて微生物の繁殖防止を達成でき、最小の電力消費で目的を達成できる。
前記微生物繁殖防止の他の手段として、被処理水非供給時にも被処理水供給時と同一電圧を印加しかつ間欠的に印加電圧を零にすることにより、換言すると被処理水非供給時には基本的に電圧印加を停止しかつ間欠的に被処理水供給時と同一電圧を前記炭素質電極に印加する手段がある。この手段によると電圧印加の停止時間に相当する電力量が節約できる。なおこの手段においても印加電圧は被処理水供給時と同一の電圧とする必要はなく、やや低い電圧として更に電力量の節約を達成できる。
【0012】
前記炭素質電極への通電は、該電極の両端側に位置する1対の給電用電極により行なわれるが、両給電用電極の極性を変えないと前記炭素質電極は常に同一の分極特性を有し、つまりプラスの給電用電極側に近い炭素質電極の部分がマイナスに又マイナスの給電用電極側に近い炭素質電極の部分がプラスに分極する。一般に微生物の滅菌は炭素質電極のプラスに分極した部分で行なわれ、マイナス側では殆ど滅菌は起こらない。
前記した被処理水非供給時の電位印加の際の給電用電極の極性を同一に維持しておくと前記炭素質電極のプラス分極側のみで微生物の滅菌あるいは繁殖防止が生じ、マイナス分極側では微生物の繁殖を抑制できなくなる可能性がある。
又、炭素電極の消耗も陽極サイドのみにて主に生じるので、一面のみが一方的に損傷する。
【0013】
従って前述の間欠的な電圧印加を給電用電極の極性を反転させながら行なうとつまりある電圧印加では一方の給電用電極をプラスとして他の給電用電極をマイナスとして行ない、次の電圧印加は前記一方の給電用電極をマイナスとし前記他の給電用電極をプラスとして行なうことにより分極する炭素質電極の両面に正負の分極がほぼ等しく現れるようにすることにより前記炭素質電極の殆ど全ての部分での微生物繁殖を効果的に抑制できる。
前述の被処理水非供給時に間欠的に行なわれる電圧印加時間と電圧非印加時間との割合や被処理水供給時の印加電圧より小さい一定電圧の値は、効果的な微生物繁殖防止が達成できる範囲で適宜決定できるが、電力量節減の目的から(電圧印加時間)≦(電圧非印加時間)とすることが望ましい。
【0014】
本発明方法に使用する電解槽は、固定床型三次元電極電解槽つまり固定床型単極式電解槽及び固定床式複極式電解槽であり、これらの電解槽では該電解槽の三次元電極が莫大な表面積を有するため電極表面と被処理水との接触面積を増大させることができ、これにより装置サイズを小さくし、かつ電解処理の効率を上げることができる点で有利である。
本発明の固定床型三次元電極電解槽における電極は一般に分極現象を生じる炭素質電極と給電用電極を含み、該炭素質電極は前述の使用する電解槽に応じた形状を有し、固定床型複極式電解槽を使用する場合には、前記被処理水が透過可能な炭素質材料、例えばフェルト状、織布状、多孔質ブロック状等の形状を有する活性炭、グラファイト、炭素繊維等の炭素系材料から形成され、該炭素質電極の両端に設置した平板状又はエキスパンドメッシュ状やパーフォレーティッドプレート状等の多孔板体から成る給電用電極間に直流電圧あるいは10Hz以下の交流電圧を印加して前記電極を分極させその一端及び他端にそれぞれ陽極及び陰極を形成させ得る三次元電極を収容した固定床型複極式電解槽とすることが可能であり、この他に単独で陽極としてあるいは陰極として機能する炭素質三次元材料を交互に短絡しないように電極間距離を離す手段を用いて設置しかつ電気的に接続して固定床型複極式電解槽とすることができる。
【0015】
前記電極が炭素質であるため、酸素ガスにより酸化され炭酸ガスとして溶解することがある。これを防止するためには前記電極の陽分極する側にチタン等の基材上に酸化イリジウム、酸化ルテニウム等の白金族金属酸化物を被覆したり、チタン等の基材上に白金等の白金族金属を被覆した通常不溶性金属電極と称される金属電極を使用する多孔質材料を接触状態で設置し、酸素発生が主として該多孔質金属電極材料上で生ずるようにすればよい。
前記炭素質電極の平均開孔径は25〜125 μmとすることが望ましい。該炭素質電極を電解槽に収容して被処理水例えば飲料水を処理する際には、炭素質電極の性質により被処理水の流通の容易性あるいは電解電圧等に影響が生ずる。該炭素質電極の開孔径も比較的強い影響を有し、該炭素質電極の開孔径が大きいと該電極に被処理水が接触することなく電解槽を通過しやすくなるため微生物の滅菌効率が低下する。逆に開孔径が小さすぎると被処理水が前記炭素質電極内を流通することが困難となり電解電圧の上昇や電解槽内での液流の圧力損失を招いてしまう。
【0016】
本発明者の検討によると、炭素質三次元電極の開孔径が25μm未満であると電解電圧の顕著な上昇が生じ、又125 μmを越えると電流効率(滅菌効率)の顕著な減少を招き、いずれも満足すべき効果(滅菌効率)を達成することができない。従って本発明方法における電解槽で炭素質電極を使用する場合にはその平均開孔径を前述の通り25〜125 μmとすることが望ましい。そして該炭素質電極の空間率〔(電極の空隙容積)÷(電極の全体積)×100 (%)〕は20〜80%、好ましくは30〜60%である。
所望の開孔径を有する炭素質電極は次のように製造することができる。
例えば炭素系粒子を焼結して炭素質電極を形成する場合には使用する炭素系粒子の粒径を調節することにより、調製される炭素質電極の開孔径を調節して任意の開孔径を有する炭素質電極とすることができ、焼結温度は1000〜4000℃、好ましくは約3800℃とする。又、別の製法としては所定の開孔径を有するセルロースペーパーを積層し同様な焼結温度にてグラファイト化する。
【0017】
又単極式固定床型電解槽を使用する場合には、三次元材料1個を隔膜を介してあるいは介さずに電解槽内に設置し、あるいは複数の三次元材料を同一の電解電位の状態で単一の電解槽内に設置するようにする。
いずれの形態の電極を使用する場合でも、処理すべき被処理水が流れる電解槽内に液が電極に接触せずに流通できる空隙があると被処理水の処理効率が低下するため、電極等は電解槽内の被処理水の流れが電極に接触せずにショートパスしないように配置することが望ましい。
前記電解槽内を隔膜で区画して陽極室と陰極室を形成しても、隔膜を使用せずにそのまま通電を行うこともできるが、隔膜を使用せずかつ電極の極間距離を狭くする場合には短絡防止のため電気絶縁性のスペーサとして例えば有機高分子材料で作製した網状スペーサ等を両極間に挿入することができる。又隔膜を使用する場合には流通する被処理水の移動を妨害しないように多孔質例えばその開口率が10%以上95%以下好ましくは20%以上80%以下の隔膜を使用することが望ましく、該隔膜は少なくとも前記被処理水が透過できる程度の孔径の微細孔を有していなければならない。
【0018】
このような構成から成る電解槽の運転条件は、被処理水中の微生物の滅菌効率が最大になるように設定することが望ましい。
電解槽で水の電解処理を行う場合にはワンパス処理と循環処理があり、循環処理の方が滅菌効率は上昇するが例えば飲料水の電解処理では循環処理を行うことは困難であり、通常ワンパス処理となる。ワンパス処理では電解条件のうちの特に被処理水の空間速度(liquid hourly space velocity)をなるべく小さくして被処理水の電解槽内の滞留時間を長くすることが望ましい。
又その被処理水供給時の電極電位は前述の通り陽極電位を+1.2 V(vs.SHE)より卑で+0.2 V(vs.SHE)より貴である値とすることが望ましい。この電位範囲では両極における通常の電解反応により生ずる酸素ガス及び水素ガスの発生が僅かに生ずるか殆ど認められず、前記微生物の滅菌に寄与することのない発生ガスに配慮することなく、又電解電力を被処理水滅菌以外の無駄でかつ滅菌処理を阻害する電解ガス発生に使用することなく、前記被処理水の滅菌処理を行うことができる。
【0019】
このような構成から成る電解槽を使用して前述の通り被処理水の処理を行なうと、被処理水中の微生物が滅菌されて微生物量がほぼ零に等しくなった処理済水が得られる。しかし現在の測定技術では、前記処理済水中の微生物数の測定は該処理済水中の微生物を培養した後でなければ特定できず通常2〜3日を要する。従って仮に電解槽運転に支障が生じても微生物数測定のみでは2〜3日後でなければ電解槽の異常が発見できない。そして3日後に異常が発見できても微生物数のデータだけでは異常の原因を特定できない。
又例えば飲料水では微生物数の増加は商品の欠陥例えば下痢などの原因に直結する。その際に前記電解槽運転データを確保しておくと電解槽が正常運転していたか否かを確認でき、データから電解槽が正常運転していたことが確認できれば、電解槽以外の他の原因により微生物の混入や繁殖があったことを立証できる。
【0020】
従って本発明方法では、電解槽の運転と平行して、被処理水の温度、処理水量、電気伝導度及び電解槽の電圧値や電流値を継続して測定し、これらのデータをコンピューター等に記憶させておくことが望ましい。該データは好ましくは3日間以上少なくとも24時間分連続して記憶させ、微生物数のデータに異常が出た際に直ちにその原因を追求できるようにしておくことが更に望ましい。
【0021】
次に添付図面に基づいて本発明に使用できる電解槽の好ましい例を説明するが、前記電解槽はこれらに限定されるものではない。
図1は、本発明方法の電解槽として使用可能な単極式固定床型電解槽の例を示す概略縦断面図である。
底板中央に上水道水供給口1を、又天板中央に上水道水取出口2をそれぞれ有する円筒状の電解槽本体3内の下部には、炭素質材料から形成される短寸円柱形の多孔質固定床型陰極4が前記本体3の内壁と実質的に液流動の生じないような僅かな間隙しか形成しないように収容され、該陰極4上には若干の間隙を介して例えばメッシュ状の白金族金属酸化物被覆チタン材あるいはメッシュ状の白金族金属をメッキしたチタン材から成る陽極5が収容されている。前記電解槽本体3は、長期間の使用又は再度の使用にも耐え得る電気絶縁材料で形成することが好ましく、特に合成樹脂であるポリエピクロルヒドリン、ポリビニルメタクリレート、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化エチレン、フェノール−ホルムアルデヒド樹脂、ポリアクリロニトリル樹脂等が好ましく使用できる。
【0022】
このような構成から成る電解槽本体3は例えば水道配管の途中や水道の蛇口に設置され、該本体3にその上水道水供給口1から、微生物、有効塩素成分、カルキ臭、カルシウムイオン、マグネシウムイオン及び鉄イオン等を含有する上水道水を供給すると、該上水道水は多孔質陰極4の下面に接触し該陰極4面で前記有効塩素成分やカルキ臭の除去、及び金属イオン成分等の還元による対応する水酸化物又は酸化物との析出による除去等が起こり、前記陽極5面で前記微生物の滅菌が起こり、清浄化された上水道水が前記上水道水取出口2から槽外へ取り出される。なお本電解槽では液流が上向きであるため、電解反応によって微量発生する水素ガスや酸素ガスが容易に液流とともに電解槽外へ排出される。
この電解槽に上水道水の供給と連動して通電を行なうメカニズムを装着して上水道水の非供給時に、基本的には通電を停止し間欠的に上水道水供給時と等しいか低い値の電圧を印加することにより電力節減を達成するとともに当該電解槽内での微生物の繁殖を抑制できる。
【0023】
図2は、本発明方法の電解槽として使用可能な複極式固定床型電解槽の一例を示す概略縦断面図である。
上下にフランジ11を有する円筒形の電解槽本体12の内部上端近傍及び下端近傍にはそれぞれメッシュ状の給電用陽極ターミナル13と給電用陰極ターミナル14が設けられている。該両電極ターミナル13、14間には複数個の図示の例では3個のスポンジ状の固定床15が積層され、かつ該固定床15間及び該固定床15と前記両電極ターミナル13、14間に4枚のメッシュ状隔膜又はスペーサー16が挟持されている。各固定床15は電解槽本体12の内壁に密着し固定床15の内部を通過せず、固定床15と電解槽本体12の側壁との間を流れる上水道水の漏洩流がなるべく少なくなるように配置されている。
【0024】
このような構成から成る電解槽に下方から矢印で示すように上水道水を供給しながら通電を行うと、前記各固定床15が図示の如く下面が正に上面が負に分極して各固定床15の下面に多孔質陽極が形成され、前記上水道水はこの多孔質陽極に接触して滅菌が行われ、その後前記電解槽の上方に取り出され、蛇口に導かれる。この電解槽にも図1の電解槽と同様の上水道非供給時の電圧印加手段を装着できる。
【0025】
図3は、本発明方法に使用できる複極式固定床型電解槽の他の例を示すもので、該電解槽は図2の電解槽の固定床15の給電用陰極14に向かう側つまり陽分極する側にメッシュ状の不溶性金属電極17を密着状態で設置したものであり、他の部材は図2と同一であるので同一符号を付して説明を省略する。
直流電圧が印加された固定床15はその両端部において最も大きく分極が生じ、ガス発生が伴う場合には該両端部においてガス発生が生じ易い。従って最も強く陽分極するつまり最も激しく酸素ガスが発生する固定床15の給電用陰極14に向かう端部には最も速くかつ激しく酸化反応や電極基材の溶解反応が生じる。図示の通りこの部分に不溶性金属電極17を設置しておくと、該不溶性金属電極17の酸素発生過電圧が固定床15を形成する炭素系材料の前記過電圧より低いためと固定床陰極に対し前記不溶性金属電極が距離的に近いので殆どの酸素ガスが前記不溶性金属電極17から発生し固定床15は殆ど酸素ガスと接触しなくなるため、前記固定床15の溶解は効果的に抑制される。又該電解槽12に供給された上水道水は図2の場合と同様に処理され上水道水中の微生物の滅菌等が行われる。この電解槽にも図1及び2の電解槽と同様の上水道非供給時の電圧印加手段を装着できる。
【0026】
【実施例】
以下に本発明方法による飲料水等の被処理水処理の実施例を記載するが、該実施例は本発明方法を限定するものではない。
まず次のようにして本実施例の電解槽を構成した。
透明な硬質ポリ塩化ビニル樹脂製の高さ75mm、内径40mmのフランジ付円筒形である図2に示した電解槽内に、炭素繊維から成る直径39.5mm、厚さ10mmの固定床(多孔質グラファイト、東海カーボン株式会社製G−100 S)5個を、開口率80%で直径40mm及び厚さ1mmのポリエチレン樹脂製隔膜6枚で挟み込み、上下両端の隔膜にそれぞれ白金をその表面にメッキしたチタン製である直径38mm厚さ1mmのメッシュ状給電用陽極及び給電用陰極を接触させて設置し、本実施例の電解槽を構成した。
又上水道水に微生物を943 個/ミリリットル添加して試験用被処理水を調製した。
前記電解槽の下部からこの試験用被処理水を1.5 リットル/分の割合で供給し、直流電源により見掛け電流密度及び電解電圧が下記の比較例及び実施例に示す値となるように調節して前記試験用被処理水の電解処理を行なった。
【0027】
【比較例1】
試験用被処理水の供給量を1.5 リットル/分に維持し、見掛け電流密度が0.2 A/dm2 、電解電圧が4.3 〜8.8 V(平均電解電圧5.8 V)となるように調節し、電解槽から取り出される処理済の被処理水を経時的にサンプリングし、それぞれのサンプルを3日間培養した後、微生物数をカウントし、図4のグラフに示す運転時間と微生物数との関係が得られた。24日間の運転に要した電力量はDC0.084 Whであった。
【0028】
【比較例2】
比較例1と同じ電解槽を使用し、被処理水の供給を10分行ない、次いで供給停止を50分行ない、このサイクルを繰り返し、供給時には比較例1と同じ電解条件で通電し、供給停止時には通電を停止した。電解槽から取り出される処理済の被処理水を経時的にサンプリングし、それぞれのサンプルを3日間培養した後、微生物数をカウントし、図5のグラフに示す運転時間と微生物数との関係が得られた。24時間の運転に要した電力量はDC0.015 Whであった。
【0029】
【実施例1】
比較例2と同じ電解槽及び被処理水の供給及び停止のサイクルで被処理水の処理を行なった。被処理水の供給停止時には、10分間印加電圧(電解電圧)を零にし1分間印加電圧を4.3 〜8.6 V/電解槽にする電圧の間欠的印加サイクルを繰り返した。
電解槽から取り出される処理済被処理水中の微生物数を比較例の場合と同様にカウントし、図6のグラフに示す運転時間と微生物数との関係が得られた。24時間の運転に要した電力量はDC0.022 Whであった。
【0030】
【実施例2】
実施例1における被処理水の供給停止時の印加電圧の間欠的な印加毎に陽陰極を反転させたこと以外は実施例1と同一の電解条件で被処理水の電解処理を行ない、かつ微生物数をカウントして図7に示す運転時間と微生物数との関係が得られた。24時間の運転に要した電力量は実施例1と同じであった。
【0031】
【実施例3】
実施例2における被処理水供給停止時の印加電圧を被処理水供給時の印加電圧より低い3.4 〜6.5 V/電解槽に維持したこと以外は実施例2と同じ電解条件で被処理水の電解処理を行ないかつ微生物数をカウントして図8に示す運転時間と微生物数との関係が得られた。24時間の運転に要した電力量は0.019 Whであった。
【0032】
【発明の効果】
本発明方法は、微生物を含有する被処理水を、炭素質三次元固定床型電極が設置された電解槽に供給し、該電極に通電することにより分極させ、該分極した電極に前記微生物を接触させることにより前記微生物の滅菌を行なう被処理水の電解処理方法において、前記電解槽への被処理水供給量が零の際に前記電極への通電量を被処理水供給時と比較して小さくすることを特徴とする方法(請求項1)である。
上水道水等の被処理水を本発明の固定床型三次元電極式電解槽に供給すると、該被処理水中の微生物は電位を与えられた炭素質電極に接触しそれらの表面で強力な酸化還元反応を受けたり高電位の電流に接触し、その活動が弱まったり自身が死滅して滅菌が行われる。
【0033】
しかし本発明方法で使用する電解槽には常に被処理水が供給される訳ではなく被処理水が供給されず従って電力節減のため通電も停止している時間がかなり多い。この通電停止初期には未だ滅菌されていない微生物が存在し、該微生物は再度被処理水が供給され通電が再開されるまでの通電停止時に繁殖して十分に滅菌されないまま電解槽外に取り出されてしまう。
しかし前記本発明方法によると、被処理水供給停止時にも被処理水供給時より小量ではあるが、通電を行なって微生物の滅菌ほどの効果は得られないにしても該微生物の繁殖を抑制するようにしている。これにより従来の通電停止による微生物の繁殖という問題点を解決しかつ電力節減という所定の目的も満足できるレベルで達成される。
【0034】
被処理水非供給時の通電量を小さくする具体的方法としては、被処理水供給時と同じ電位を間欠的に印加する方法(請求項2及び3)や、印加電圧を被処理水供給時の印加電圧より低くする方法(請求項4)がある。
前者の方法では間欠的な電圧印加の電圧印加停止時の電力分が節減され、間欠的な電圧印加で微生物の繁殖は抑制される。特に印加電圧の間欠印加毎に電圧の印加方向を反転させると(請求項3)、前記炭素質電極の分極方向が逆になりプラスに分極された部分で起こる滅菌あるいは繁殖抑制を前記炭素質電極の両面で起こすことができ、微生物繁殖の抑制をより効果的に行なうことができる。
後者の方法では、低くした電圧分の電力量が節減され、特に実質的な電流が流れない程度の電圧印加でも微生物の繁殖抑制には十分であり、電力節減の面からはこの方法を採用すると最大の効果が得られる。
【図面の簡単な説明】
【図1】本発明方法の電解槽として使用可能な単極式固定床型電解槽の第1の例を示す概略縦断面図。
【図2】本発明方法の電解槽として使用可能な複極式固定床型電解槽の一例を示す概略縦断面図。
【図3】本発明方法に使用できる複極式固定床型電解槽の他の例を示す概略縦断面図。
【図4】比較例1における運転時間と微生物数との関係を示すグラフ。
【図5】比較例2における運転時間と微生物数との関係を示すグラフ。
【図6】実施例1における運転時間と微生物数との関係を示すグラフ。
【図7】実施例2における運転時間と微生物数との関係を示すグラフ。
【図8】実施例3における運転時間と微生物数との関係を示すグラフ。
【符号の説明】
1・・・上水道水供給口 2・・・上水道水取出口 3・・・電解槽本体 4・・・固定床型陰極 5・・・陽極 12・・・電解槽本体 13・・・陽極ターミナル 14・・・給電用陰極ターミナル 15・・・固定床
[0001]
[Industrial application fields]
The present invention relates to a method for electrolytically treating the water to be treated in order to suppress various performance deteriorations caused by the microorganisms of the various waters to be treated containing microorganisms, and more particularly to photographic processing liquids and various factories. Microorganisms such as pure water, ultrapure water or pool water, paper washing water, heat exchanger cooling water, drinking water, water for cup vending machines, fish culture water, chemical dilution water, bath water, and circulating water for gas washing towers It is economical to sterilize, sterilize and sterilize microorganisms in each treated water by electrolytic treatment of various treated waters that contain microbial substances or have the potential to generate microorganisms using a bipolar fixed-bed electrolytic cell And a method for effectively performing.
[0002]
[Prior art]
Conventionally, various types of aqueous solutions and single water (pure water) that does not dissolve other substances have been used for various purposes. These aqueous solutions and the like provide nutrients with appropriate solutes, or if the temperature of the aqueous solution is a relatively high temperature preferable for breeding, microorganisms such as bacteria propagate and the microorganisms deteriorate the performance of the aqueous solution. In many cases, the function occurs, the product is adversely affected, the product floats or accumulates in the processing apparatus, and the function of the processing apparatus is impaired. The number of microorganisms in normal tap water is set to 20 cells / milliliter or less by leaving residual chlorine as a disinfectant. However, if this tap water is used as cooling water for heat exchangers, for example, the microorganisms will proliferate and the Corrosion and odor are generated.
In order to prevent these phenomena, various chemicals such as antifungal agents and precipitation inhibitors are conventionally introduced into the water to be treated and various filters are installed in the middle of the pipe. It has been pointed out that there are adverse effects on treated water due to residual chemicals and problems with the cost of using chemicals. Furthermore, the antibacterial agent is added after a while, and there is a problem that it becomes necessary to examine the next drug or supply a larger amount of drug than necessary. In addition, it is impossible in principle to filter and isolate live bacteria by filter operation, and permanent bacteria removal cannot be performed.
[0003]
Of the above-mentioned treated water, in particular, drinking water is directly linked to human health, and it is essential to sterilize the bacteria contained in it and prevent the propagation of sputum, that is, kill and remove microorganisms. As a method for this, the method using chlorine is the mainstream. However, in urban water sterilization, river water, lake water, etc., which is the raw water, is contaminated with various organic substances, and more chlorine is added than necessary for the killing of microorganisms. It causes bad effects such as occurrence. In order to eliminate the above disadvantages caused by the chlorine method, sterilization methods other than the chlorine method have been proposed.
In order to eliminate the above-mentioned drawbacks in each of the water to be treated including drinking water, the applicant of the present invention is provided in an electrolytic cell in which a plurality of carbonaceous three-dimensional fixed bed electrodes (hereinafter also referred to as carbonaceous electrodes) are accommodated. A water treatment apparatus and method for sterilizing microorganisms in the water to be treated by supplying treated water and performing electrolytic treatment have been proposed.
[0004]
[Problems to be solved by the invention]
This so-called electrolytic sterilization method is to sterilize microorganisms that are in contact with the electrode portion that is polarized positively by energizing the carbonaceous electrode and that is mainly positively polarized. Since it is continued and no chemicals such as chlorine and ozone are used, there is an advantage that even if the treatment is performed for a long period of time, only a small amount of electricity cost is increased and economical operation is possible.
However, during long-term operation, the electricity cost cannot be ignored, and the carbonaceous electrode is consumed in proportion to the energization time. Most of the water to be treated is not used continuously for 24 hours. If necessary, the electrolytic bath is energized to perform electrolytic treatment of the water to be treated to obtain treated water to be used for various applications. However, when the treated water is unnecessary, the electricity supply to the electrolytic cell is stopped to save electricity.
As a result, the desired treated water can be obtained with the minimum amount of electricity. However, when the energization is stopped, the carbonaceous electrode is not polarized, so that microorganisms propagate on the carbonaceous electrode, and energization is started when the operation is resumed. However, there is a drawback that microorganisms propagated at the time of stopping energization cannot be sufficiently sterilized and only treated water in which the microorganisms remain can be obtained.
[0005]
OBJECT OF THE INVENTION
The present invention eliminates the above-mentioned drawbacks of the prior art, substantially prevents microbial growth due to the stop of energization with the minimum required power, and can always supply clear treated water that contains almost no microorganisms immediately. An object is to provide an electrolytic treatment method.
[0006]
[Means for solving problems]
The present invention supplies the water to be treated containing microorganisms to an electrolytic cell in which a carbonaceous three-dimensional fixed bed electrode is installed, and polarizes the electrodes by energizing the electrodes, and the microorganisms are brought into contact with the polarized electrodes. In the electrolytic treatment method of the water to be treated for sterilizing the microorganisms by reducing the amount of energization to the electrode when the water to be treated is not supplied to the electrolytic cell, compared with the time of supplying the water to be treated. It is a characteristic method. In addition, since the water treatment by the method of the present invention may not cause a substantial electrochemical reaction such as a redox reaction on the electrode surface, the water treatment by the method of the present invention and the electrolytic cell in the method of the present invention are each Although they should be referred to as an electrochemical treatment and an electrochemical treatment tank, they are referred to as an electrolytic treatment and an electrolytic cell, respectively, according to a general name.
[0007]
The present invention will be described in detail below.
The method of the present invention comprises a photographic processing solution, pure water from various factories, ultrapure water or pool water, paper washing water, heat exchanger cooling water, drinking water, water for cup vending machines, water for fish farming, drug dilution water, Targeting various treated waters containing microorganisms such as bath water and circulating water for gas cleaning towers or having the possibility of generating microorganisms, supplying the treated water to a bipolar type fixed bed electrolytic cell The present invention relates to an energization method for applying bactericidal, sterilizing or sterilizing microorganisms in the water to be treated by applying a direct current or an alternating voltage. The microorganism of the present invention includes bacteria (bacteria), fungi, filamentous fungi (spider), E. coli, yeast, modified fungi, unicellular algae, protozoa, viruses and the like.
[0008]
When the water to be treated is supplied to an electrolyzer equipped with an energized carbonaceous electrode, microorganisms in the water to be treated come into contact with the electrodes polarized by liquid flow and receive a high potential energy supply on their surfaces. It is considered that a strong redox reaction occurs in the microbial cell, and its activity is weakened or the microorganism itself is killed and sterilized.
According to such electrolytic treatment of the water to be treated, sterilization is effectively performed as described above. For example, in the case of pool water where the water to be treated needs to be treated in a large amount or cleaning pure water of a semiconductor factory, the method of the present invention is used. The amount of power required for sterilization often occupies most of the processing cost. The amount of electric power is represented by [power] = [voltage] × [current]. Since the amount of water to be treated is enormous, the amount of power consumption is enormous.
[0009]
On the other hand, the amount of power for drinking water etc. does not increase so much, but the amount of power when the electrolyzer is continuously operated is represented by [power] = [voltage] × [current] × [time]. If the energization is continued even if the energization amount is small, the amount of power increases. Therefore, it is possible to save electricity by energizing the electrolytic cell only when treated water to be treated is necessary and stopping the energization when unnecessary. In particular, household water faucets are closed for 80-90% of the time, allowing significant power savings.
However, in this method, microorganisms that are not in contact with the electrode propagate when the energization is stopped, and even if the microorganism contacts the electrode at the start of energization, it takes a relatively long time for the electrode to achieve sufficient polarization. There are a significant number of microorganisms in the treated water that is removed from the electrolytic cell upon initiation. In order to eliminate this disadvantage, the treated water taken out from the electrolytic cell for a certain period of time after the start of energization is discarded or circulated to the electrolytic cell, and the treated water is taken out from the electrolytic cell after reaching a steady state. Only water should be used for necessary applications. However, this method not only wastes the treated water, but also it is uncertain how long the microorganisms attached to the inner wall of the electrolytic cell will be taken out of the electrolytic cell after energization. It ’s hard to say that it ’s a complete solution.
[0010]
When the supply of water to the electrolyzer is stopped, that is, when the amount of treated water is zero (when the untreated water is not supplied), microorganisms are not supplied from outside the electrolyzer, so there is no need to sterilize the microorganisms. It is enough to prevent breeding.
As described above, when the electrode is energized, the electrode is polarized and the electrolytic reaction proceeds with the generation of oxygen gas and hydrogen gas to sterilize the microorganisms. To prevent the growth of microorganisms, the microorganisms are sterilized during normal operation. The potential is not so high. Gas generation is not indispensable for sterilization of microorganisms. Conversely, the generated gas covers the electrode surface and the microorganisms come into contact with the electrode surface to reduce the efficiency of sterilization. It is desirable to treat the water to be treated while applying a potential at which the gas dissolves in the aqueous solution.
On the other hand, in order to prevent the above-mentioned growth of microorganisms, it is sufficient to apply a low potential to the electrode surface that does not cause a substantial electrolytic reaction, but it may be accompanied by gas generation.
[0011]
In order to achieve this microbial growth prevention while saving electric power, the present invention makes the average energization amount when the treated water is not supplied smaller than the average energization amount when the treated water is supplied. In order to reduce the average energization amount, for example, there is a means for setting the applied voltage to the carbonaceous electrode when the treated water is not supplied to a constant voltage smaller than the applied voltage when the treated water is supplied. When the applied voltage when the water to be treated is not supplied is set to a maximum value so that no substantial gas is generated, polarization of the electrode occurs in a state where the energization amount is close to zero, thereby preventing the growth of microorganisms. The purpose can be achieved with the power consumption of
As another means for preventing the propagation of microorganisms, the same voltage is applied when the treated water is not supplied, and the applied voltage is intermittently made zero, that is, when the treated water is not supplied. There is a means for stopping the voltage application and applying the same voltage to the carbonaceous electrode intermittently when supplying the water to be treated. According to this means, the amount of power corresponding to the voltage application stop time can be saved. Also in this means, the applied voltage does not need to be the same as that at the time of supplying the water to be treated, and a further low power consumption can be achieved as a slightly lower voltage.
[0012]
The carbonaceous electrode is energized by a pair of power supply electrodes located on both ends of the electrode, but the carbonaceous electrode always has the same polarization characteristics unless the polarity of both power supply electrodes is changed. That is, the portion of the carbonaceous electrode close to the positive power supply electrode side is negatively polarized, and the portion of the carbonaceous electrode close to the negative power supply electrode side is polarized positively. In general, sterilization of microorganisms is performed at the positively polarized portion of the carbonaceous electrode, and sterilization hardly occurs on the negative side.
If the polarity of the power feeding electrode is kept the same when the potential is applied when the water to be treated is not supplied, sterilization or reproduction of microorganisms occurs only on the positive polarization side of the carbonaceous electrode, and on the negative polarization side There is a possibility that the growth of microorganisms cannot be suppressed.
Also, since the carbon electrode is consumed mainly only on the anode side, only one surface is unilaterally damaged.
[0013]
Therefore, if the above-mentioned intermittent voltage application is performed while inverting the polarity of the power supply electrode, that is, one power supply electrode is made positive while the other power supply electrode is made negative, and the next voltage application is said one. By making the power supply electrode negative and making the other power supply electrode positive, the positive and negative polarizations appear almost equally on both surfaces of the carbonaceous electrode that is polarized, so that almost all parts of the carbonaceous electrode Microbial propagation can be effectively suppressed.
The ratio between the voltage application time and the voltage non-application time that are intermittently performed when the treated water is not supplied and the value of a constant voltage that is smaller than the applied voltage when the treated water is supplied can effectively prevent microbial growth. Although it can be determined as appropriate within the range, it is desirable that (voltage application time) ≦ (voltage non-application time) for the purpose of saving power.
[0014]
The electrolytic cell used in the method of the present invention is a fixed bed type three-dimensional electrode electrolytic cell, that is, a fixed bed type single electrode type electrolytic cell and a fixed bed type bipolar electrode type electrolytic cell. Since the electrode has an enormous surface area, the contact area between the electrode surface and the water to be treated can be increased, which is advantageous in that the size of the apparatus can be reduced and the efficiency of the electrolytic treatment can be increased.
The electrode in the fixed-bed three-dimensional electrode electrolytic cell of the present invention generally includes a carbonaceous electrode that generates a polarization phenomenon and a power feeding electrode, and the carbonaceous electrode has a shape corresponding to the electrolytic cell to be used, and the fixed bed When using a bipolar type electrolytic cell, the carbonaceous material through which the water to be treated can pass, such as activated carbon, graphite, carbon fiber, etc. having a shape such as a felt shape, a woven fabric shape, a porous block shape, etc. A DC voltage or an AC voltage of 10 Hz or less is applied between the feeding electrodes made of a carbon-based material and made of a porous plate such as a flat plate, an expanded mesh or a perforated plate installed at both ends of the carbonaceous electrode. Thus, it is possible to provide a fixed-bed type bipolar electrolytic cell containing a three-dimensional electrode that can polarize the electrode and form an anode and a cathode at one end and the other end, respectively. In addition, a fixed bed type bipolar electrolytic cell can be obtained by installing and electrically connecting carbonaceous three-dimensional materials functioning as a cathode using means for separating the electrodes so as not to alternately short-circuit each other. .
[0015]
Since the electrode is carbonaceous, it may be oxidized by oxygen gas and dissolved as carbon dioxide gas. In order to prevent this, the positive electrode side of the electrode is coated with a platinum group metal oxide such as iridium oxide or ruthenium oxide on a substrate such as titanium, or platinum such as platinum is coated on a substrate such as titanium. A porous material using a metal electrode usually called an insoluble metal electrode coated with a group metal may be placed in contact so that oxygen generation occurs mainly on the porous metal electrode material.
The average pore diameter of the carbonaceous electrode is preferably 25 to 125 μm. When the carbonaceous electrode is accommodated in an electrolytic bath and treated water, such as drinking water, is treated, the ease of circulation of the treated water or the electrolysis voltage is affected by the properties of the carbonaceous electrode. The pore diameter of the carbonaceous electrode also has a relatively strong influence. If the pore diameter of the carbonaceous electrode is large, the sterilization efficiency of microorganisms is improved because the water to be treated can easily pass through the electrolytic cell without contacting the electrode. descend. On the other hand, if the hole diameter is too small, it becomes difficult for the water to be treated to flow through the carbonaceous electrode, resulting in an increase in the electrolysis voltage and a pressure loss of the liquid flow in the electrolytic cell.
[0016]
According to the inventor's study, when the pore diameter of the carbonaceous three-dimensional electrode is less than 25 μm, the electrolytic voltage is remarkably increased, and when it exceeds 125 μm, the current efficiency (sterilization efficiency) is significantly reduced. Neither can achieve a satisfactory effect (sterilization efficiency). Therefore, when a carbonaceous electrode is used in the electrolytic cell in the method of the present invention, the average pore diameter is preferably 25 to 125 μm as described above. The space ratio [(electrode void volume) ÷ (total electrode volume) × 100 (%)] of the carbonaceous electrode is 20 to 80%, preferably 30 to 60%.
A carbonaceous electrode having a desired aperture diameter can be produced as follows.
For example, when a carbonaceous electrode is formed by sintering carbonaceous particles, the pore diameter of the carbonaceous electrode to be prepared is adjusted by adjusting the particle diameter of the carbonaceous particles to be used. The sintering temperature is 1000-4000 ° C, preferably about 3800 ° C. As another production method, cellulose paper having a predetermined pore size is laminated and graphitized at the same sintering temperature.
[0017]
In addition, when using a monopolar fixed-bed electrolytic cell, one three-dimensional material is placed in the electrolytic cell with or without a diaphragm, or a plurality of three-dimensional materials are in the same electrolytic potential state. In a single electrolytic cell.
Regardless of which form of electrode is used, if there is a gap in the electrolytic cell through which the water to be treated to be treated flows without allowing the liquid to contact the electrode, the treatment efficiency of the water to be treated is reduced. It is desirable to arrange so that the flow of water to be treated in the electrolytic cell does not contact the electrode and does not cause a short path.
Even if the inside of the electrolytic cell is partitioned with a diaphragm to form an anode chamber and a cathode chamber, it is possible to conduct electricity without using the diaphragm, but the diaphragm is not used and the distance between the electrodes is reduced. In this case, for example, a reticulated spacer made of an organic polymer material can be inserted between the two electrodes as an electrically insulating spacer to prevent a short circuit. When using a diaphragm, it is desirable to use a porous film having an opening ratio of 10% or more and 95% or less, preferably 20% or more and 80% or less so as not to disturb the movement of the water to be circulated. The diaphragm must have at least micropores having a diameter that allows the water to be treated to pass through.
[0018]
It is desirable to set the operating conditions of the electrolytic cell having such a configuration so that the sterilization efficiency of microorganisms in the water to be treated is maximized.
When performing electrolytic treatment of water in an electrolytic cell, there are two-pass treatment and circulation treatment, and the sterilization efficiency is higher in the circulation treatment, but for example, it is difficult to carry out the circulation treatment in the electrolytic treatment of drinking water. It becomes processing. In the one-pass treatment, it is desirable to increase the residence time in the electrolytic bath of the water to be treated by reducing the liquid hourly space velocity of the water to be treated as much as possible.
As described above, the electrode potential at the time of supplying the water to be treated is preferably set to a value where the anode potential is lower than +1.2 V (vs. SHE) and more noble than +0.2 V (vs. SHE). In this potential range, little or no generation of oxygen gas and hydrogen gas caused by normal electrolytic reaction at both electrodes is observed, and no consideration is given to the generated gas that does not contribute to sterilization of the microorganism. The sterilization treatment of the water to be treated can be carried out without using waste gas other than the sterilization of the water to be treated and generation of electrolytic gas that inhibits the sterilization treatment.
[0019]
When the water to be treated is treated as described above using the electrolytic cell having such a structure, treated water in which the microorganisms in the water to be treated are sterilized and the amount of microorganisms becomes substantially equal to zero is obtained. However, in the current measurement technique, the number of microorganisms in the treated water cannot be specified unless the microorganisms in the treated water are cultured, and usually takes 2 to 3 days. Therefore, even if the electrolytic cell operation is hindered, an abnormality in the electrolytic cell can be found only after measuring the number of microorganisms after 2 to 3 days. And even if an abnormality can be found after 3 days, the cause of the abnormality cannot be specified only by the data of the number of microorganisms.
Also, for example, in drinking water, an increase in the number of microorganisms is directly linked to the cause of product defects such as diarrhea. If the electrolytic cell operation data is secured at that time, it can be confirmed whether or not the electrolytic cell was operating normally. If the data confirms that the electrolytic cell was operating normally, other causes other than the electrolytic cell can be confirmed. It is possible to prove that there was microbial contamination and propagation.
[0020]
Accordingly, in the method of the present invention, in parallel with the operation of the electrolytic cell, the temperature of the water to be treated, the amount of treated water, the electrical conductivity and the voltage value or current value of the electrolytic cell are continuously measured, and these data are stored in a computer or the like. It is desirable to memorize it. The data is preferably stored continuously for at least 24 hours for 3 days or more, and it is further desirable to be able to immediately investigate the cause when abnormality occurs in the data on the number of microorganisms.
[0021]
Next, although the preferable example of the electrolytic cell which can be used for this invention based on an accompanying drawing is demonstrated, the said electrolytic cell is not limited to these.
FIG. 1 is a schematic longitudinal sectional view showing an example of a monopolar fixed-bed electrolytic cell that can be used as an electrolytic cell of the method of the present invention.
In the lower part of the cylindrical electrolytic cell main body 3 having a tap water supply port 1 in the center of the bottom plate and a tap water outlet 2 in the center of the top plate, a short cylindrical porous body formed of a carbonaceous material is provided. The fixed bed type cathode 4 is accommodated so as to form a slight gap so as not to cause a liquid flow substantially with the inner wall of the main body 3. For example, mesh-shaped platinum is placed on the cathode 4 through a little gap. An anode 5 made of a titanium material plated with a group III metal oxide-coated titanium material or a mesh-like platinum group metal is accommodated. The electrolytic cell body 3 is preferably formed of an electrically insulating material that can withstand long-term use or re-use, and in particular, polyepichlorohydrin, polyvinyl methacrylate, polyethylene, polypropylene, polyvinyl chloride, polyvinyl chloride, which are synthetic resins. Ethylene, phenol-formaldehyde resin, polyacrylonitrile resin and the like can be preferably used.
[0022]
The electrolytic cell main body 3 having such a configuration is installed, for example, in the middle of a water supply pipe or in a faucet of a water supply. From the main water supply port 1 to the main body 3, microorganisms, effective chlorine components, odor of calcium, calcium ions, magnesium ions When the tap water containing iron ions and the like is supplied, the tap water comes into contact with the lower surface of the porous cathode 4, and the surface of the cathode 4 removes the effective chlorine component and the salty odor and responds by reducing the metal ion component and the like. Removal by precipitation with hydroxide or oxide occurs, the sterilization of the microorganisms occurs on the surface of the anode 5, and the purified tap water is taken out from the tap water outlet 2 to the outside of the tank. In addition, since the liquid flow is upward in the present electrolytic cell, hydrogen gas and oxygen gas generated in minute amounts by the electrolytic reaction are easily discharged out of the electrolytic cell together with the liquid flow.
When this electrolyzer is equipped with a mechanism that energizes in conjunction with the supply of tap water, when the supply of tap water is not supplied, the voltage is basically equal to or lower than that at the time of supply of tap water. By applying this, it is possible to achieve power saving and to suppress the growth of microorganisms in the electrolytic cell.
[0023]
FIG. 2 is a schematic longitudinal sectional view showing an example of a bipolar fixed-bed electrolytic cell that can be used as an electrolytic cell of the method of the present invention.
A mesh-shaped feeding anode terminal 13 and feeding cathode terminal 14 are provided in the vicinity of the inner upper end and the lower end of a cylindrical electrolytic cell main body 12 having upper and lower flanges 11, respectively. In the illustrated example, a plurality of sponge-like fixed floors 15 are stacked between the electrode terminals 13 and 14, and between the fixed floors 15 and between the fixed floor 15 and the electrode terminals 13 and 14. Four mesh diaphragms or spacers 16 are sandwiched between the two. Each fixed floor 15 is in close contact with the inner wall of the electrolytic cell main body 12 and does not pass through the fixed floor 15 so that the leakage of tap water flowing between the fixed floor 15 and the side wall of the electrolytic cell main body 12 is minimized. Has been placed.
[0024]
When electricity is supplied to the electrolytic cell having such a configuration while supplying tap water from below as indicated by an arrow, the fixed floor 15 is polarized with the lower surface positive and the upper surface negative as shown in the figure. A porous anode is formed on the lower surface of 15, and the tap water is brought into contact with the porous anode to be sterilized, then taken out above the electrolytic cell and led to a faucet. This electrolytic cell can also be equipped with a voltage applying means when the water supply is not supplied, similar to the electrolytic cell of FIG.
[0025]
FIG. 3 shows another example of a bipolar fixed-bed electrolytic cell that can be used in the method of the present invention. The electrolytic cell is a side of the fixed bed 15 of the electrolytic cell of FIG. The mesh-like insoluble metal electrode 17 is placed in close contact with the polarization side, and the other members are the same as in FIG.
The fixed bed 15 to which the DC voltage is applied has the largest polarization at both ends thereof, and when gas is generated, gas is likely to be generated at both ends. Accordingly, the fastest and most intense oxidation reaction and electrode substrate dissolution reaction occur at the end of the fixed bed 15 that is most strongly positively polarized, that is, the most intensely generating oxygen gas toward the feeding cathode 14. If an insoluble metal electrode 17 is installed in this part as shown in the figure, the oxygen generation overvoltage of the insoluble metal electrode 17 is lower than the overvoltage of the carbon-based material forming the fixed bed 15 and the insoluble metal electrode 17 is insoluble in the fixed bed cathode. Since the metal electrodes are close in distance, most of the oxygen gas is generated from the insoluble metal electrode 17 and the fixed bed 15 hardly comes into contact with the oxygen gas, so that the dissolution of the fixed bed 15 is effectively suppressed. The tap water supplied to the electrolytic cell 12 is treated in the same way as in FIG. 2 to sterilize microorganisms in the tap water. This electrolytic cell can also be equipped with voltage application means when the water supply is not supplied, similar to the electrolytic cell of FIGS.
[0026]
【Example】
Although the Example of to-be-processed water treatments, such as drinking water by the method of this invention, is described below, this Example does not limit the method of this invention.
First, the electrolytic cell of this example was constructed as follows.
A fixed bed (porous graphite with a diameter of 39.5 mm and a thickness of 10 mm made of carbon fiber is placed in the electrolytic cell shown in FIG. 2, which is a flanged cylinder with a height of 75 mm and an inner diameter of 40 mm made of transparent rigid polyvinyl chloride resin. Titanium Carbon Steel Co., Ltd. G-100 S) was sandwiched between six polyethylene resin diaphragms with an aperture ratio of 80% and a diameter of 40 mm and a thickness of 1 mm, and platinum was plated on the upper and lower diaphragms, respectively. The mesh-shaped power feeding anode having a diameter of 38 mm and a thickness of 1 mm and a power feeding cathode were placed in contact with each other to constitute the electrolytic cell of this example.
In addition, 943 microorganisms / milliliter were added to tap water to prepare test water.
The test water is supplied at a rate of 1.5 liters / minute from the lower part of the electrolytic cell, and the apparent current density and electrolytic voltage are adjusted by the direct current power source to the values shown in the following comparative examples and examples. The electrolytic treatment of the test water was performed.
[0027]
[Comparative Example 1]
Maintain the test water supply at 1.5 liters / minute and the apparent current density is 0.2 A / dm. 2 After adjusting the electrolysis voltage to 4.3 to 8.8 V (average electrolysis voltage 5.8 V), sampling the treated water taken out of the electrolytic cell over time, and culturing each sample for 3 days, The number of microorganisms was counted, and the relationship between the operation time and the number of microorganisms shown in the graph of FIG. 4 was obtained. The amount of power required for 24 days of operation was DC 0.084 Wh.
[0028]
[Comparative Example 2]
Using the same electrolytic cell as in Comparative Example 1, supplying the water to be treated for 10 minutes, then stopping the supply for 50 minutes, repeating this cycle, energizing under the same electrolysis conditions as in Comparative Example 1 at the time of supply, The power supply was stopped. The treated water to be treated taken out from the electrolytic cell is sampled over time, and after culturing each sample for 3 days, the number of microorganisms is counted, and the relationship between the operation time and the number of microorganisms shown in the graph of FIG. 5 is obtained. It was. The amount of power required for 24 hours of operation was DC 0.015 Wh.
[0029]
[Example 1]
The treated water was treated in the same electrolytic cell and treated water supply and stop cycle as in Comparative Example 2. When supply of water to be treated was stopped, an intermittent application cycle of a voltage in which the applied voltage (electrolytic voltage) was set to zero for 10 minutes and the applied voltage was set to 4.3 to 8.6 V / electrolyzer for 1 minute was repeated.
The number of microorganisms in the treated water to be taken out from the electrolytic bath was counted in the same manner as in the comparative example, and the relationship between the operation time and the number of microorganisms shown in the graph of FIG. 6 was obtained. The amount of power required for 24 hours of operation was DC 0.022 Wh.
[0030]
[Example 2]
The electrolytic treatment of the water to be treated was carried out under the same electrolysis conditions as in Example 1, except that the positive and negative electrodes were inverted every time the applied voltage was intermittently applied when the supply of the water to be treated in Example 1 was stopped. The number was counted and the relationship between the operation time and the number of microorganisms shown in FIG. 7 was obtained. The amount of power required for 24 hours of operation was the same as in Example 1.
[0031]
[Example 3]
Electrolysis of water to be treated under the same electrolysis conditions as in Example 2 except that the applied voltage at the time of stopping the supply of treated water in Example 2 was maintained at 3.4 to 6.5 V / electrolysis tank lower than the applied voltage at the time of supplying treated water. Processing was performed and the number of microorganisms was counted, and the relationship between the operation time and the number of microorganisms shown in FIG. 8 was obtained. The amount of power required for 24 hours of operation was 0.019 Wh.
[0032]
【The invention's effect】
In the method of the present invention, water to be treated containing microorganisms is supplied to an electrolytic cell in which a carbonaceous three-dimensional fixed bed electrode is installed, and the electrodes are polarized by energizing the electrodes, and the microorganisms are applied to the polarized electrodes. In the electrolytic treatment method of the water to be treated for sterilizing the microorganisms by contacting, when the amount of water to be treated to the electrolytic bath is zero, the amount of current supplied to the electrode is compared with that at the time of supplying the water to be treated. A method (claim 1) characterized by reducing the size.
When treated water such as tap water is supplied to the fixed-bed three-dimensional electrode electrolytic cell of the present invention, microorganisms in the treated water come into contact with a carbonaceous electrode to which a potential is applied and are strongly oxidized and reduced on their surfaces. Sterilization takes place when a reaction is received or contacted with a high-potential current, its activity is weakened or it dies.
[0033]
However, the water to be treated is not always supplied to the electrolytic cell used in the method of the present invention, but the water to be treated is not supplied. Therefore, the energization is stopped for much power saving. There are microorganisms that have not yet been sterilized at the beginning of the current stoppage, and these microorganisms are propagated when the power supply is stopped until the water to be treated is supplied again and the power supply is restarted, and are taken out of the electrolytic cell without being sufficiently sterilized. End up.
However, according to the method of the present invention, even when the supply of the treated water is stopped, the amount is smaller than that when the treated water is supplied. Like to do. As a result, the conventional problem of the propagation of microorganisms due to the interruption of energization can be solved and the predetermined purpose of power saving can be achieved at a satisfactory level.
[0034]
As a specific method of reducing the energization amount when the non-treated water is not supplied, a method of intermittently applying the same potential as when the treated water is supplied (Claims 2 and 3), or an applied voltage when supplying the treated water There is a method (Claim 4) that lowers the applied voltage.
In the former method, the electric power at the time of stopping the voltage application of the intermittent voltage application is saved, and the propagation of microorganisms is suppressed by the intermittent voltage application. In particular, when the voltage application direction is reversed every time the applied voltage is intermittently applied (Claim 3), the sterilization or reproductive suppression that occurs in the positively polarized portion of the carbonaceous electrode is reversed. It is possible to wake up on both sides, and to suppress microbial growth more effectively.
In the latter method, the amount of power for the reduced voltage is saved, and even when a voltage is applied to such an extent that no substantial current flows, it is sufficient to suppress the growth of microorganisms. The maximum effect is obtained.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing a first example of a monopolar fixed-bed electrolytic cell that can be used as an electrolytic cell of the method of the present invention.
FIG. 2 is a schematic longitudinal sectional view showing an example of a bipolar fixed-bed electrolytic cell that can be used as an electrolytic cell of the method of the present invention.
FIG. 3 is a schematic longitudinal sectional view showing another example of a bipolar fixed-bed electrolytic cell that can be used in the method of the present invention.
4 is a graph showing the relationship between the operation time and the number of microorganisms in Comparative Example 1. FIG.
FIG. 5 is a graph showing the relationship between the operation time and the number of microorganisms in Comparative Example 2.
6 is a graph showing the relationship between the operation time and the number of microorganisms in Example 1. FIG.
7 is a graph showing the relationship between the operation time and the number of microorganisms in Example 2. FIG.
8 is a graph showing the relationship between the operation time and the number of microorganisms in Example 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Water supply water supply port 2 ... Water supply water outlet 3 ... Electrolyzer main body 4 ... Fixed bed type cathode 5 ... Anode 12 ... Electrolyzer main body 13 ... Anode terminal 14 ... Cathode terminal for feeding 15 ... Fixed floor

Claims (4)

微生物を含有する被処理水を、炭素質三次元固定床型電極が設置された電解槽に供給し、該電極に通電することにより分極させ、該分極した電極に前記微生物を接触させることにより前記微生物の滅菌を行なう被処理水の電解処理方法において、前記電解槽への被処理水非供給時の前記電極への通電量を被処理水供給時と比較して同電圧あるいは小さくすることを特徴とする方法。Water to be treated containing microorganisms is supplied to an electrolytic cell in which a carbonaceous three-dimensional fixed-bed electrode is installed, polarized by energizing the electrodes, and the microorganisms are brought into contact with the polarized electrodes. In the method of electrolytic treatment of water to be treated for sterilizing microorganisms, the amount of current supplied to the electrode when the water to be treated is not supplied to the electrolytic bath is set to the same voltage or smaller than that when the water to be treated is supplied. And how to. 被処理水非供給時に前記電極への通電を間欠的に停止するようにした請求項1に記載の方法。The method according to claim 1, wherein energization of the electrode is intermittently stopped when non-treated water is not supplied. 通電方向を間欠通電毎に反転するようにした請求項2に記載の方法。The method according to claim 2, wherein the energization direction is reversed every intermittent energization. 被処理水非供給時の印加電圧を被処理水供給時の印加電圧より低くした請求項1に記載の方法。The method according to claim 1, wherein the applied voltage when the treated water is not supplied is lower than the applied voltage when the treated water is supplied.
JP29904795A 1995-10-24 1995-10-24 Electrolytic treatment method of water to be treated Expired - Fee Related JP3664274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29904795A JP3664274B2 (en) 1995-10-24 1995-10-24 Electrolytic treatment method of water to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29904795A JP3664274B2 (en) 1995-10-24 1995-10-24 Electrolytic treatment method of water to be treated

Publications (2)

Publication Number Publication Date
JPH09117766A JPH09117766A (en) 1997-05-06
JP3664274B2 true JP3664274B2 (en) 2005-06-22

Family

ID=17867531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29904795A Expired - Fee Related JP3664274B2 (en) 1995-10-24 1995-10-24 Electrolytic treatment method of water to be treated

Country Status (1)

Country Link
JP (1) JP3664274B2 (en)

Also Published As

Publication number Publication date
JPH09117766A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
US5256268A (en) Water treatment method and apparatus
JPH10151463A (en) Water treatment method
JP3664274B2 (en) Electrolytic treatment method of water to be treated
JP3214724B2 (en) Fixed-bed type three-dimensional electrode type electrolytic cell
JP3206819B2 (en) Electrochemical treatment method for water to be treated
JPH08164390A (en) Electrochemical treatment of water to be treated
JP3150370B2 (en) Electrolytic treatment method for treated water containing microorganisms
JP3014427B2 (en) Treatment of treated water
JP3220355B2 (en) Electrochemical treatment method for water to be treated
JP3040549B2 (en) High purity water production method
JP3056511B2 (en) Treatment water treatment equipment
JP3180318B2 (en) Electrochemical treatment of treated water containing microorganisms
JP3020553B2 (en) Fixed-bed type three-dimensional electrode type electrolytic cell
JP3573385B2 (en) Electrolyzer for electrolytic treatment of water to be treated
JPH1087381A (en) Treatment of porous carbonaceous electrode, carbonaceous fixed bed type three-dimensional electrode electrolytic cell and treatment of water
JP2971571B2 (en) 3D electrode type electrolytic cell
JPH1043765A (en) Electrolyte cell for electrolytic treatment of water to be treated
JPH09117768A (en) Electrolytic treatment of water to be treated
JP2000005755A (en) Treatment of water and device therefor
JPH0686982A (en) Electrochemical treatment of water
JP3020551B2 (en) Electrochemical treatment of treated water containing microorganisms
JP2922255B2 (en) Electrochemical treatment of treated water containing microorganisms
JP3178728B2 (en) 3D electrode type electrolytic cell
JPH05309362A (en) Treatment of object water for treatment and multiple-electrodes-type electrolytic bath for treatment of object water for treatment
JPH09225467A (en) Water treatment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees