JP3040549B2 - High purity water production method - Google Patents

High purity water production method

Info

Publication number
JP3040549B2
JP3040549B2 JP3234046A JP23404691A JP3040549B2 JP 3040549 B2 JP3040549 B2 JP 3040549B2 JP 3234046 A JP3234046 A JP 3234046A JP 23404691 A JP23404691 A JP 23404691A JP 3040549 B2 JP3040549 B2 JP 3040549B2
Authority
JP
Japan
Prior art keywords
raw water
exchange resin
ion exchange
electrolytic cell
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3234046A
Other languages
Japanese (ja)
Other versions
JPH05212381A (en
Inventor
剛 高橋
浩幸 橋本
美奈 佐藤
猛 中沢
貞司 葛巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Konica Minolta Inc
Original Assignee
Organo Corp
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Konica Minolta Inc filed Critical Organo Corp
Priority to JP3234046A priority Critical patent/JP3040549B2/en
Publication of JPH05212381A publication Critical patent/JPH05212381A/en
Application granted granted Critical
Publication of JP3040549B2 publication Critical patent/JP3040549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、イオン交換樹脂と電気
化学的処理を併用する高純度水の製造方法に関し、より
詳細には脱イオン水を製造する際にまず原水の電気化学
的処理を行った後、イオン交換樹脂で処理することによ
り使用するイオン交換樹脂の汚染を防止し、得られる高
純度水の純度を更に向上させるための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity water using both an ion exchange resin and an electrochemical treatment. More specifically, the present invention relates to a method for producing a deionized water by first conducting an electrochemical treatment of raw water. The present invention relates to a method for preventing contamination of an ion exchange resin to be used by treating it with an ion exchange resin after the treatment, and further improving the purity of the high-purity water obtained.

【0002】[0002]

【従来技術】従来から各種用途例えば半導体製造、学術
実験、精密機械の洗浄用等として蒸留、滅菌及び脱イオ
ン等により精製された高純度水が使用されている。この
ような高純度水を脱イオンにより製造するためには、例
えばイオン交換樹脂を充填したイオン交換塔に原水を供
給し該イオン交換樹脂に不純物イオンを吸着させて原水
の純度を向上させることにより製造されている。しかし
この方法によると原水中に存在する有機物、懸濁固形
物、微生物等によりイオン交換樹脂が汚染され、比較的
短期間でイオン交換樹脂の交換を行わなければならなく
なる。又イオン交換樹脂の汚染を回復するために各種の
薬剤で回生処理することも行われているがコスト高にな
り、更に使用済薬剤の廃棄による環境汚染の問題も生ず
るため、簡便な方法でイオン交換樹脂の汚染を防止する
技術の開発が要請されている。
2. Description of the Related Art Conventionally, high-purity water purified by distillation, sterilization, deionization, or the like has been used for various purposes such as semiconductor manufacturing, academic experiments, and cleaning of precision instruments. In order to produce such high-purity water by deionization, for example, by supplying raw water to an ion-exchange tower filled with an ion-exchange resin and adsorbing impurity ions to the ion-exchange resin, the purity of the raw water is improved. Being manufactured. However, according to this method, the ion exchange resin is contaminated by organic substances, suspended solids, microorganisms and the like present in the raw water, and the exchange of the ion exchange resin must be performed in a relatively short period of time. In order to recover the contamination of the ion-exchange resin, regenerative treatment with various chemicals is also performed. However, the cost increases, and furthermore, there is a problem of environmental pollution due to disposal of the used chemicals. There is a demand for the development of a technique for preventing contamination of the exchange resin.

【0003】[0003]

【発明が解決すべき問題点】イオン交換樹脂の汚染に繋
がる因子としては原水中の有機物、懸濁固形物が最も顕
著で、該原水中の有機物や懸濁物を除去するために該原
水をイオン交換塔に供給する前に各種のフィルターによ
り濾過した後にイオン交換樹脂と接触させることにより
該イオン交換樹脂の汚染を防止することは広く行われて
いる。しかしイオン交換樹脂を汚染する不純物は濾過に
より除去できる固形分だけでなく微生物のようにフィル
ターを通り抜けてしまうような微細な不純物も含まれて
いる。従ってイオン交換樹脂の汚染を防止するためには
濾過操作を併用するだけでは不十分であり、より有効な
処理方法が望まれている。
Problems to be Solved by the Invention Organic substances and suspended solids in raw water are the most prominent factors contributing to contamination of ion exchange resins. In order to remove organic substances and suspended substances in the raw water, the raw water is removed. It has been widely practiced to prevent the ion exchange resin from being contaminated by filtering it with various filters before supplying it to the ion exchange tower and then contacting the ion exchange resin with the ion exchange resin. However, impurities contaminating the ion exchange resin include not only solids that can be removed by filtration but also fine impurities that pass through the filter like microorganisms. Therefore, in order to prevent the ion exchange resin from being contaminated, it is not sufficient to use a filtration operation alone, and a more effective treatment method is desired.

【0004】[0004]

【発明の目的】本発明は、イオン交換樹脂を使用して高
純度の脱イオン水を製造する際に電気化学的処理を併用
することにより、前記イオン交換樹脂の汚染を最小限に
抑制し該イオン交換樹脂の交換頻度や回生処理の頻度を
少なくし長期間に亘って安定して前記脱イオン水を製造
するための方法を提供することを目的とする。
An object of the present invention is to minimize the contamination of the ion exchange resin by using an electrochemical treatment together with the production of high-purity deionized water using the ion exchange resin. It is an object of the present invention to provide a method for stably producing the deionized water over a long period of time by reducing the frequency of ion exchange resin exchange and the frequency of regenerative treatment.

【0005】[0005]

【問題点を解決するための手段】本発明は、不純物を含
有する原水をイオン交換樹脂で接触処理し高純度水を製
造する方法において、前記原水を固定床型三次元電極の
陽極電位が+0.2 〜+1.2 V(vs.SCE) 、陰極電位が0
〜−1.0 V(vs.SCE) となるように電圧が印加された
定床型三次元電極電解槽に供給し該原水を電気化学的に
処理した後に前記イオン交換樹脂に接触させ処理するこ
とを特徴とする高純度水の製造方法である。なお本発明
方法では電極等の表面上で実質的な電気化学反応を生起
しないため本発明に使用される槽は電気化学的処理槽と
いうべきであるが、一般呼称に従って電解槽と称する。
SUMMARY OF THE INVENTION The present invention relates to a method for producing high-purity water by contacting raw water containing impurities with an ion-exchange resin .
Anode potential is +0.2 to +1.2 V (vs. SCE), cathode potential is 0
To a fixed bed type three-dimensional electrode electrolytic cell to which a voltage is applied so as to have a voltage of about -1.0 V (vs. SCE), electrochemically treating the raw water, and then contacting the ion exchange resin. And producing a high-purity water. Although the bath used in the present invention for not causing substantial electrochemical reaction on the surface of the electrodes, etc. In the present invention method should say electrochemical treatment bath, it referred to as electrolytic cells according to the general designation.

【0006】以下本発明を詳細に説明する。本発明方法
は、前述の通りイオン交換樹脂の汚染を防止するだけで
なく固定床型三次元電極電解槽で原水を処理することに
より原水中のカルシウムイオンやマグネシウムイオン等
の硬度成分が減少するのでイオン交換樹脂のイオン負荷
も低減できることを特徴としている。本発明ではイオン
交換樹脂が充填されたイオン交換塔等に原水を供給する
前に該原水を固定床型三次元電極電解槽に供給して電気
化学的処理を行うが、該固定床型三次元電極電解槽は次
のような構成のものを使用する。該電解槽は、固定床型
三次元電極電解槽つまり固定床型単極式電解槽及び固定
床式複極式電解槽であり、これらの電解槽では該電解槽
の三次元電極が莫大な表面積を有するため電極表面と原
水との接触面積を増大させることができ、これにより装
置サイズを小さくし、かつ電気化学的処理の効率を上げ
ることができる点で有利である。
Hereinafter, the present invention will be described in detail. The method of the present invention not only prevents the contamination of the ion exchange resin as described above, but also reduces the hardness components such as calcium ions and magnesium ions in the raw water by treating the raw water in the fixed-bed type three-dimensional electrode electrolytic cell. It is characterized in that the ion load of the ion exchange resin can be reduced. In the present invention, before the raw water is supplied to an ion exchange tower or the like filled with an ion exchange resin, the raw water is supplied to a fixed-bed type three-dimensional electrode electrolytic cell to perform an electrochemical treatment. An electrode electrolytic cell having the following configuration is used. The electrolytic cell is a fixed-bed type three-dimensional electrode electrolytic cell, that is, a fixed-bed monopolar electrolytic cell and a fixed-bed bipolar electrode electrolytic cell. In these electrolytic cells, the three-dimensional electrode of the electrolytic cell has an enormous surface area. Is advantageous in that the contact area between the electrode surface and the raw water can be increased, whereby the size of the device can be reduced and the efficiency of the electrochemical treatment can be increased.

【0007】前記固定床型三次元電極電解槽における電
極は一般に三次元電極と給電用電極を含み、該三次元電
極は前述の使用する電解槽に応じた形状を有し、固定床
型複極式電解槽を使用する場合には、前記原水が透過可
能な多孔質材料、例えば粒状、球状、フェルト状、織布
状、多孔質ブロック状等の形状を有する活性炭、グラフ
ァイト、炭素繊維等の炭素系材料から、あるいは同形状
を有するニッケル、銅、ステンレス、鉄、チタン等の金
属材料、更にそれら金属材料に貴金属のコーティングを
施した材料から形成された複数個の好ましくは粒状、球
状、繊維状、フェルト状、織布状、多孔質ブロック状、
スポンジ状の誘電体を直流電場内に置き、両端に設置し
た平板状又はエキスパンドメッシュ状やパーフォレーテ
ィッドプレート状等の多孔板体から成る給電用電極間に
直流電圧あるいは交流電圧を印加して前記誘電体を分極
させ該誘電体の一端及び他端にそれぞれ陽極及び陰極を
形成させて成る三次元電極を収容した固定床型複極式電
解槽とすることが可能であり、この他に単独で陽極とし
てあるいは陰極として機能する三次元材料を交互に短絡
しないように設置しかつ電気的に接続して固定床型複極
式電解槽とすることができる。
The electrodes in the fixed-bed type three-dimensional electrode electrolytic cell generally include a three-dimensional electrode and a power supply electrode, and the three-dimensional electrode has a shape corresponding to the above-described electrolytic cell to be used. When using an electrolytic cell, a porous material that is permeable to the raw water, for example, activated carbon, graphite, carbon fiber or other carbon having a shape such as granular, spherical, felt, woven or porous block. A plurality of, preferably granular, spherical, or fibrous formed from metallic materials such as nickel, copper, stainless steel, iron, and titanium having the same shape, and a material obtained by coating the metallic material with a noble metal. , Felt, woven, porous block,
A sponge-like dielectric is placed in a DC electric field, and a DC voltage or an AC voltage is applied between power supply electrodes formed of a porous plate such as a flat plate or an expanded mesh or a perforated plate provided at both ends to apply the dielectric. It is possible to use a fixed-bed type bipolar electrolytic cell containing a three-dimensional electrode formed by polarizing the body and forming an anode and a cathode at one end and the other end of the dielectric, respectively. Or a three-dimensional material functioning as a cathode can be installed so as not to be alternately short-circuited and electrically connected to form a fixed-bed type bipolar electrolytic cell.

【0008】前記誘電体として活性炭、グラファイト、
炭素繊維等の炭素系材料を使用しかつ陽極から酸素ガス
を発生させながら原水を処理する場合には、前記誘電体
が酸素ガスにより酸化され炭酸ガスとして溶解し易くな
る。これを防止するためには前記誘電体の陽分極する側
にチタン等の基材上に酸化イリジウム、酸化ルテニウム
等の白金族金属酸化物を被覆し通常不溶性金属電極とし
て使用される多孔質材料を接触状態で設置し、酸素発生
が主として該多孔質材料上で生ずるようにすればよい。
又他のタイプの固定床型複極式電解槽として、例えば円
筒状の電解槽本体内に給電用陽極及び陰極を設置し、該
給電用両極間に、三次元電極として機能する多数の導電
性固定床形成用粒子と該固定床形成用粒子より少数の電
気絶縁性の合成樹脂等から成る絶縁粒子とをほぼ均一に
混在させた電解槽がある。該電解槽では両給電用電極間
に通電して電位を印加すると、固定床形成用粒子が前記
誘電体と同様に分極しその一端が正に又他端が負に帯電
して各固定床形成用粒子に電位が生じ、各粒子に原水中
の微生物を滅菌する機能が付与される。なお前記絶縁粒
子は、前記両給電用電極が導電性の前記固定床形成用粒
子により電気的に接続されて短絡することを防止する機
能を有する。
[0008] Activated carbon, graphite,
When using a carbon-based material such as carbon fiber and treating raw water while generating oxygen gas from the anode, the dielectric is easily oxidized by oxygen gas and easily dissolved as carbon dioxide gas. In order to prevent this, a porous material which is usually used as an insoluble metal electrode by coating a platinum group metal oxide such as iridium oxide or ruthenium oxide on a base material such as titanium on the side where the dielectric material is positively polarized is used. What is necessary is just to install in a contact state, and to generate | occur | produce oxygen mainly on this porous material.
Also, as another type of fixed-bed type bipolar electrolytic cell, for example, a power supply anode and a cathode are installed in a cylindrical electrolytic cell body, and a large number of conductive electrodes functioning as three-dimensional electrodes are provided between the power supply electrodes. There is an electrolytic cell in which particles for forming a fixed bed and insulating particles made of a synthetic resin or the like having a smaller number of particles than the particles for forming a fixed bed are almost uniformly mixed. In the electrolytic cell, when a potential is applied by applying a current between both power supply electrodes, the fixed bed forming particles are polarized in the same manner as the dielectric, and one end thereof is positively charged and the other end is negatively charged, thereby forming each fixed bed. A potential is generated in the particles for use, and a function of sterilizing microorganisms in raw water is given to each particle. The insulating particles have a function of preventing the two power supply electrodes from being electrically connected by the conductive fixed bed forming particles to cause a short circuit.

【0009】又単極式固定床型電解槽を使用する場合に
は、前記した誘電体又は単独で陽極としてあるいは陰極
として機能する三次元材料各1個を隔膜を介してあるい
は介さずに電解槽内に設置するようにする。前述の原水
をこの固定床型三次元電極電解槽に供給すると、該原水
中の微生物は液流動によって前記電解槽の陽極や陰極あ
るいは誘電体や固定床形成用粒子等に接触しそれらの表
面で強力な酸化還元反応を受けたり高電位の電流に接触
し、その活動が弱まったり自身が死滅して滅菌が行われ
ると考えられる。
When a monopolar fixed-bed electrolytic cell is used, the above-mentioned dielectric or one of the three-dimensional materials which independently function as an anode or a cathode can be used with or without a diaphragm. To be installed inside. When the raw water described above is supplied to the fixed-bed type three-dimensional electrode electrolytic cell, the microorganisms in the raw water come into contact with the anode or cathode of the electrolytic cell, the dielectric, the particles for forming the fixed bed, or the like by the liquid flow, and at the surface thereof. It is thought that sterilization is performed by receiving a strong oxidation-reduction reaction or contacting a high-potential current, weakening its activity or killing itself.

【0010】従って本発明方法では、原水中の微生物が
電圧が印加された電極や誘電体や固定床形成用粒子等に
接触すれば充分であり、両極間に電流を流して水素及び
酸素等のガス発生を伴う実質的な電解反応を生起させる
ことは必須ではなく、むしろ実質的な電解反応が生じな
い低い電位を電極表面に印加することが好ましい。これ
は実質的な電解反応が生じた場合に原水成分にガス発生
に起因する化学的変化を与えてしまい、これにより複雑
な作用が原水に起こることがあり、一定の処理性能を常
に維持することが難しくなるからであり、更に微生物を
滅菌する以外のガス発生反応に無駄な電力を使うことに
なり不経済でもある。特に多量の酸素ガスや水素ガスの
発生が生ずる電位では、これらガスによる酸化還元反応
が起こることがあり、又それら発生ガスが電極表面上を
覆ってしまい電極性能を悪くすることがある。従って本
発明の電気化学的処理においては、印加電位を陽極電位
が実質的な酸素発生を伴わない+0.2 〜+1.2 V(vs.S
CE) 、陰極電位が実質的な水素発生を伴わない0〜−1.
0 V(vs.SCE) となるようにする
Therefore, in the method of the present invention, it is sufficient if the microorganisms in the raw water come into contact with the electrode, the dielectric, the particles for forming the fixed bed, etc., to which a voltage is applied. It is not essential to cause a substantial electrolytic reaction accompanied by gas generation, but rather it is preferable to apply a low potential at which no substantial electrolytic reaction occurs to the electrode surface. This causes a chemical change due to gas generation to the raw water component when a substantial electrolytic reaction occurs, which may cause a complicated effect on the raw water and constantly maintain a constant processing performance. In addition, wasteful electric power is used for a gas generation reaction other than sterilization of microorganisms, which is uneconomical. In particular, at a potential where a large amount of oxygen gas or hydrogen gas is generated, an oxidation-reduction reaction may be caused by these gases, and the generated gas may cover the electrode surface and deteriorate the electrode performance. Therefore, in the electrochemical treatment of the present invention, the applied potential is set to +0.2 to +1.2 V (vs. S.
CE), the cathode potential is 0 to -1 without substantial hydrogen generation.
0 V (vs. SCE) .

【0011】この電気化学的処理によりイオン交換樹脂
の汚染を招き易い原水中の微生物類が死滅する。従って
電気化学的処理を行った原水をイオン交換樹脂塔等に供
給して脱イオン水製造を行うとイオン交換樹脂層で微生
物が増殖することなく微生物によってイオン交換樹脂を
汚染させることなく長期間に亘って高純度の脱イオン水
を製造することが可能になる。更に水道水等の原水には
前述の微生物以外にカルシウムイオンやマグネシウムイ
オンが含有され、該水道水をそのままイオン交換樹脂塔
等に供給すると前記カルシウムイオンやマグネシウムイ
オンがイオン交換樹脂の負荷となる。しかし該原水を前
記固定床型三次元電極電解槽を使用して電気化学的に処
理すると該電解槽の陰極や三次元電極上でカルシウムイ
オンやマグネシウムイオンの水酸化物として析出したり
あるいは例えば電解槽の液出口に設置したフィルタ等に
補集されて前記原水から除去されるため、イオン交換樹
脂のイオン負荷を低減させることができ、処理容量を増
加させることができる。
[0011] By this electrochemical treatment, microorganisms in the raw water that easily cause contamination of the ion exchange resin are killed. Therefore, when the raw water subjected to the electrochemical treatment is supplied to an ion exchange resin tower or the like to produce deionized water, the microorganisms do not grow in the ion exchange resin layer and the ion exchange resin is not contaminated by the microorganisms for a long time. It is possible to produce high-purity deionized water over a wide range. Furthermore, raw water such as tap water contains calcium ions and magnesium ions in addition to the above-mentioned microorganisms. When the tap water is supplied to an ion exchange resin tower or the like as it is, the calcium ions and magnesium ions become loads on the ion exchange resin. However, when the raw water is electrochemically treated using the fixed-bed type three-dimensional electrode electrolytic cell, the raw water is precipitated as a hydroxide of calcium ions or magnesium ions on the cathode or the three-dimensional electrode of the electrolytic cell or, for example, electrolytically treated. Since it is collected from the raw water by being collected by a filter or the like installed at the liquid outlet of the tank, the ion load of the ion exchange resin can be reduced, and the processing capacity can be increased.

【0012】いずれの形態の電極を使用する場合でも、
処理すべき原水が流れる電解槽内に液が電極や誘電体や
微粒子に接触せずに流通できる空隙があると原水の処理
効率が低下するため、電極等は電解槽内の原水の流れが
ショートパスしないように配置することが望ましい。前
記電解槽内を隔膜で区画して陽極室と陰極室を形成して
も、隔膜を使用せずにそのまま通電を行うこともできる
が、隔膜を使用せずかつ電極の極間距離あるいは誘電体
と電極、又は誘電体相互の間隔を狭くする場合には短絡
防止のため電気絶縁性のスペーサとして例えば有機高分
子材料で作製した網状スペーサ等を両極間あるいは前記
誘電体間等に挿入することができる。又隔膜を使用する
場合には流通する原水の移動を妨害しないように多孔質
例えばその開口率が10%以上95%以下好ましくは20%以
上80%以下のものを使用することが望ましく、該隔膜は
少なくとも前記原水が透過できる程度の孔径の微細孔を
有していなければならない。
Regardless of the type of electrode used,
If there is a gap in the electrolytic cell through which the raw water to be treated flows so that the liquid can flow without coming into contact with the electrodes, dielectrics, or fine particles, the raw water treatment efficiency will decrease. It is desirable to arrange so as not to pass. Even if the anode chamber and the cathode chamber are formed by partitioning the inside of the electrolytic cell with a diaphragm, energization can be performed as it is without using a diaphragm, but without using a diaphragm and the distance between the electrodes or a dielectric material. In the case where the distance between the electrode and the dielectric or between the dielectrics is reduced, for example, a mesh spacer made of an organic polymer material or the like may be inserted between the electrodes or between the dielectrics as an electrically insulating spacer to prevent a short circuit. it can. When a diaphragm is used, it is desirable to use a porous material having an opening ratio of 10% or more and 95% or less, preferably 20% or more and 80% or less, so as not to hinder the movement of raw water flowing therethrough. Must have at least micropores having a pore size that allows the raw water to pass through.

【0013】前記電解槽に供給される原水の流量は、該
原水が効率的に電極等の表面と接触できるように規定す
ればよく、完全な層流であると横方向の移動が少なく電
極、誘電体及び微粒子表面との接触が少なくなるため、
乱流状態を形成するようにすることが好ましく、500 以
上のレイノルズ数を有する乱流とすることが特に好まし
い。更に本発明に使用する電解槽の前後の少なくとも一
方特に該電解槽の前にフィルターを設置して電解槽に入
る前の原水から固形不純物を除去しておくことが望まし
い。なお、本発明方法に使用する電解槽では該電解槽に
漏洩電流が生じ該漏洩電流が電解槽から原水を通して他
の部材例えば配管に流れ込み、該配管を電気化学的に腐
食させ溶出させることがあるため、電解槽内の陽陰極が
相対しない電極背面部及び/又は前記電解槽の出入口配
管内に、前記原水より導電性の高い部材をその一端を接
地可能なように設置して前記漏洩電流を遮断することが
できる。
The flow rate of the raw water supplied to the electrolytic cell may be determined so that the raw water can efficiently contact the surface of the electrode or the like. Because the contact with the dielectric and the particle surface is reduced,
It is preferable to form a turbulent state, and it is particularly preferable to form a turbulent flow having a Reynolds number of 500 or more. Further, it is desirable to install a filter at least before and after the electrolytic cell used in the present invention, particularly before the electrolytic cell to remove solid impurities from raw water before entering the electrolytic cell. In the electrolytic cell used in the method of the present invention, a leakage current occurs in the electrolytic cell, and the leakage current flows from the electrolytic cell through raw water to another member such as a pipe, and the pipe may be electrochemically corroded and eluted. Therefore, a member having higher conductivity than the raw water is installed so that one end thereof can be grounded, and the leakage current is provided on the back surface of the electrode where the positive and negative electrodes do not face each other and / or in the inlet / outlet pipe of the electrolytic bath. Can be shut off.

【0014】このように前記固定床型三次元電極電解槽
により電気化学的に処理され微生物が死滅し、かつ硬度
成分等が除去されて純度が向上した原水は、次いでイオ
ン交換樹脂と接触し脱イオンされ、更に高純度の脱イオ
ン水が製造される。使用するイオン交換樹脂は脱イオン
水製造に従来から使用されているものを制限なく使用す
ればよく、粒状、粉状等の弱酸性カチオン交換樹脂(交
換基として例えばカルボン酸基を有する)あるいは強酸
性カチオン交換樹脂(交換基として例えばスルホン酸基
を有する)又は弱塩基性アニオン交換樹脂(交換基とし
て例えば3級アミン基を有する)あるいは強塩基性アニ
オン交換樹脂(交換基として例えば4級アミン基を有す
る)を単独であるいは組み合わせて使用し脱イオン水を
製造する。該イオン交換樹脂と電気化学的処理された原
水との接触はどのようにしてもよいが、不純物混入を抑
制するため、前記電解槽から密閉した配管を通して前記
イオン交換樹脂を収容した例えばイオン交換塔等に前記
原水を導き、該原水を十分にイオン交換樹脂に接触させ
て脱イオンした後、イオン交換塔等から取り出して高純
度脱イオン水とする。前記イオン交換樹脂のうち、特に
水素型の強酸性カチオン交換樹脂はカルシウム及びマグ
ネシウム等の硬度成分除去及び微生物の滅菌に有効で、
一方水酸基型の強塩基性アニオン交換樹脂は有機物の除
去及び微生物の滅菌に有効であるが、処理水が前述の電
解槽で処理されて特に硬度成分除去と滅菌が行われてい
るため、前記処理水が前記カチオン及びアニオン交換樹
脂と接触すると両交換樹脂における微生物の滅菌作用と
の相乗効果により、前記電解槽及び該イオン交換樹脂に
よる処理により、該イオン交換樹脂の汚染を最小限に抑
制するとともに微生物含有量が極めて小さい高純度水を
製造することができる。
[0014] The raw water, which has been treated electrochemically by the fixed-bed type three-dimensional electrode electrolytic cell to kill microorganisms and to remove hardness components and the like to improve its purity, is then brought into contact with an ion exchange resin to be removed. It is ionized and produces higher purity deionized water. The ion exchange resin to be used may be any of those conventionally used in the production of deionized water without limitation, and may be a granular or powdery weakly acidic cation exchange resin (having, for example, a carboxylic acid group as an exchange group) or a strong acid. Cation exchange resin (for example, having a sulfonic acid group as an exchange group) or weakly basic anion exchange resin (for example, having a tertiary amine group as an exchange group) or strongly basic anion exchange resin (for example, a quaternary amine group as an exchange group) Is used alone or in combination to produce deionized water. The ion-exchange resin may be brought into contact with the raw water that has been subjected to the electrochemical treatment in any manner. For example, an ion-exchange column containing the ion-exchange resin through a closed pipe from the electrolytic cell may be used in order to suppress contamination of impurities. The raw water is guided to the above, and the raw water is sufficiently brought into contact with an ion exchange resin to be deionized. Then, the raw water is taken out from an ion exchange tower or the like to obtain high-purity deionized water. Among the ion exchange resins, hydrogen-type strongly acidic cation exchange resins are particularly effective in removing hardness components such as calcium and magnesium and sterilizing microorganisms.
On the other hand, a strongly basic anion exchange resin of a hydroxyl group type is effective for removing organic substances and sterilizing microorganisms. However, since treated water is treated in the above-mentioned electrolytic cell, and particularly, hardness components are removed and sterilized, the above treatment is performed. When water comes into contact with the cation and anion exchange resins, a synergistic effect with the sterilization action of microorganisms in both exchange resins, by treatment with the electrolytic cell and the ion exchange resins, while minimizing contamination of the ion exchange resins. It is possible to produce high-purity water having an extremely low microorganism content.

【0015】次に添付図面に基づいて本発明に使用でき
る電解槽の好ましい例及び該電解槽とイオン交換樹脂を
使用する高純度脱イオン水の製造方法を説明するが、本
発明方法はこれらに限定されるものではない。図1は、
本発明方法の電解槽として使用可能な固定床型複極式電
解槽の一例を示す概略縦断面図、図2は、図1の電解槽
とイオン交換塔を使用して原水から高純度脱イオン水を
製造するシステムのフローチャートである。上下にフラ
ンジ1を有する円筒形の電解槽本体2の内部上端近傍及
び下端近傍にはそれぞれメッシュ状の給電用陽極ターミ
ナル3と給電用陰極ターミナル4が設けられている。電
解槽本体2は、長期間の使用又は再度の使用にも耐え得
る電気絶縁材料で形成することが好ましく、特に合成樹
脂であるポリエピクロルヒドリン、ポリビニルメタクリ
レート、ポリエチレン、ポリプロピレン、ポリ塩化ビニ
ル、ポリ塩化エチレン、フェノール−ホルムアルデヒド
樹脂等が好ましく使用できる。正の直流電圧を与える前
記陽極ターミナル3は、例えば炭素材 (例えば活性
炭、炭、コークス、石炭等)、グラファイト材(例えば
炭素繊維、カーボンクロス、グラファイト等)、炭素複
合材 (例えば炭素に金属を粉状で混ぜ焼結したもの
等)、活性炭素繊維不織布(例えばKE−1000フェル
ト、東洋紡株式会社)、又はこれに白金、白金、パラジ
ウムやニッケルを担持させた材料、更に寸法安定性電極
(白金族酸化物被覆チタン材) 、白金被覆チタン材、ニ
ッケル材、ステンレス材、鉄材等から形成される。又陽
極ターミナル3に対向し負の直流電圧を与える陰極ター
ミナル4は、例えば白金、ステンレス、チタン、ニッケ
ル、銅、ハステロイ、グラファイト、炭素材、軟鋼ある
いは白金族金属をコーティングした金属材料等から形成
されている。
Next, preferred examples of an electrolytic cell which can be used in the present invention and a method for producing high-purity deionized water using the electrolytic cell and an ion exchange resin will be described with reference to the accompanying drawings. It is not limited. FIG.
FIG. 2 is a schematic vertical sectional view showing an example of a fixed-bed type bipolar electrolytic cell that can be used as an electrolytic cell in the method of the present invention. FIG. 2 shows high-purity deionized water from raw water using the electrolytic cell of FIG. 1 and an ion exchange tower. It is a flowchart of the system which produces water. A meshed power supply anode terminal 3 and a power supply cathode terminal 4 are provided near an upper end and a lower end of a cylindrical electrolytic cell main body 2 having upper and lower flanges 1, respectively. The electrolytic cell main body 2 is preferably formed of an electric insulating material that can withstand long-term use or re-use. Particularly, synthetic resins such as polyepichlorohydrin, polyvinyl methacrylate, polyethylene, polypropylene, polyvinyl chloride, and poly (ethylene chloride) are used. And a phenol-formaldehyde resin. The anode terminal 3 that gives a positive DC voltage is, for example, a carbon material (eg, activated carbon, charcoal, coke, coal, etc.), a graphite material (eg, carbon fiber, carbon cloth, graphite, etc.), a carbon composite material (eg, Activated carbon fiber non-woven fabric (for example, KE-1000 felt, Toyobo Co., Ltd.), or a material having platinum, platinum, palladium or nickel supported thereon, and a dimensionally stable electrode
(Platinum group oxide coated titanium material), formed of platinum coated titanium material, nickel material, stainless steel material, iron material and the like. The cathode terminal 4 which faces the anode terminal 3 and gives a negative DC voltage is made of, for example, platinum, stainless steel, titanium, nickel, copper, hastelloy, graphite, carbon material, mild steel or a metal material coated with a platinum group metal. ing.

【0016】前記両電極ターミナル3、4間には複数個
の図示の例では3個のスポンジ状の固定床5が積層さ
れ、かつ該固定床5間及び該固定床5と前記両電極ター
ミナル3、4間に4枚の多孔質の隔膜あるいはスペーサ
ー6が挟持されている。各固定床5は電解槽本体2の内
壁に密着し固定床5の内部を通過せず、固定床5と電解
槽本体2の側壁との間を流れる処理液の漏洩流がなるべ
く少なくなるように配置されている。隔膜を使用する場
合には該隔膜として織布、素焼板、粒子焼結ブラスチッ
ク、多孔板、イオン交換膜等が用いられ、スペーサーと
して電気絶縁性材料で製作された織布、多孔板、網、棒
状材等が使用される。該電解槽本体2は図2に示すよう
に、その出口側が粒状イオン交換樹脂8が収容された円
筒状のイオン交換塔9に接続されている。前述の電解槽
本体2に図2に矢印で示すように下方から水道水等の原
水を供給しながら通電を行うと、前記各固定床5が図1
の如く下面が正に上面が負に分極して固定床5内及び固
定床5間に電位が生じ、該電解槽内を流通する原水はこ
の電位を有する固定床5に接触してその中に含有される
黴や細菌の滅菌及びカルシウムイオン及びマグネシウム
イオン除去等の処理が行われて該電解槽の上方から取り
出される。取り出された原水の純度は電解槽に供給され
る前の原水と比較して大きく上昇している。この原水を
前記イオン交換塔9に供給すると、該イオン交換塔9中
のイオン交換樹脂8は電気化学的処理が行われ清浄化さ
れた原水とのみ接触するため、イオン交換樹脂が微生物
により汚染されることなく、かつイオン負荷が低減され
るので、イオン水の製造における処理容量を増加させる
ことができる。
A plurality of sponge-like fixed beds 5 are stacked between the electrode terminals 3 and 4 in the illustrated example, and between the fixed beds 5 and between the fixed bed 5 and the electrode terminals 3. 4, four porous diaphragms or spacers 6 are sandwiched. Each fixed bed 5 is in close contact with the inner wall of the electrolytic cell main body 2 and does not pass through the inside of the fixed bed 5 so that the leakage flow of the processing liquid flowing between the fixed bed 5 and the side wall of the electrolytic cell main body 2 is minimized. Are located. When a diaphragm is used, a woven fabric, an unglazed plate, a particle sintered plastic, a perforated plate, an ion exchange membrane, or the like is used as the diaphragm, and a woven fabric, a perforated plate, a mesh made of an electrically insulating material is used as a spacer. , A rod-shaped material or the like is used. As shown in FIG. 2, the outlet side of the electrolytic cell main body 2 is connected to a cylindrical ion exchange tower 9 containing a granular ion exchange resin 8. When electricity is supplied to the electrolytic cell main body 2 while supplying raw water such as tap water from below as shown by arrows in FIG.
As shown in the figure, the lower surface is polarized positively and the upper surface is negatively polarized, and an electric potential is generated in the fixed bed 5 and between the fixed beds 5, and the raw water flowing in the electrolytic cell comes into contact with the fixed bed 5 having this electric potential and Treatments such as sterilization of contained molds and bacteria and removal of calcium ions and magnesium ions are carried out and taken out from above the electrolytic cell. The purity of the raw water taken out is significantly higher than that of the raw water before being supplied to the electrolytic cell. When this raw water is supplied to the ion exchange tower 9, the ion exchange resin 8 in the ion exchange tower 9 comes into contact only with the raw water that has been subjected to the electrochemical treatment and has been cleaned. And the ion load is reduced, so that the processing capacity in the production of ionic water can be increased.

【0017】図3は、本発明に使用できる複極型固定床
式電解槽の他の例を示すもので、該電解槽は図1の電解
槽の固定床5の給電用陰極4に向かう側つまり陽分極す
る側にメッシュ状の不溶性金属材料7を密着状態で設置
したものであり、他の部材は図1と同一であるので同一
符号を付して説明を省略する。直流電圧が印加された固
定床5はその両端部において最も大きく分極が生じ、ガ
ス発生が伴う場合には該両端部において最も激しくガス
発生が生ずる。従って最も強く陽分極するつまり最も激
しく酸素ガスが発生する固定床5の給電用陰極4に向か
う端部には最も速く溶解が生じる。図示の通りこの部分
に不溶性金属材料7を設置しておくと、該不溶性金属材
料7の過電圧が固定床5を形成する炭素系材料の過電圧
より低いため殆どの酸素ガスが前記不溶性金属材料7か
ら発生し固定床5は殆ど酸素ガスと接触しなくなるた
め、前記固定床5の溶解は効果的に抑制される。又該電
解槽2に供給された水道水等の原水は図1の場合と同様
に処理された後、イオン交換塔に供給される。
FIG. 3 shows another example of a bipolar-type fixed-bed electrolytic cell which can be used in the present invention. The electrolytic cell is a side of the fixed bed 5 of the electrolytic cell shown in FIG. In other words, a mesh-shaped insoluble metal material 7 is placed in close contact with the side to be positively polarized, and the other members are the same as those in FIG. The fixed bed 5 to which the DC voltage is applied has the largest polarization at both ends, and when gas generation is involved, gas generation occurs most severely at both ends. Accordingly, the end of the fixed bed 5 toward the power supply cathode 4 of the fixed bed 5, which is the most strongly anodic polarized, that is, generates the most intense oxygen gas, dissolves fastest. As shown in the figure, when the insoluble metal material 7 is installed in this portion, most of the oxygen gas is removed from the insoluble metal material 7 because the overvoltage of the insoluble metal material 7 is lower than that of the carbon-based material forming the fixed bed 5. Since the generated fixed bed 5 hardly comes into contact with the oxygen gas, the dissolution of the fixed bed 5 is effectively suppressed. Raw water such as tap water supplied to the electrolytic cell 2 is treated in the same manner as in FIG. 1 and then supplied to the ion exchange tower.

【0018】図4は、本発明方法に使用できる複極型固
定床式電解槽の他の例を示すものである。上下にフラン
ジ11を有する円筒形の電解槽本体12の内部上端近傍及び
下端近傍にはそれぞれメッシュ状の給電用陽極13と給電
用陰極14が設けられている。電解槽本体12は、長期間の
使用又は再度の使用にも耐え得る電気絶縁材料特に合成
樹脂で形成することが好ましい。前記両給電用電極13、
14間には、導電性材料例えば炭素系材料で形成された多
数の固定床形成用粒子15と該固定床形成用粒子15より少
数の例えば合成樹脂製の絶縁粒子18とがほぼ均一に混在
している。該絶縁粒子18は、前記給電用陽極13及び給電
用陰極14が完全に短絡することを防止する機能を有して
いる。このような構成から成る電解槽に下方から矢印で
示すように原水を供給しながら通電を行うと、前記各固
定床形成用粒子15が給電用陽極13側が負に又給電用陰極
14側が正に分極して表面積が莫大な三次元電極として機
能し、図1及び図3の電解槽と同様にして前記原水の滅
菌等が行われ、その後イオン交換塔へ供給されて高純度
脱イオン水が製造される。
FIG. 4 shows another example of a bipolar-type fixed-bed electrolytic cell which can be used in the method of the present invention. A meshed power supply anode 13 and a power supply cathode 14 are provided near the upper end and the lower end of a cylindrical electrolytic cell main body 12 having a flange 11 at the top and bottom, respectively. The electrolytic cell body 12 is preferably formed of an electrically insulating material, particularly a synthetic resin, that can withstand long-term use or re-use. The two power supply electrodes 13,
A large number of fixed bed forming particles 15 formed of a conductive material such as a carbon-based material and a smaller number of the fixed bed forming particles 15, for example, insulating particles 18 made of a synthetic resin are substantially uniformly mixed between the conductive materials. ing. The insulating particles 18 have a function of preventing the power supply anode 13 and the power supply cathode 14 from being completely short-circuited. When electricity is supplied to the electrolytic cell having such a configuration while supplying raw water from below as indicated by an arrow, each of the fixed bed forming particles 15 becomes negative on the power supply anode 13 side and the power supply cathode
The 14 side is positively polarized and functions as a three-dimensional electrode having a huge surface area. The raw water is sterilized in the same manner as in the electrolytic cell shown in FIGS. 1 and 3, and then supplied to an ion exchange tower to remove high-purity water. Ionized water is produced.

【0019】図5は、本発明に使用できる単極型固定床
式電解槽を例示するものである。上下にフランジ21を有
する円筒形の電解槽本体22の内部上端近傍及び下端近傍
にはそれぞれメッシュ状の給電用陽極23と給電用陰極24
が設けられている。電解槽本体22は、長期間の使用又は
再度の使用にも耐え得る電気絶縁材料特に合成樹脂で形
成することが好ましい。前記両給電用電極23、24間に
は、隔膜26を挟んで導電性材料例えば炭素繊維をフェル
ト状に成形した1対の固定床25が陽極室内及び陰極室内
に充填され、前記陽極室内及び陰極室内のフェルト状炭
素繊維はそれぞれ前記給電用陽極23と給電用陰極24に電
気的に接続され、陽極室内の固定床は正に陰極室内の固
定床は負に帯電されている。この電解槽に下方から矢印
で示すように原水を供給しながら通電を行うと、図1、
図3及び図4の場合と同様に固定床25が表面積が莫大な
三次元電極として機能して原水中の黴や細菌等の微生物
の滅菌等が行われる。
FIG. 5 exemplifies a monopolar fixed-bed electrolytic cell that can be used in the present invention. A mesh-shaped power supply anode 23 and a power supply cathode 24 are provided near an upper end and a lower end of a cylindrical electrolytic cell body 22 having upper and lower flanges 21, respectively.
Is provided. The electrolytic cell main body 22 is preferably formed of an electrically insulating material that can withstand long-term use or re-use, especially a synthetic resin. A pair of fixed floors 25 made of a conductive material such as carbon fiber in a felt shape with a diaphragm 26 interposed therebetween is filled in the anode chamber and the cathode chamber between the power feeding electrodes 23 and 24, and the anode chamber and the cathode chamber are filled. The felt-like carbon fibers in the room are electrically connected to the power supply anode 23 and the power supply cathode 24, respectively, and the fixed floor in the anode room is positively charged and the fixed floor in the cathode room is negatively charged. When electricity is supplied to this electrolytic cell while supplying raw water from below as shown by arrows, FIG.
3 and 4, the fixed bed 25 functions as a three-dimensional electrode having an enormous surface area to sterilize microorganisms such as fungi and bacteria in raw water.

【0020】[0020]

【実施例】以下に本発明方法による水道水からの高純度
脱イオン水の製造の実施例を記載するが、該実施例は本
発明方法を限定するものではない。
EXAMPLES Hereinafter, examples of the production of high-purity deionized water from tap water according to the method of the present invention will be described, but the examples do not limit the method of the present invention.

【実施例1】図1に示した電解槽を図2に示すようにイ
オン交換塔とともに使用して水道水から高純度処理水を
製造した。前記電解槽は、塩化ビニル樹脂製の高さ 100
mm、内径50mmのフランジ付円筒形であり、該円筒体
の内部に開孔率60%の炭素繊維から成る直径50mm、厚
さ10mmの固定床3個を、開口率85%で直径50mm及び
厚さ 1.5mmのポリエチレン樹脂製隔膜4枚で挟み込
み、上下両端の隔膜にそれぞれ白金をその表面にメッキ
したチタン製である直径48mm厚さ 1.0mmのメッシュ
状陽極ターミナル及び陰極ターミナルを接触させて設置
した。前記イオン交換塔は塩化ビニル製の高さ500 m
m、内径50mmの円筒体とし、該イオン交換塔内に粒径
0.45〜0.60mmのナトリウム型のイオン交換樹脂アンバ
ーライトIR−120 B(商品名)800 gを収容した。
EXAMPLE 1 High-purity treated water was produced from tap water by using the electrolytic cell shown in FIG. 1 together with an ion exchange tower as shown in FIG. The electrolytic cell is made of vinyl chloride resin and has a height of 100.
mm, an inner diameter of 50 mm, and three fixed beds made of carbon fiber having a porosity of 60% and having a diameter of 50 mm and a thickness of 10 mm are provided inside the cylindrical body. It was sandwiched between four polyethylene resin diaphragms having a thickness of 1.5 mm, and the upper and lower diaphragms were placed in contact with a mesh anode terminal and a cathode terminal each having a diameter of 48 mm and a thickness of 1.0 mm made of titanium each having platinum plated on the surface thereof. . The ion exchange tower is made of vinyl chloride and has a height of 500 m.
m, a cylinder having an inner diameter of 50 mm, and a particle size in the ion exchange tower.
A sodium-type ion-exchange resin Amberlite IR-120B (trade name) of 0.45 to 0.60 mm (800 g) was accommodated therein.

【0021】前記電解槽に、微生物数25個/ミリリット
ルでカルシウムイオン濃度21.6ppm及びマグネシウム
濃度9.7 ppmである水道水を原水として1.2 リットル
/分の速度で供給した。該電解槽から取り出された水道
水をそのまま前記イオン交換塔に導き、イオン交換樹脂
と接触させた後、該イオン交換塔から高純度処理水とし
て取り出した。イオン交換塔から取り出された高純度処
理水中の微生物数は1個/ミリリットルでカルシウムイ
オン濃度は0.2 ppm及びマグネシウムイオン濃度は0
ppmであった。電解槽及びイオン交換塔(イオン交換
塔は1日に1回常法により再生した)への水道水の供給
を14日間継続した後、イオン交換塔から取り出される処
理水の微生物数、カルシウムイオン濃度及びマグネシウ
ムイオン濃度を再度測定したところ、それぞれ0〜1個
/ミリリットル、0.2 〜0.3 ppm及び0〜0.1 ppm
であり、得られた処理水の純度は初期の処理水の純度と
ほぼ同じであった。なおカルシウム及びマグネシウムの
測定値は炭酸カルシウム換算で示した。
Tap water having a number of microorganisms of 25 / ml and a calcium ion concentration of 21.6 ppm and a magnesium concentration of 9.7 ppm was supplied as raw water to the electrolytic cell at a rate of 1.2 liter / min. The tap water taken out of the electrolytic cell was led to the ion exchange tower as it was, and brought into contact with an ion exchange resin, and then taken out of the ion exchange tower as high-purity treated water. The number of microorganisms in the high-purity treated water removed from the ion exchange tower was 1 / ml, the calcium ion concentration was 0.2 ppm, and the magnesium ion concentration was 0.
ppm. After supplying tap water to the electrolytic cell and the ion exchange tower (the ion exchange tower was regenerated once a day by the usual method) for 14 days, the number of microorganisms and calcium ion concentration of the treated water taken out of the ion exchange tower And the magnesium ion concentration were measured again to be 0-1 / ml, 0.2-0.3 ppm and 0-0.1 ppm, respectively.
And the purity of the obtained treated water was almost the same as the purity of the initial treated water. The measured values of calcium and magnesium are shown in terms of calcium carbonate.

【0022】[0022]

【比較例1】実施例1と同じ水道水を使用し、該水道水
を原水として直接実施例1のイオン交換塔に供給してイ
オン交換により処理水を製造し、得られた処理水の微生
物数、カルシウムイオン濃度及びマグネシウムイオン濃
度を測定したところ、それぞれ18個/ミリリットル、0.
2 ppm及び0.1 ppmであった。イオン交換塔(イオ
ン交換塔は1日に1回常法により再生した)への水道水
の供給を14日間継続した後、再度微生物数、カルシウム
イオン濃度及びマグネシウムイオン濃度を測定したとこ
ろ、それぞれ28個/ミリリットル、0.5 〜0.7 ppm及
び0.2 〜0.4 ppmであり、得られた処理水の純度は初
期の脱イオン水の純度より大きく低下した。
Comparative Example 1 The same tap water as in Example 1 was used, and the tap water was directly supplied as raw water to the ion exchange tower of Example 1 to produce treated water by ion exchange. When the number, calcium ion concentration and magnesium ion concentration were measured, they were 18 / ml and 0.1, respectively.
They were 2 ppm and 0.1 ppm. After the supply of tap water to the ion exchange tower (the ion exchange tower was regenerated once a day by the ordinary method) was continued for 14 days, the number of microorganisms, calcium ion concentration and magnesium ion concentration were measured again. Parts / ml, 0.5-0.7 ppm and 0.2-0.4 ppm, the purity of the resulting treated water was much lower than the purity of the initial deionized water.

【0023】[0023]

【実施例2】実施例1で使用した電解槽及びイオン交換
塔を使用して水道水から処理水を製造した。実施例1の
水道水に塩化カルシウム及び塩化マグネシウムを溶解し
てカルシウムイオン濃度を20.0ppm及びマグネシウム
イオン濃度を10.0ppmとした水道水を原水として使用
した。この原水を実施例1と同様の条件で電気化学的処
理及びイオン交換処理を行い、イオン交換塔から取り出
された高純度処理水中のカルシウムイオン濃度及びマグ
ネシウムイオン濃度を測定したところそれぞれ0.17pp
m及び0.05ppmであった。電解槽及びイオン交換塔へ
の水道水の供給を14日間継続した後、再度処理水のカル
シウムイオン濃度及びマグネシウムイオン濃度を測定し
たところ、それぞれ0.21ppm及び0.06ppmであり、
得られた処理水の純度は初期の脱イオン水の純度はほぼ
同じであった。
Example 2 Treated water was produced from tap water using the electrolytic cell and ion exchange tower used in Example 1. Calcium chloride and magnesium chloride were dissolved in the tap water of Example 1, and tap water having a calcium ion concentration of 20.0 ppm and a magnesium ion concentration of 10.0 ppm was used as raw water. This raw water was subjected to an electrochemical treatment and an ion exchange treatment under the same conditions as in Example 1, and the calcium ion concentration and the magnesium ion concentration in the high-purity treated water taken out of the ion exchange tower were measured to be 0.17 pp.
m and 0.05 ppm. After continuing the supply of tap water to the electrolytic cell and the ion exchange tower for 14 days, when the calcium ion concentration and the magnesium ion concentration of the treated water were measured again, they were 0.21 ppm and 0.06 ppm, respectively.
The purity of the obtained treated water was almost the same as that of the initial deionized water.

【0024】[0024]

【比較例2】実施例2と同じ水道水を使用し、該水道水
を原水として直接実施例1のイオン交換塔に供給してイ
オン交換により処理水を製造し、得られた処理水のカル
シウムイオン濃度及びマグネシウムイオン濃度を測定し
たところ、それぞれ0.35ppm及び0.20ppmであっ
た。イオン交換塔への水道水の供給を14日間継続した
後、再度カルシウムイオン濃度及びマグネシウムイオン
濃度を測定したところ、それぞれ、1.72ppm及び1.15
ppmであり、得られた処理水の純度は初期の処理水の
純度より大きく低下した。
Comparative Example 2 The same tap water as in Example 2 was used, and the tap water was directly supplied as raw water to the ion exchange tower of Example 1 to produce treated water by ion exchange. When the ion concentration and the magnesium ion concentration were measured, they were 0.35 ppm and 0.20 ppm, respectively. After continuing the supply of tap water to the ion exchange tower for 14 days, when the calcium ion concentration and the magnesium ion concentration were measured again, they were 1.72 ppm and 1.15, respectively.
ppm, and the purity of the obtained treated water was significantly lower than the purity of the initial treated water.

【0025】[0025]

【実施例3】実施例1で使用した電解槽及びイオン交換
塔を使用して水道水から処理水を製造した。実施例1の
水道水に大腸菌を添加して大腸菌数を1200個/ミリリッ
トルとした水道水を原水として使用した。この原水を実
施例1と同様の条件で電気化学的処理及びイオン交換処
理を行い、イオン交換塔から取り出された高純度処理水
中の大腸菌数を測定したところ98個/ミリリットルであ
った。電解槽及びイオン交換塔への原水の供給を7日間
継続した後、再度処理水中の大腸菌数を測定したとこ
ろ、95個/ミリリットルであり、得られた処理水の純度
は初期の脱イオン水の純度とほぼ同じであった。
Example 3 Treated water was produced from tap water using the electrolytic cell and ion exchange tower used in Example 1. E. coli was added to the tap water of Example 1 to make the number of E. coli 1200 / ml, and tap water was used as raw water. This raw water was subjected to an electrochemical treatment and an ion exchange treatment under the same conditions as in Example 1, and the number of E. coli in the high-purity treated water taken out from the ion exchange tower was measured to be 98 / ml. After the supply of raw water to the electrolytic cell and the ion exchange tower was continued for 7 days, the number of Escherichia coli in the treated water was measured again. As a result, the number of E. coli was 95 / ml. The purity was almost the same.

【0026】[0026]

【比較例3】実施例3と同じ水道水を原水として使用
し、該原水を直接実施例1のイオン交換塔に供給してイ
オン交換により処理水を製造し、得られた処理水の大腸
菌数を測定したところ、685 個/ミリリットルであっ
た。イオン交換塔への原水の供給を7日間継続した後、
再度微生物数を測定したところ、980 個/ミリリットル
であり、得られた処理水の純度は初期の処理水の純度よ
り大きく低下した。
Comparative Example 3 The same tap water as in Example 3 was used as raw water, and the raw water was directly supplied to the ion exchange tower of Example 1 to produce treated water by ion exchange. Was 685 particles / ml. After continuing the supply of raw water to the ion exchange tower for 7 days,
When the number of microorganisms was measured again, it was 980 / ml, and the purity of the obtained treated water was much lower than the purity of the initial treated water.

【0027】[0027]

【実施例4】高さ1500mm、内径120 mmとしたイオン
交換塔内に粒径0.45〜0.60mmの水素型のカチオン交換
樹脂アンバーライトIR−120 B(商品名)2400gと水
酸基型のアニオン交換樹脂IRA−410 (商品名)4800
gを収容した。微生物数25個/ミリリットルでカルシウ
ムイオン濃度21.6ppm及びマグネシウム濃度9.7 pp
mである水道水に泥炭を浸漬させて得たフミン質を含む
液を添加して全有機炭素(TOC)を2.8 ppmとした
原水(電気伝導度は282 μS/cm2 )を実施例1と同
じ電解槽に1.2 リットル/分の速度で供給した。該電解
槽から取り出された原水をそのまま前記イオン交換塔に
導き、イオン交換樹脂と接触させた後、該イオン交換塔
から高純度処理水として取り出した。
Example 4 In an ion exchange column having a height of 1500 mm and an inner diameter of 120 mm, 2400 g of hydrogen type cation exchange resin Amberlite IR-120B (trade name) having a particle size of 0.45 to 0.60 mm and a hydroxyl group type anion exchange resin IRA-410 (product name) 4800
g. 21.6 ppm of calcium ion and 9.7 pp of magnesium at 25 microorganisms / milliliter
The raw water (electrical conductivity is 282 μS / cm 2 ) containing humic substances obtained by immersing peat in tap water having a total organic carbon (TOC) of 2.8 ppm was added to Example 1. The same electrolytic cell was supplied at a rate of 1.2 liter / min. The raw water taken out of the electrolytic cell was led to the ion exchange tower as it was, and brought into contact with the ion exchange resin, and then taken out of the ion exchange tower as high-purity treated water.

【0028】イオン交換塔から取り出された高純度処理
水中の微生物数は1個/ミリリットルであり、TOCは
0.7 ppmで電気伝導度は0.22μS/cm2 であった。
電解槽及びイオン交換塔(イオン交換塔は約1000リット
ルの原水を処理する毎に常法により再生した)への水道
水の供給を6カ月間継続した後、イオン交換塔から取り
出される処理水の微生物数等を再度測定したところ、微
生物数は0〜1個/ミリリットル、TOCは0.8 pp
m、電気伝導度は0.1 〜0.3 μS/cm2であり、得ら
れた処理水の純度は初期の処理水の純度とほぼ同じであ
った。
The number of microorganisms in the high-purity treated water taken out of the ion exchange tower is 1 / ml, and the TOC is
At 0.7 ppm, the electrical conductivity was 0.22 μS / cm 2 .
After the supply of tap water to the electrolytic cell and the ion exchange tower (the ion exchange tower was regenerated by a standard method every time about 1000 liters of raw water was treated) for 6 months, the treated water extracted from the ion exchange tower When the number of microorganisms was measured again, the number of microorganisms was 0-1 / ml, and TOC was 0.8 pp.
m, the electric conductivity was 0.1 to 0.3 μS / cm 2 , and the purity of the obtained treated water was almost the same as the purity of the initial treated water.

【0029】[0029]

【比較例4】実施例3と同じ水道水を原水として使用
し、該原水を直接実施例3のイオン交換塔に供給してイ
オン交換により処理水を製造した。イオン交換塔(イオ
ン交換塔は約1000リットルの原水を処理する毎に常法に
より再生した)への原水の供給を6カ月間継続した後、
イオン交換塔から取り出される処理水の微生物数等を再
度測定したところ、微生物数は3〜7個/ミリリット
ル、TOCは1.4 ppm、電気伝導度は0.2 〜0.7 μS
/cm2 であり、それぞれ実施例4の場合より大きく増
加していた。
Comparative Example 4 The same tap water as in Example 3 was used as raw water, and the raw water was directly supplied to the ion exchange tower of Example 3 to produce treated water by ion exchange. After continuing the supply of raw water to the ion exchange tower (the ion exchange tower was regenerated by a standard method every time about 1000 liters of raw water was treated),
When the number of microorganisms in the treated water taken out from the ion exchange tower was measured again, the number of microorganisms was 3 to 7 / ml, TOC was 1.4 ppm, and electric conductivity was 0.2 to 0.7 μS.
/ Cm 2 , each of which is larger than that of Example 4.

【0030】本発明方法は、不純物を含有する原水をイ
オン交換樹脂で脱イオンして高純度脱イオン水を製造す
る際に、前記原水をイオン交換樹脂に接触させる前に
質的なガス発生を伴わせずに電気化学的に処理すること
該原水に化学変化を生じさせることなく該原水中の微
生物を除去することにより前記イオン交換樹脂の汚染を
防止し、イオン交換樹脂の交換頻度や回生処理の頻度を
少なくし、高純度脱イオン水を安定して製造できるよう
にした方法である(請求項1)。本発明方法は水道水等
の微生物や硬度成分を含む原水を対象とし、該原水を前
処理や後処理を行うことなく電解槽とイオン交換樹脂を
充填したイオン交換塔等を接続してそのラインに流通さ
せるのみでイオン交換樹脂の汚染を効果的に防止し高純
度脱イオン水を定常的に得ることができる。
In the method of the present invention, when deionizing raw water containing impurities with an ion-exchange resin to produce high-purity deionized water, the raw water is actually contacted with the ion-exchange resin before the raw water is brought into contact with the ion-exchange resin.
Electrochemical treatment without qualitative gas generation removes microorganisms in the raw water without causing a chemical change in the raw water, thereby preventing contamination of the ion-exchange resin. This is a method in which the frequency of resin exchange and the frequency of regenerative treatment are reduced so that high-purity deionized water can be stably produced (claim 1). The method of the present invention is directed to raw water containing microorganisms and hardness components such as tap water, and connects the electrolytic tank to an ion exchange tower or the like filled with an ion exchange resin without performing pretreatment or post treatment of the raw water. Only by allowing the ion-exchange resin to flow through, it is possible to effectively prevent contamination of the ion exchange resin and to constantly obtain high-purity deionized water.

【0031】つまり原水を固定床型三次元電極電解槽に
供給すると、該原水中の微生物は電位を与えられた陽極
や陰極あるいは誘電体や固定床形成用粒子等に接触しそ
れらの表面で強力な酸化還元反応を受けたり高電位の電
流に接触し、その活動が弱まったり自身が死滅して滅菌
が行われ、又原水中に含まれるカルシウムイオンやマグ
ネシウムイオン等はその水酸化物として原水から除去さ
れ、イオン交換樹脂の負荷も低減させることができる。
従ってイオン交換樹脂の処理容量を増加させることもで
きる。更に前記電解槽の後にフィルターを設置し該電解
槽で電気化学的に処理された前記原水を前記フィルター
を通過させた後に、イオン交換樹脂に接触させるように
すると(請求項2)、電解槽で生ずる沈澱や微生物の死
骸等が除去されてイオン交換樹脂の汚染を更に効果的に
防止することができる。イオン交換樹脂としては、弱酸
性カチオン交換樹脂、強酸性カチオン交換樹脂、弱塩基
性アニオン交換樹脂及び強塩基性アニオン交換樹脂等を
使用することができ(請求項3)、各樹脂は硬度成分除
去と滅菌に対して独自の有効性を有し用途に応じて使用
する樹脂を選択すると所望の高純度水を製造することが
できる。
That is, when the raw water is supplied to the fixed-bed type three-dimensional electrode electrolytic cell, the microorganisms in the raw water come into contact with a potential-applied anode or cathode, a dielectric substance, particles for forming a fixed bed, etc. Undergoes an oxidation-reduction reaction or contacts a high-potential electric current, and its activity is weakened or it is killed and sterilized, and calcium ions and magnesium ions contained in the raw water are converted from the raw water as hydroxides. It is removed and the load on the ion exchange resin can be reduced.
Therefore, the processing capacity of the ion exchange resin can be increased. Further , a filter is installed after the electrolytic cell ,
The raw water electrochemically treated in the tank is filtered by the filter
After passing through, make contact with the ion exchange resin
Then, (claim 2), sedimentation in the electrolytic cell and death of microorganisms
The debris and the like are removed, so that contamination of the ion exchange resin can be more effectively prevented. As the ion exchange resin, a weakly acidic cation exchange resin, a strongly acidic cation exchange resin, a weakly basic anion exchange resin, a strongly basic anion exchange resin, or the like can be used (claim 3), and each resin has a hardness component removed. Desired high-purity water can be produced by selecting a resin to be used in accordance with the application, having a unique effect on sterilization.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の電解槽として使用可能な固定床型
複極式電解槽の一例を示す概略縦断面図。
FIG. 1 is a schematic longitudinal sectional view showing an example of a fixed bed type bipolar electrolytic cell that can be used as an electrolytic cell in the method of the present invention.

【図2】図1の電解槽とイオン交換塔を使用して原水か
ら高純度脱イオン水を製造するシステムのフローチャー
ト。
FIG. 2 is a flowchart of a system for producing high-purity deionized water from raw water using the electrolytic cell and the ion exchange tower of FIG. 1;

【図3】本発明に使用できる複極型固定床式電解槽の他
の例を示す概略縦断面図。
FIG. 3 is a schematic longitudinal sectional view showing another example of a bipolar fixed-bed electrolytic cell that can be used in the present invention.

【図4】本発明方法に使用できる複極型固定床式電解槽
の他の例を示す概略縦断面図。
FIG. 4 is a schematic longitudinal sectional view showing another example of a bipolar fixed bed electrolytic cell that can be used in the method of the present invention.

【図5】本発明に使用できる単極型固定床式電解槽を例
示する概略縦断面図。
FIG. 5 is a schematic longitudinal sectional view illustrating a monopolar fixed bed electrolytic cell that can be used in the present invention.

【符号の説明】 1・・・フランジ 2・・・電解槽本体 3、4・・・
給電用電極ターミナル 5・・・固定床 6・・・スペーサー 7・・・不溶性
金属材料 8・・・イオン交換樹脂 9・・・イオン交
換塔 11・・・フランジ 12・・・電解槽本体 13、14・・・給電用電極ターミナル 15・・・固定床形
成用粒子 18・・・絶縁粒子 21・・・フランジ 22・
・・電解槽本体 23、24・・・給電用電極ターミナル
25・・・固定床 26・・・隔膜
[Description of Signs] 1 ... Flange 2 ... Electrolyzer main body 3,4 ...
Electrode terminal for power supply 5 ・ ・ ・ Fixed bed 6 ・ ・ ・ Spacer 7 ・ ・ ・ Insoluble metal material 8 ・ ・ ・ Ion exchange resin 9 ・ ・ ・ Ion exchange tower 11 ・ ・ ・ Flange 12 ・ ・ ・ Electrolyzer main body 13, 14 ・ ・ ・ Power supply electrode terminal 15 ・ ・ ・ Fixed bed forming particles 18 ・ ・ ・ Insulating particles 21 ・ ・ ・ Flange 22 ・
..Electrolyzer main bodies 23, 24 ... Electrode terminals for power supply
25 ... fixed bed 26 ... diaphragm

フロントページの続き (72)発明者 佐藤 美奈 東京都日野市さくら町1番地コニカ株式 会社内 (72)発明者 中沢 猛 東京都文京区本郷5丁目5番16号オルガ ノ株式会社内 (72)発明者 葛巻 貞司 埼玉県戸田市川岸1丁目4番9号オルガ ノ株式会社総合研究所内 (56)参考文献 特開 昭60−71098(JP,A) 特公 昭53−385(JP,B2) 特公 昭53−14861(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C02F 1/42 C02F 1/46 - 1/48 B01J 47/00 - 47/14 Continued on the front page (72) Inventor Mina Sato 1 Konica Corporation, Sakura-cho, Hino-shi, Tokyo (72) Inventor Takeshi Nakazawa 5-5-16-1 Hongo, Bunkyo-ku, Tokyo Organo Corporation (72) Invention Person Sadaji Kuzumaki 1-4-9 Kawagishi, Toda City, Saitama Prefecture Inside the Research Laboratory of Organo Co., Ltd. (56) References JP-A-60-71098 (JP, A) JP-A-53-385 (JP, B2) 53-14861 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/42 C02F 1/46-1/48 B01J 47/00-47/14

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 不純物を含有する原水をイオン交換樹脂
で接触処理し高純度水を製造する方法において、前記原
水を固定床型三次元電極の陽極電位が+0.2 〜+1.2 V
(vs.SCE) 、陰極電位が0〜−1.0 V(vs.SCE) となる
ように電圧が印加された固定床型三次元電極電解槽に供
給し該原水を電気化学的に処理した後に前記イオン交換
樹脂に接触させ処理することを特徴とする高純度水の製
造方法。
1. A method for producing high-purity water by contacting raw water containing impurities with an ion-exchange resin, wherein the raw water has a fixed bed type three-dimensional electrode having an anode potential of +0.2 to +1.2 V.
(Vs. SCE), the cathode potential becomes 0 to -1.0 V (vs. SCE)
A method for producing high-purity water, comprising supplying the raw water to the fixed-bed type three-dimensional electrode electrolytic cell to which the voltage is applied, electrochemically treating the raw water, and then contacting the raw water with the ion-exchange resin for treatment.
【請求項2】 前記固定床型三次元電極電解槽で電気化
学的に処理された前記原水をフィルターを通過させた後
に、前記イオン交換樹脂に接触させるようにした請求項
1に記載の方法。
2. The method according to claim 1, wherein the fixed bed type three-dimensional electrode electrolytic cell is electrified.
After passing the chemically treated raw water through a filter
2. The method according to claim 1 , further comprising contacting the ion exchange resin with the ion exchange resin .
【請求項3】 イオン交換樹脂が、弱酸性カチオン交換
樹脂、強酸性カチオン交換樹脂、弱塩基性アニオン交換
樹脂及び強塩基性アニオン交換樹脂の少なくとも1種類
である請求項1又は2に記載の方法。
3. The method according to claim 1, wherein the ion exchange resin is at least one of a weakly acidic cation exchange resin, a strongly acidic cation exchange resin, a weakly basic anion exchange resin and a strongly basic anion exchange resin. .
JP3234046A 1991-04-25 1991-08-21 High purity water production method Expired - Fee Related JP3040549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3234046A JP3040549B2 (en) 1991-04-25 1991-08-21 High purity water production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-122419 1991-04-25
JP12241991 1991-04-25
JP3234046A JP3040549B2 (en) 1991-04-25 1991-08-21 High purity water production method

Publications (2)

Publication Number Publication Date
JPH05212381A JPH05212381A (en) 1993-08-24
JP3040549B2 true JP3040549B2 (en) 2000-05-15

Family

ID=26459545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3234046A Expired - Fee Related JP3040549B2 (en) 1991-04-25 1991-08-21 High purity water production method

Country Status (1)

Country Link
JP (1) JP3040549B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039070A (en) * 2001-07-27 2003-02-12 Kurita Water Ind Ltd Device and method for producing desalted water
BR0302900A (en) * 2002-01-29 2004-07-06 Mitsubishi Corp High pressure hydrogen production apparatus and production method
US8486271B2 (en) * 2009-06-26 2013-07-16 James Hardie Technology Limited Environmentally-friendly cementitious articles, formulations, methods of making and uses
CN113200583A (en) * 2021-05-13 2021-08-03 华北理工大学 Denitrification treatment device and method for polluted water

Also Published As

Publication number Publication date
JPH05212381A (en) 1993-08-24

Similar Documents

Publication Publication Date Title
US6773575B2 (en) Electrolytic cell and process for the production of hydrogen peroxide solution and hypochlorous acid
JPH10151463A (en) Water treatment method
US4619745A (en) Process for the electrochemical decontamination of water polluted by pathogenic germs with peroxide formed in situ
JP2923108B2 (en) Method for removing impurities from printed circuit board washing wastewater
JP3040549B2 (en) High purity water production method
CN214167433U (en) Electrode pair electric deionization equipment
JPH0788474A (en) Production of high purity water
JP3150370B2 (en) Electrolytic treatment method for treated water containing microorganisms
CN108033524B (en) Double-layer mixed bed membraneless electrodeionization system and method for heavy metal wastewater treatment
JP3056511B2 (en) Treatment water treatment equipment
JP3020551B2 (en) Electrochemical treatment of treated water containing microorganisms
JP3214724B2 (en) Fixed-bed type three-dimensional electrode type electrolytic cell
JP2000005755A (en) Treatment of water and device therefor
JP3014427B2 (en) Treatment of treated water
JPH0416286A (en) Electrochemical treatment of water to be treated
JPH03101892A (en) Method and device for water treatment
JPH05309362A (en) Treatment of object water for treatment and multiple-electrodes-type electrolytic bath for treatment of object water for treatment
JP3664274B2 (en) Electrolytic treatment method of water to be treated
JP2864463B2 (en) Air treatment method
JP3180318B2 (en) Electrochemical treatment of treated water containing microorganisms
JPH0741242B2 (en) Method and apparatus for treating treated water
JPH04219193A (en) Treatment of water to be treated
JPH04219194A (en) Electrochemical treatment of water to be treated
JPH09299955A (en) Electrolytic cell and treatment of water using the same
JPH05329483A (en) Treatment of water to be treated and bipolar electrolytic cell used therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees