JPH0416286A - Electrochemical treatment of water to be treated - Google Patents

Electrochemical treatment of water to be treated

Info

Publication number
JPH0416286A
JPH0416286A JP11659390A JP11659390A JPH0416286A JP H0416286 A JPH0416286 A JP H0416286A JP 11659390 A JP11659390 A JP 11659390A JP 11659390 A JP11659390 A JP 11659390A JP H0416286 A JPH0416286 A JP H0416286A
Authority
JP
Japan
Prior art keywords
electrolytic cell
water
fixed bed
treated
dimensional electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11659390A
Other languages
Japanese (ja)
Inventor
Nobutaka Goshima
伸隆 五嶋
Haruo Hakamata
袴田 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP11659390A priority Critical patent/JPH0416286A/en
Publication of JPH0416286A publication Critical patent/JPH0416286A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To conserve water and fuel cost by supplying water to be treated containing oily dispersed matter (phenol extract) to a fixed bed type three- dimensional electrode-electrolytic cell to electrochemically treat the same. CONSTITUTION:When a current is supplied to a fixed bed type three-dimensional electrode-electrolytic cell 2, for example, while bath water is supplied to said electrolytic cell 2 from below, as shown by an arrow, the under and upper surfaces of each of fixed beds 5 are respectively polarized positively and negatively to generate potential in the fixed beds 5 and across the fixed beds 5, and the bath water flowing through the electrolytic cell 2 comes into contact with the positively polarized places of the fixed beds 5 having said potential to decompose the phenol extract dispersed in the bath water and is taken out of the electrolytic cell 2 from the upper part thereof. By this method, the bath water can be purified and, if necessary, insoluble matter is filtered by a filter to almost perfectly soluble and insoluble impurities and the used bath water is used over a long period of time without being discharged to make is possible to conserve the amount of used water and fuel.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、油状分散物を有する被処理水の各種性能劣化
を抑制するために前記被処理水を電気化学的に処理する
ための方法に関し、より詳細には人体から排出される油
分及び脂肪酸類を含有する被処理水を三次元電極式電解
槽を使用して電気化学的に処理することにより前記被処
理水中の油分や脂肪酸類の分解を行うための方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for electrochemically treating water to be treated in order to suppress various performance deteriorations of water to be treated containing an oily dispersion. More specifically, by electrochemically treating water containing oil and fatty acids discharged from the human body using a three-dimensional electrode electrolytic cell, the oil and fatty acids in the water are decomposed. Concerning methods for doing so.

(従来技術) 近年の家庭用浴槽の普及や温泉ブームから浴湯水の使用
量が増大しているが、該浴湯水は使用を継続することに
より人体の垢等の油分や脂肪酸成分が浮遊して長期間使
用することが出来ない。しかしこの油分を容易に分解あ
るいは除去出来れば長期間浴湯水を使用し燃料費を節減
することが可能になる。
(Prior art) The amount of bath water used has increased due to the spread of household bathtubs and the hot spring boom in recent years, but as the bath water continues to be used, oils such as human body grime and fatty acid components float in the bath water. It cannot be used for a long time. However, if this oil content could be easily decomposed or removed, it would be possible to use bath water for a long period of time and save on fuel costs.

(発明が解決しようとする問題点) 前述した通り、従来の浴湯水等に分散している油分を効
果的に分解あるいは除去出来る方法の出現が望まれてい
る。
(Problems to be Solved by the Invention) As mentioned above, there is a desire for a method that can effectively decompose or remove oil components dispersed in conventional bath water and the like.

(発明の目的) 本発明は、前述の従来技術の欠点を解消し、分散した油
分を有する被処理水を処理して前記油分を分解あるいは
除去する方法を提供することを目的とする。
(Object of the Invention) An object of the present invention is to eliminate the drawbacks of the prior art described above and provide a method for treating water to be treated having dispersed oil to decompose or remove the oil.

(問題点を解決するための手段) 本発明は、油状分散物を含有する被処理水を固定床型三
次元電極電解槽に供給し、前記被処理水を電気化学的に
処理することを特徴とする被処理水の処理方法である。
(Means for Solving the Problems) The present invention is characterized in that water to be treated containing an oily dispersion is supplied to a fixed bed type three-dimensional electrode electrolytic cell, and the water to be treated is electrochemically treated. This is a method for treating water to be treated.

なお本発明では電極表面上で実質的な酸化還元反応のよ
うな電気化学反応を生起していないことがあるので本発
明方法に使用される槽は電気化学的処理装置というべき
であるが、一般呼称に従って電解槽と称する。
In addition, in the present invention, since an electrochemical reaction such as a substantial redox reaction may not occur on the electrode surface, the tank used in the method of the present invention should be called an electrochemical processing device, but it is not commonly used. According to the name, it is called an electrolytic cell.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、油状分散物質を含有する被処理水例えば浴湯
水や温泉水を固定床型三次元電極電解槽に供給し該電解
槽に直流又は交流電圧を印加し前記浴湯水等の油状分散
物質の分解あるいは除去を行うことを特徴とするもので
ある。
The present invention supplies water to be treated, such as bath water or hot spring water, containing an oily dispersed substance to a fixed bed type three-dimensional electrode electrolytic cell, applies a DC or AC voltage to the electrolytic cell, and processes the oily dispersed substance contained in the bath water or the like by applying a DC or AC voltage to the electrolytic cell. It is characterized by decomposing or removing.

本発明方法により除去される油状分散物とは、フェノー
ル抽出物質を意味し、油分や脂肪酸成分が含まれる。
The oily dispersion removed by the method of the present invention means a phenol extract, and contains oil and fatty acid components.

前記被処理水例えば家庭用浴槽や銭湯で使用される浴湯
水は人体が接するものであるため常に清潔に維持されな
ければならない反面、人体の皮膚上に形成されあるいは
付着している垢等の油分や脂肪酸類つまりフェノール抽
出物質により必然的に汚染される。大量の浴湯水を使用
する銭湯や温泉等の営業用浴場では浴湯水を循環させフ
ィルタ等で前記フェノール抽出物質を除去しているが、
十分な除去効率は得られないのが普通である。
The water to be treated, such as bath water used in domestic bathtubs and public baths, must be kept clean at all times because it comes into contact with the human body. and fatty acids, i.e., phenolic extractables. In commercial bathhouses such as public baths and hot springs that use large amounts of bath water, the bath water is circulated and the phenol extracted substances are removed using filters, etc.
Usually, sufficient removal efficiency cannot be obtained.

咳被処理水を固定床型三次元電極電解槽に供給すると、
該被処理水中の前記フェノール抽出物質は液流動によっ
て前記電解槽の陽極や陰極あるいは後述する誘電体や固
定床形成用粒子等に接触し特にそれらの陽極表面で強力
な酸化反応を受けかつ陰極表面で強力な還元反応を受け
て少なくともその一部が二酸化炭素と水に分解じてフェ
ノール抽出物質の除去が行われると考えられる。
When cough water to be treated is supplied to a fixed bed type three-dimensional electrode electrolyzer,
The phenol extracted substance in the water to be treated comes into contact with the anode and cathode of the electrolytic cell, or the dielectric material and particles for forming a fixed bed, which will be described later, due to liquid flow, and undergoes a strong oxidation reaction, especially on the surface of the anode, and the surface of the cathode. It is thought that the phenol extracted substances are removed by undergoing a strong reduction reaction at which at least a portion of them is decomposed into carbon dioxide and water.

従って本発明方法では、被処理水中のフェノール抽出物
質が電圧が印加された電極や誘電体や画定床形成用粒子
等に接触するだけでは不十分であり、被処理水に分散し
ているフェノール抽出物質を分解するために十分な電圧
を両極間に印加しなければならない。
Therefore, in the method of the present invention, it is not enough for the phenol extracted substances in the water to be treated to come into contact with electrodes to which a voltage is applied, dielectric materials, particles for forming defined beds, etc., and the phenol extracted substances dispersed in the water to be treated are Sufficient voltage must be applied between the poles to decompose the material.

従って本発明においては、特にフェノール抽出物質の分
解が起こる陽極の電位を+0.2〜−1.2v(νs.
SHE)として可能な限り十分にフェノール抽出物質を
分解するようにすることが望ましい。
Therefore, in the present invention, the potential of the anode where the decomposition of the phenol extract material occurs is set to +0.2 to -1.2 V (vs.
It is desirable to degrade the phenolic extractables as fully as possible (SHE).

しかし浴湯水等の大量処理のl・要がある被処理水の場
合には、本発明方法によるフェノール抽出物質分解に必
要な電力量は処理コストの大部分を占めることが多い。
However, in the case of water to be treated that requires large-scale treatment, such as bath water, the amount of electricity required to decompose the phenol extract by the method of the present invention often accounts for a large portion of the treatment cost.

電力量は、〔電力〕=〔電圧〕×〔電流〕で表され、電
流が流れずガスが発生しない場合には電力量は零である
が、ガス発生が生ずる程度の電流が流れると処理すべき
水量が重大であるため消費電力量も重大になる。フェノ
ール抽出物質分解に必要な最低電圧値はほぼ一定であり
、従って消費電力量を極力少なくするためには電流値を
減少させなければならない。処理すべき水量が僅かで流
れる電流も僅かな場合は電流値の増減はさほど消費電力
量には影響しないが、本発明の被処理水例えば浴湯水の
ような大量処理の場合には僅かな電流減少が大きく消費
電力量を減少させる。通常の電解槽における電解電圧は
、〔陽極ターミナルと陽極間の抵抗による電圧降下〕+
〔陽極の理論電解電圧〕+〔陽極の過電圧〕+〔溶液抵
抗による電圧降下〕↓〔陰極の理論電解電圧〕+〔陰極
の過電圧〕よ〔陰極ターミナルと陰極間の抵抗による電
圧降下〕により表される。
The amount of electricity is expressed as [power] = [voltage] x [current]. If no current flows and no gas is generated, the amount of electricity is zero, but if a current flows that generates gas, it is processed. Since the amount of water required is important, the amount of power consumed is also important. The minimum voltage value required for decomposition of phenol extractables is approximately constant, and therefore the current value must be reduced in order to minimize power consumption. If the amount of water to be treated is small and the current flowing is also small, an increase or decrease in the current value will not have much of an effect on the power consumption. The reduction is large and reduces power consumption. The electrolysis voltage in a normal electrolytic cell is [voltage drop due to resistance between the anode terminal and the anode] +
[Theoretical electrolysis voltage of the anode] + [Overvoltage of the anode] + [Voltage drop due to solution resistance] ↓ [Theoretical electrolysis voltage of the cathode] + [Overvoltage of the cathode] + [Voltage drop due to the resistance between the cathode terminal and the cathode] be done.

オームの法則により〔電圧〕=〔電流〕×〔抵抗〕の関
係が存在し、前述の通り最低電圧値がほぼ決められてい
るため、電流値を小さくするためには抵抗を大きくする
必要がある。抵抗に影響を及ぼす因子は各種存在するが
、最も影響が大きい因子は電解液つまり本発明では被処
理水の抵抗である。
According to Ohm's law, there is a relationship of [voltage] = [current] x [resistance], and as mentioned above, the minimum voltage value is almost determined, so in order to reduce the current value, it is necessary to increase the resistance. . There are various factors that affect the resistance, but the factor that has the greatest effect is the resistance of the electrolytic solution, that is, the water to be treated in the present invention.

該被処理水の抵抗は被処理水自身の比抵抗と極間距離に
より決定され、被処理水の比抵抗を上下させることは実
際的ではないため、実際には抵抗値は極間距離を調節し
て所定の値とすることが出来る。つまり本発明により浴
湯水等を処理する際には極間距離を大きくすることによ
り被処理水の抵抗を増大させて電流値を減少させて消費
電力量の低減を図り、これにより経済的な操業を可能に
することが望ましい。従って本発明で使用される三次元
電極式電解槽では、通常陽極として使用される三次元電
極と対極である陰極間の距離を十分に形成することが好
ましい。
The resistance of the water to be treated is determined by the resistivity of the water itself and the distance between the poles, and it is not practical to increase or decrease the resistivity of the water to be treated, so in reality, the resistance value is adjusted by adjusting the distance between the poles. can be set to a predetermined value. In other words, when treating bath water, etc., according to the present invention, by increasing the distance between the poles, the resistance of the water to be treated is increased and the current value is decreased, thereby reducing power consumption, thereby achieving economical operation. It is desirable to make it possible. Therefore, in the three-dimensional electrode type electrolytic cell used in the present invention, it is preferable to provide a sufficient distance between the three-dimensional electrode, which is normally used as an anode, and the cathode, which is a counter electrode.

浴湯水のような大量処理の場合にガス発生が伴うと、発
生するガスつまり酸素ガスと水素ガスは通常爆発限界内
の混合比で発生し、爆発の危険を回避するために空気等
の不活性ガスで希釈することが望ましく、例えば電解槽
出口に発生する電解ガスの分離手段と分離後の該電解ガ
スを空気で希釈して電解ガス濃度が4容量%以下になる
よう希釈する手段を設置することができる。
When gas is generated when processing a large amount of water such as bath water, the gases that are generated, that is, oxygen gas and hydrogen gas, are usually generated at a mixing ratio within the explosive limit, and in order to avoid the risk of explosion, inert gas such as air is used. It is desirable to dilute the electrolytic gas with gas, for example, by installing a means for separating the electrolytic gas generated at the outlet of the electrolytic cell and a means for diluting the electrolytic gas after separation with air so that the electrolytic gas concentration becomes 4% by volume or less. be able to.

浴湯水のような大量処理が必要な被処理水の処理用に使
用する電解槽は、複極型固定床式三次元電極電解槽とす
ることが好ましい。これらの被処理水の場合、処理すべ
き水量は真人で例えば1時間当たり数トンとなるため、
電解槽単位体積当たりの処理能力の高い電解槽である複
極型固定床式電解槽の使用が望ましく、該電解槽の使用
により処理すべき被処理水との接触面積を増大させるこ
とができ、これにより装置サイズを小さくし、かつ電解
の効率を上げることができる点で有利である。
It is preferable that the electrolytic cell used for treating water to be treated, such as bath water, which requires large-scale treatment, be a bipolar fixed-bed three-dimensional electrode electrolytic cell. In the case of these types of water to be treated, the amount of water to be treated is, for example, several tons per hour,
It is desirable to use a bipolar fixed bed electrolytic cell, which is an electrolytic cell with a high processing capacity per unit volume of the electrolytic cell, and by using this electrolytic cell, the contact area with the water to be treated can be increased, This is advantageous in that the device size can be reduced and the efficiency of electrolysis can be increased.

更に水道水には前述の微生物以外ζこカルシウムイオン
やマグネシウムイオンが含有され水道水の配管の内壁へ
のこれらのイオンの水酸化物としての析出による配管の
閉塞は大きな問題となっているが、多くの場合水道水を
水源として使用する浴湯水等にもカルシウムイオンやマ
グネシウムイオンが含有され、該イオンは配管に付着し
たりする。
Furthermore, tap water contains calcium and magnesium ions other than the aforementioned microorganisms, and clogging of pipes due to precipitation of these ions as hydroxides on the inner walls of tap water pipes has become a major problem. In many cases, bath water that uses tap water as a water source also contains calcium ions and magnesium ions, and these ions adhere to pipes.

被処理水中の前記カルシウムイオン及びマグネシウムイ
オンは、該被処理水を固定床型三次元電極電解槽を使用
して電気化学的に処理すると該電解槽の陰極や三次元電
極上でそれらの水酸化物として該陰極上等に析出し除去
される。
When the treated water is electrochemically treated using a fixed-bed three-dimensional electrode electrolytic cell, the calcium ions and magnesium ions in the water to be treated are hydroxylated on the cathode or three-dimensional electrode of the electrolytic cell. As a substance, it is deposited on the cathode and removed.

本発明方法に使用する電解槽は、固定床型三次元電極電
解槽つまり固定床型単極式電解槽及び固定床式複極式電
解槽であり、これらの電解槽では該電解槽の三次元電極
が真人な表面積を有するため電極表面と浴湯水等の被処
理水との接触面積を増大させることが出来る。
The electrolytic cells used in the method of the present invention are fixed-bed three-dimensional electrode electrolytic cells, that is, fixed-bed monopolar electrolytic cells and fixed-bed bipolar electrolytic cells. Since the electrode has a large surface area, it is possible to increase the contact area between the electrode surface and the water to be treated such as bath water.

本発明の固定床型三次元電極電解槽における電極は一般
に三次元電極と給電用電極を含み、該三次元電極は前述
の使用する電解槽に応した形状を有し、固定床型複極式
電解槽を使用する場合には、前記被処理水が透過可能な
多孔質材料、例えば粒状、球状、フェルト状、織布状、
多孔質ブロック状等の形状を有する活性炭、グラファイ
ト、炭素繊維等の炭素系材料から、あるいは同形状を有
するニッケル、銅、ステンレス、鉄、チタン等の金属材
料、更にそれら金属材料に貴金属のコーティングを施し
た材料から形成された複数個の好ましくは粒状、球状、
繊維状、フェルト状、織布状、多孔質ブロック状、スポ
ンジ状の誘電体を直流電場内に置き、両端に設置した平
板状又はエキスパンドメツシュ状やパーフォレーティソ
ドプレート状等の多孔板体から成る給電用電極間に直流
電圧あるいは交流電圧を印加して前記誘電体を分極させ
該誘電体の一端及び他端にそれぞれ陽極及び陰極を形成
させて成る三次元電極を収容した固定床型複極式電解槽
とすることが可能であり、この他に単独で陽極としであ
るいは陰極として機能する三次元材料を交互に短絡しな
いように設置しかつ電気的に接続して固定床型複極式電
解槽とすることができる。
The electrodes in the fixed bed type three-dimensional electrode electrolytic cell of the present invention generally include a three-dimensional electrode and a power supply electrode, and the three-dimensional electrode has a shape corresponding to the electrolytic cell used as described above, and is a fixed bed type bipolar type. When using an electrolytic cell, a porous material through which the water to be treated can pass, such as granular, spherical, felt, woven fabric,
Carbon-based materials such as activated carbon, graphite, carbon fiber, etc. that have a porous block shape, or metal materials such as nickel, copper, stainless steel, iron, titanium, etc. that have the same shape, and coatings of precious metals on these metal materials. a plurality of preferably granular, spherical,
A dielectric material in the form of a fiber, felt, woven cloth, porous block, or sponge is placed in a DC electric field, and from a porous plate such as a flat plate, expanded mesh, or perforated plate installed at both ends. A fixed-bed type bipolar housing containing a three-dimensional electrode formed by applying a DC voltage or an AC voltage between the power feeding electrodes to polarize the dielectric and forming an anode and a cathode at one end and the other end of the dielectric, respectively. In addition, it is possible to create a fixed-bed bipolar electrolyzer by installing three-dimensional materials that function individually as an anode or as a cathode alternately so that they do not short-circuit and electrically connect them. It can be a tank.

前記誘電体として活性炭、グラファイト、炭素繊維等の
炭素系材料を使用しかつ陽極から酸素ガスを発生させな
がら被処理水を処理する場合には、前記誘電体が酸素ガ
スにより酸化され炭酸ガスとして溶解し易くなる。これ
を防止するためには前記誘電体の陽分極する側にチタン
等の基材上に酸化イリジウム、酸化ルテニウム等の白金
族金属酸化物を被覆し通常不溶性金属電極として使用さ
れる多孔質材料を接触状態で設置し、酸素発生が主とし
て該多孔質材料上で生ずるようにすればよい。
When using a carbon-based material such as activated carbon, graphite, or carbon fiber as the dielectric and treating water while generating oxygen gas from the anode, the dielectric is oxidized by the oxygen gas and dissolved as carbon dioxide gas. It becomes easier to do. In order to prevent this, a porous material that is usually used as an insoluble metal electrode is coated with a platinum group metal oxide such as iridium oxide or ruthenium oxide on a base material such as titanium on the anodic polarization side of the dielectric. They may be placed in contact so that oxygen evolution occurs primarily on the porous material.

又他のタイプの固定床型複極式電解槽として、例えば円
筒状の電解槽本体内に給電用陽極及び陰極を設置し、該
給電用両極間に、三次元電極として機能する多数の導電
性固定床形成用粒子と該固定床形成用粒子より少数の電
気絶縁性の合成樹脂等から成る絶縁粒子とをほぼ均一に
混在させた電解槽がある。該電解槽では両給電用電極間
に通電して電位を印加すると、固定床形成用粒子が前記
誘電体と同様に分極しその一端が正に又他端が負に帯電
して各固定床形成用粒子に電位が生じ、各粒子に被処理
水中のフェノール抽出物質を分解する機能が付与される
。なお前記絶縁粒子は、前記再給電用電極が導電性の前
記固定床形成用粒子により電気的に接続されて短絡する
ことを防止する機能を有する。
In addition, as another type of fixed-bed bipolar electrolytic cell, for example, a power feeding anode and a cathode are installed in a cylindrical electrolytic cell body, and a large number of conductive electrodes that function as three-dimensional electrodes are installed between the two power feeding electrodes. There is an electrolytic cell in which particles for forming a fixed bed and insulating particles made of electrically insulating synthetic resin or the like are mixed almost uniformly in a smaller number than the particles for forming a fixed bed. In the electrolytic cell, when electricity is applied between both power feeding electrodes to apply a potential, the fixed bed forming particles are polarized in the same way as the dielectric, one end of which is positively charged and the other end of which is negatively charged, forming each fixed bed. An electric potential is generated in the particles, giving each particle the ability to decompose phenol extractable substances in the water to be treated. The insulating particles have a function of preventing the repowering electrode from being electrically connected to the conductive fixed bed forming particles and causing a short circuit.

又単極式固定床型電解槽を使用する場合には、前記した
誘電体又は単独で陽極としであるいは陰極として機能す
る三次元材料各1個を隔膜を介しであるいは介さずに電
解槽内に設置するようにする。
In addition, when using a monopolar fixed bed electrolytic cell, one of the above-mentioned dielectrics or three-dimensional materials that function alone as an anode or a cathode may be placed in the electrolytic cell with or without a diaphragm. Make sure to install it.

いずれの形態の電極を使用する場合でも、処理すべき被
処理水が流れる電解槽内に液が電極や誘電体や微粒子に
接触せずに流通できる空隙があると被処理水の処理効率
が低下するため、電極等は電解槽内の被処理水の流れが
ショートバスしないように配置することが望ましい。
Regardless of which type of electrode is used, if there is a gap in the electrolytic cell through which the water to be treated flows, allowing the liquid to flow without coming into contact with the electrodes, dielectrics, or particulates, the treatment efficiency of the water to be treated will decrease. Therefore, it is desirable to arrange the electrodes and the like so that the flow of the water to be treated in the electrolytic cell does not become short-circuited.

前記電解槽に供給される被処理水の流量は、該被処理水
が効率的に電極等の表面と接触できるように規定すれば
よく、完全な層流であると横方向の移動が少なく電極、
誘電体及び微粒子表面との接触が少なくなるため、乱流
状態を形成するようにすることが好ましく、500以上
のレイノルズ数を有する乱流とすることが特に好ましい
The flow rate of the water to be treated that is supplied to the electrolytic cell may be determined so that the water to be treated can efficiently contact the surfaces of the electrodes, etc. If the flow is completely laminar, there will be little lateral movement and ,
Since contact with the dielectric material and the particle surface is reduced, it is preferable to form a turbulent flow state, and it is particularly preferable to form a turbulent flow having a Reynolds number of 500 or more.

前記電解槽内を隔膜で区画して陽極室と陰極室を形成し
ても、隔膜を使用せずにそのまま通電を行うこともでき
るが、被処理水の流通を円滑にするため隔膜を使用しな
いことが望ましい。この場合に電極の極間距離あるいは
誘電体と電極、又は誘電体相互の間隔を狭くする場合に
は短絡防止のため電気絶縁性のスペーサとして例えば有
機高分子材料で作製した網状スペーサ等を両極間あるい
は前記誘電体間等に挿入することが好ましい。又隔膜を
使用する場合には流通する被処理水の移動を妨害しない
ように多孔質例えばその開口率が10%以上95%以下
好ましくは20%以上80%以下のものを使用すること
が望ましく、該隔膜は少なくとも前記被処理水が透過で
きる程度の孔径の微細孔を有していなければならない。
Even if the inside of the electrolytic cell is divided by a diaphragm to form an anode chamber and a cathode chamber, electricity can be applied as is without using a diaphragm, but a diaphragm is not used to ensure smooth flow of the water to be treated. This is desirable. In this case, if the distance between the electrodes, the dielectric and the electrode, or the distance between the dielectrics is to be narrowed, an electrically insulating spacer such as a mesh spacer made of an organic polymer material is used between the two electrodes to prevent short circuits. Alternatively, it is preferable to insert it between the dielectric materials or the like. In addition, when using a diaphragm, it is desirable to use a porous membrane, for example, one with an aperture ratio of 10% to 95%, preferably 20% to 80%, so as not to obstruct the movement of flowing water to be treated. The diaphragm must have micropores with a pore diameter that is at least large enough to allow the water to be treated to pass therethrough.

このような構成から成る電解槽は、例えば浴湯水のフェ
ノール抽出物質分解として使用する場合には、家庭用浴
槽や銭湯や温泉等の営業用浴場の浴槽あるいはこれらの
供給配管に接続して、浴槽内の浴湯水の少なくとも一部
好ましくは全部を前記電解槽に導入し電気化学的に処理
することにより、前記浴湯水等のフェノール抽出物質の
分解を行うことが出来、これにより浴湯水の清浄化が達
成され、必要に応じてフィルタにより不溶性物質を濾過
することにより溶性及び不溶性の不純物をほぼ完全に除
去して使用済の浴湯水を廃棄することなく長期に亘って
使用して使用水量及び燃料の節約を達成することが出来
る。
For example, when an electrolytic cell with such a configuration is used to decompose phenol extracts from bath water, it can be connected to a domestic bathtub, a bathtub in a commercial bathhouse such as a public bathhouse or a hot spring, or to the supply piping for these bathtubs. By introducing at least part, preferably all, of the bath water into the electrolytic cell and electrochemically treating it, it is possible to decompose the phenol-extracted substances in the bath water, thereby purifying the bath water. By filtering insoluble substances with a filter as necessary, soluble and insoluble impurities are almost completely removed, and used bath water can be used for a long time without being disposed of, reducing the amount of water used and the amount of fuel used. savings can be achieved.

なお、本発明方法に使用する電解槽では該電解槽に漏洩
電流が生じ該漏洩電流が電解槽から被処理水を通して他
の部材に流れ込んで該部材の溶出等を起こすことがある
ため、電解槽内の陽陰極が相対しない電極背面部及び/
又は前記電解槽の出入口配管内に、前記被処理液より導
電性の高い部材をその一端を接地可能なように設置して
前記漏洩電流を遮断することができる。
In addition, in the electrolytic cell used in the method of the present invention, a leakage current may occur in the electrolytic cell, and the leakage current may flow from the electrolytic cell through the water to be treated into other parts, causing elution of the parts. The back part of the electrode where the anode and cathode do not face each other and/or
Alternatively, the leakage current can be interrupted by installing a member having higher conductivity than the liquid to be treated in the inlet/outlet pipe of the electrolytic cell so that one end thereof can be grounded.

次に添付図面に基づいて本発明に使用できる電解槽の好
ましい例を説明するが、本発明方法に使用される電解槽
は、この電解槽に限定されるものではない。
Next, a preferred example of an electrolytic cell that can be used in the present invention will be described based on the accompanying drawings, but the electrolytic cell that can be used in the method of the present invention is not limited to this electrolytic cell.

第1図は、本発明方法の電解槽として使用可能な固定床
型複極式電解槽の一例を示す概略縦断面図である。
FIG. 1 is a schematic longitudinal cross-sectional view showing an example of a fixed bed bipolar electrolytic cell that can be used as an electrolytic cell in the method of the present invention.

上下にフランジ1を有する円筒形の電解槽本体2の内部
上端近傍及び下端近傍にはそれぞれメソシュ状の給電用
陽極ターミナル3と給電用陰極ターミナル4が設けられ
ている。電解槽本体2は、長期間の使用又は再度の使用
にも耐え得る電気絶縁材料で形成することが好ましく、
特に合成樹脂であるポリエピクロルヒドリン、ポリビニ
ルメタクリレート、ポリエチレン、ポリプロピレン、ポ
リ塩化ビニル、ポリ塩化エチレン、フェノール−ホルム
アルデヒド樹脂等が好ましく使用できる。
A mesoche-shaped power feeding anode terminal 3 and a power feeding cathode terminal 4 are provided near the upper and lower ends of the cylindrical electrolytic cell body 2 having flanges 1 on the upper and lower sides, respectively. The electrolytic cell body 2 is preferably formed of an electrically insulating material that can withstand long-term use or repeated use.
In particular, synthetic resins such as polyepichlorohydrin, polyvinyl methacrylate, polyethylene, polypropylene, polyvinyl chloride, polyethylene chloride, and phenol-formaldehyde resins can be preferably used.

正の直流電圧を与える前記陽極ターミナル3は、例えば
炭素材 (例えば活性炭、炭、コークス、石炭等)、グ
ラファイト材(例えば炭素繊維、カーボンクロス、グラ
ファイト等)、炭素複合材(例えば炭素に金属を粉状で
混ぜ焼結したもの等)活性炭素繊維不織布(例えばK 
E−1000フエルト、東洋紡株式会社)、又はこれに
白金、白金、パラジウムやニッケルを担持させた材料、
更に寸法安定性電極(白金族酸化物被覆チタン材)、白
金被覆チタン材、ニッケル材、ステンレス材、鉄材等か
ら形成される。又陽極ターミナル3に対向し負の直流電
圧を与える陰極ターミナル4は、例えば白金、ステンレ
ス、チタン、ニッケル、銅、ハステロイ、グラファイト
、炭素材、軟鋼あるいは白金族金属をコーティングした
金属材料等から形成されている。
The anode terminal 3 that provides a positive DC voltage is made of, for example, a carbon material (e.g. activated carbon, charcoal, coke, coal, etc.), a graphite material (e.g. carbon fiber, carbon cloth, graphite, etc.), a carbon composite material (e.g. carbon with metal added to it). activated carbon fiber non-woven fabric (e.g. K
E-1000 felt, Toyobo Co., Ltd.), or a material made of platinum, platinum, palladium or nickel supported on it,
Further, the electrode is made of a dimensionally stable electrode (platinum group oxide coated titanium material), platinum coated titanium material, nickel material, stainless steel material, iron material, etc. The cathode terminal 4, which faces the anode terminal 3 and applies a negative DC voltage, is made of, for example, platinum, stainless steel, titanium, nickel, copper, Hastelloy, graphite, carbon material, mild steel, or a metal material coated with a platinum group metal. ing.

前記両電極ターミナル3.4間には複数個の図示の例で
は3個のスポンジ状の固定床5が積層され、かつ該固定
床5間及び該固定床5と前記両電極ターミナル3.4間
に4枚の多孔質の隔膜あるいはスペーサー6が挟持され
ている。各固定床5は電解槽本体2の内壁に密着し固定
床5の内部を通過せず、固定床5と電解槽本体2の側壁
との間を流れる被処理水の漏洩流がなるべく少なくなる
ように配置されている。隔膜を使用する場合には該隔膜
として織布、素焼板、粒子焼結プラスチック、多孔板、
イオン交換膜等が用いられ、スペーサーとして電気絶縁
性材料で製作された織布、多孔板、網、棒状材等が使用
される。
A plurality of sponge-like fixed beds 5, in the illustrated example, are stacked between the two electrode terminals 3.4, and between the fixed beds 5 and between the fixed bed 5 and the two electrode terminals 3.4. Four porous diaphragms or spacers 6 are sandwiched between them. Each fixed bed 5 is in close contact with the inner wall of the electrolytic cell main body 2, and does not pass through the inside of the fixed bed 5, so that the leakage flow of the water to be treated flowing between the fixed bed 5 and the side wall of the electrolytic cell main body 2 is minimized. It is located in When a diaphragm is used, the diaphragm may be a woven cloth, an unglazed plate, a particle sintered plastic, a perforated plate,
An ion exchange membrane or the like is used, and a woven cloth, perforated plate, net, rod-shaped material, etc. made of an electrically insulating material is used as a spacer.

このような構成から成る電解槽に下方から矢印で示すよ
うに例えば浴湯水を供給しながら通電を行うと、前記各
固定床5が図示の如く下面が正に上面が負に分極して固
定床5内及び固定床5間に電位が生じ、該電解槽内を流
通する浴湯水はこの電位を有する固定床5の陽分極した
箇所に接触して被処理水中に分散したフェノール抽出物
質が分解された後該電解槽の上方へ取り出される。
When an electric current is supplied to the electrolytic cell having such a configuration while supplying bath water, for example, from below as shown by the arrow, each of the fixed beds 5 is polarized with the lower surface being positively polarized and the upper surface being negatively polarized as shown in the figure. 5 and between the fixed bed 5 and the bath water flowing through the electrolytic cell contacts the positively polarized part of the fixed bed 5 which has this potential, and the phenol extracted substances dispersed in the water to be treated are decomposed. After that, it is taken out above the electrolytic cell.

第2図は、本発明に使用できる複極型固定床式電解槽の
他の例を示すもので、該電解槽は第1図の電解槽の固定
床5の給電用陰極4に向かう側つまり陽分極する側にメ
ツシュ状の不溶性金属材料7を密着状態で設置したもの
であり、他の部材は第1図と同一であるので同一符号を
付して説明を省略する。
FIG. 2 shows another example of a bipolar fixed bed electrolytic cell that can be used in the present invention. A mesh-like insoluble metal material 7 is installed in close contact with the side to be positively polarized, and since the other members are the same as those in FIG. 1, they are given the same reference numerals and their explanation will be omitted.

直流電圧が印加された固定床5はその両端部において最
も大きく分極が生じ、ガス発生が伴う場合には該両端部
において最も激しくガス発生が生ずる。従って最も強く
陽分極するつまり最も激しく酸素ガスが発生する固定床
5の給電用陰極4に向かう端部には最も速く溶解が生じ
る。図示の通りこの部分に不溶性金属材料7を設置して
おくと、該不溶性金属材料7の過電圧が固定床5を形成
する炭素系材料の過電圧より低いため殆どの酸素ガスが
前記不溶性金属材料7から発生し固定床5は殆ど酸素ガ
スと接触しなくなるため、前記固定床5の溶解は効果的
に抑制される。又該電解槽2に供給された被処理水は第
1図の場合と同様に処理されフェノール抽出物質の分解
が行われる。
The fixed bed 5 to which a DC voltage is applied is most polarized at both ends thereof, and when gas is generated, the most intense gas generation occurs at both ends. Therefore, dissolution occurs fastest at the end of the fixed bed 5 facing the power supply cathode 4 where the polarization is strongest, that is, where oxygen gas is most intensely generated. As shown in the figure, if the insoluble metal material 7 is installed in this part, most of the oxygen gas will be removed from the insoluble metal material 7 because the overvoltage of the insoluble metal material 7 is lower than the overvoltage of the carbon-based material forming the fixed bed 5. Since the fixed bed 5 hardly comes into contact with oxygen gas, the dissolution of the fixed bed 5 is effectively suppressed. Further, the water to be treated supplied to the electrolytic cell 2 is treated in the same manner as in the case of FIG. 1 to decompose the phenol extracted substances.

第3図は、本発明に使用できる複極型固定床式電解槽の
他の例を示すものである。
FIG. 3 shows another example of a bipolar fixed bed electrolytic cell that can be used in the present invention.

上下にフランジ1)を有する円筒形の電解槽本体12の
内部上端近傍及び下端近傍にはそれぞれメソシュ状の給
電用陽極13と給電用陰極14が設けられてりる。電解
槽本体12は、長期間の使用又は再度の使用にも耐え得
る電気絶縁材料特に合成樹脂で形成することが好ましい
A mesoche-shaped power feeding anode 13 and a power feeding cathode 14 are provided near the upper and lower ends of the cylindrical electrolytic cell body 12 having flanges 1) on the upper and lower sides, respectively. The electrolytic cell body 12 is preferably made of an electrically insulating material, particularly a synthetic resin, which can withstand long-term use or repeated use.

前記両給電用電極13.14間には、導電性材料例えば
炭素系材料で形成された多数の固定床形成用粒子15と
該固定床形成用粒子15より少数の例えば合成樹脂製の
絶縁粒子18とがほぼ均一に混在している。、該絶縁粒
子18は、前記給電用陽極13及び給電用陰極14が完
全に短絡することを防止する機能を有している。
Between the two power supply electrodes 13 and 14, there are a large number of fixed bed forming particles 15 made of a conductive material such as a carbon material, and a smaller number of insulating particles 18 made of synthetic resin, for example, than the fixed bed forming particles 15. are almost evenly mixed. The insulating particles 18 have a function of preventing the power feeding anode 13 and the power feeding cathode 14 from being completely short-circuited.

このような構成から成る電解槽に下方から矢印で示すよ
うに被処理水を供給しながら通電を行うと、前記各固定
床形成用粒子15が給電用陽極13側が負に又給電用陰
極14側が正に分極して表面積が真人な三次元電極とし
て機能し、第1図及び第2図の電解槽と同様にして前被
処理水中のフェノール抽出物質の分解が行われて該電解
槽の上方から取り出される。
When electricity is supplied to the electrolytic cell having such a structure while supplying water to be treated from below as shown by the arrow, each fixed bed forming particle 15 becomes negative on the power feeding anode 13 side and negative on the power feeding cathode 14 side. It functions as a three-dimensional electrode with positive polarization and a large surface area, and in the same way as the electrolytic cells shown in Figs. taken out.

第4図は、本発明に使用できる単極型固定床式電解槽を
例示するものである。
FIG. 4 illustrates a monopolar fixed bed electrolytic cell that can be used in the present invention.

上下にフランジ21を有する円筒形の電解槽本体22の
内部上端近傍及び下端近傍にはそれぞれメソシュ状の給
電用陽極23と給電用陰極24が設けられている。電解
槽本体22は、長期間の使用又は再度の使用にも耐え得
る電気絶縁材料特に合成樹脂で形成することが好ましい
A mesoche-shaped power feeding anode 23 and a power feeding cathode 24 are provided near the upper and lower ends of the cylindrical electrolytic cell body 22 having flanges 21 on the top and bottom, respectively. The electrolytic cell body 22 is preferably made of an electrically insulating material, particularly a synthetic resin, which can withstand long-term use or repeated use.

前記両給電用電極23.24間には、隔膜26を挟んで
導電性材料例えば炭素繊維をフェルト状に成形した1対
の固定床25が陽極室内及び陰極室内に充填され、前記
陽極室内及び陰極室内のフェルト状炭素繊維はそれぞれ
前記給電用陽極23と給電用陰極24に電気的に接続さ
れ、陽極室内の固定床は正に陰極室内の固定床は負に帯
電されている。
Between the two power feeding electrodes 23 and 24, a pair of fixed beds 25 made of conductive material, such as carbon fiber, formed into a felt shape are filled in the anode chamber and the cathode chamber with a diaphragm 26 in between. The felt carbon fibers in the room are electrically connected to the power feeding anode 23 and the power feeding cathode 24, respectively, and the fixed bed in the anode chamber is positively charged and the fixed bed in the cathode chamber is negatively charged.

この電解槽に下方から矢印で示すように被処理水を供給
しながら通電を行うと、第1図から第3図の場合と同様
に固定床25が表面積が真人な三次元電極として機能し
て被処理水中のフェノール抽出物質の分解が行われて該
電解槽の上方から取り出される。
When electricity is supplied to this electrolytic cell while supplying water to be treated from below as shown by the arrow, the fixed bed 25 functions as a three-dimensional electrode with a large surface area, as in the case of Figs. 1 to 3. The phenol extracted substances in the water to be treated are decomposed and taken out from above the electrolytic cell.

(実施例) 次に本発明の被処理水の電気化学的処理方法の実施例を
記載するが、該実施例は本発明を限定するものではない
(Example) Next, an example of the electrochemical treatment method for water to be treated according to the present invention will be described, but the present invention is not limited to this example.

去】l1七      ′・ 透明な硬質ポリ塩化ビニル樹脂製の高さ100mm、内
径50−のフランジ付円筒形である第1図に示した電解
槽を、ポンプとともに家庭用浴槽に近接させて設置した
。該電解槽内には、炭素繊維から成る直径50a+m、
厚さ10+wmの固定床5個を、開口率80%で直径5
0■量及び厚さ1 、2a++sのポリエチレン樹脂製
隔膜6枚で挟み込み、上下両端の隔膜にそれぞれ白金を
その表面にメンキしたチタン製である直径48IIua
厚さ1.0mmのメソシュ状給電用陽極及び陰極を接触
させて設置した。
The electrolytic cell shown in Figure 1, which is made of transparent hard polyvinyl chloride resin and has a cylindrical shape with a flange and a height of 100 mm and an inner diameter of 50 mm, was installed together with a pump in close proximity to a household bathtub. . Inside the electrolytic cell, a diameter 50a+m made of carbon fiber,
5 fixed beds with a thickness of 10 + wm, with an opening ratio of 80% and a diameter of 5
It is sandwiched between 6 polyethylene resin diaphragms with a weight and thickness of 1 and 2a++s, and the diaphragms at both the upper and lower ends are made of titanium with a platinum coating on their surfaces, and have a diameter of 48IIua.
A mesoche-like power feeding anode and a cathode having a thickness of 1.0 mm were placed in contact with each other.

41℃の浴湯水を51)分の速度で前記電解槽に供給し
、かつ前記給電用電極間に第1表に示す電解電圧を印加
して前記浴湯水の電気化学的処理を行った。該処理操作
における肉眼観察による発生ガスの有無、電解槽通過前
後の前記浴湯水中のフェノール抽出物質の量及び消費電
力を第1表に纏めた。
Bath water at 41° C. was supplied to the electrolytic cell at a rate of 51) minutes, and the electrolytic voltage shown in Table 1 was applied between the power supply electrodes to perform electrochemical treatment of the bath water. Table 1 summarizes the presence or absence of generated gas as determined by visual observation during the treatment operation, the amount of phenol extractable substances in the bath water before and after passing through the electrolytic bath, and the power consumption.

第1表から明らかな通り、三次元電極電解槽によりフェ
ノール抽出物質の分解除去を行うことが出来、その電解
電位は+0.2V未満では分解効果が殆どなく、又+1
.2■を越えると消費電力が大きくなりすぎて不経済で
ある。
As is clear from Table 1, the three-dimensional electrode electrolytic cell can decompose and remove phenol extracted substances, and when the electrolytic potential is less than +0.2V, there is almost no decomposition effect;
.. If it exceeds 2■, the power consumption becomes too large and it is uneconomical.

(発明の効果) 第    1    表 本発明方法は、フェノール抽出物質を含有する被処理水
を固定床型三次元電極電解槽に供給し、前記被処理水を
電気化学的に処理する方法である(請求項1)。
(Effects of the Invention) Table 1 The method of the present invention is a method in which water to be treated containing a phenol extract is supplied to a fixed bed type three-dimensional electrode electrolytic cell, and the water to be treated is electrochemically treated ( Claim 1).

本発明の対象とする被処理水例えば浴湯水は人体の垢等
の油状分散物質つまりフェノール抽出物質を含有してい
る。
The water to be treated, such as bath water, which is the object of the present invention, contains oily dispersed substances such as human body grime, that is, phenol extracted substances.

前記被処理水を固定床型三次元電極電解槽に供給すると
、該被処理水中のフェノール抽出物質は電位を与えられ
た電極特に陽極あるいは誘電体や固定床形成用粒子等の
陽分極した箇所に接触しそれらの表面で強力な酸化反応
を受けたり高電位の電流に接触し、前記フェノール抽出
物質の少なくとも一部が二酸化炭素と水に分解して除去
される。
When the water to be treated is supplied to a fixed bed type three-dimensional electrode electrolytic cell, the phenol extracted substance in the water to be treated is transferred to an electrode given a potential, particularly an anode, or an anodically polarized part of a dielectric material or particles for forming a fixed bed. Upon contact, their surfaces undergo a strong oxidation reaction or are exposed to a high-potential electric current, and at least a portion of the phenol extract is decomposed into carbon dioxide and water and removed.

本発明方法では、被処理水中のフェノール抽出物質が電
圧印加部分に接触するだけでは不十分であり、フェノー
ル抽出物質分解に必要な電圧を両極間に印加することが
必要である。しかし必要以上の電位を高くすることは電
力浪費に繋がるため好ましくない。従って本発明方法で
は陽極電位をフェノール抽出物質分解に必要かつ十分な
二〇、2〜+ 1.2 V (vs、5CE)とするこ
とが望ましい(請求項2)。
In the method of the present invention, it is not enough that the phenol extract in the water to be treated contacts the voltage application part, and it is necessary to apply a voltage necessary for decomposing the phenol extract between the two electrodes. However, it is not preferable to increase the potential higher than necessary because it leads to power wastage. Therefore, in the method of the present invention, it is desirable to set the anode potential to 20.2 to +1.2 V (vs. 5 CE), which is necessary and sufficient for decomposing the phenol extract material (Claim 2).

本発明方法では表面積の大きい三次元電極を有する固定
床型三次元電極電解槽を使用するため、処理される被処
理水が十分に前記三次元電極と接触し、効率的にフェノ
ール抽出物質分解が行われるが、三次元電極の中でも特
に表面積の大きい複極式固定床型三次元電極電解槽を使
用すると(請求項3)、処理効率が一層向上する。
In the method of the present invention, a fixed bed type three-dimensional electrode electrolytic cell having a three-dimensional electrode with a large surface area is used, so the water to be treated comes into sufficient contact with the three-dimensional electrode, and the phenol extractables are efficiently decomposed. However, if a bipolar fixed bed type three-dimensional electrode electrolytic cell having a particularly large surface area among three-dimensional electrodes is used (claim 3), the processing efficiency will be further improved.

前記固定床型三次元電極電解槽の固定床を構成する材料
として、グラファイト、炭素系材料、活性炭等を使用す
ることが出来(請求項4)、これらの物質は比較的安価
で表面積が大きいため、本発明方法に使用される固定床
として有効である。
Graphite, carbon-based materials, activated carbon, etc. can be used as the material constituting the fixed bed of the fixed bed type three-dimensional electrode electrolytic cell (claim 4), and these materials are relatively inexpensive and have a large surface area. , is effective as a fixed bed used in the method of the present invention.

更に該固定床を複数個使用すると(請求項5)表面積が
より増大して処理効率が上昇する。
Further, when a plurality of fixed beds are used (claim 5), the surface area is further increased and the treatment efficiency is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図及び第4図は、それぞれ本発明
方法に使用出来る固定床型三次元電極電解槽を例示する
ものである。 1・・・フランジ 2・・・電解槽本体3・・・給電用
陽極ターミナル 4・・・給電用陰極ターミナル 5・・・固定床 6・・・スペーサー 7・・・不溶性金属材料 1)・・・フランジ 12・・・電解槽本体13・・・
給電用陽極 14・・・給電用陰極15・ ・ 21・ ・ 23・ ・ 25・ ・固定床形成用粒子 18・・・絶縁粒子・フランジ 
22・・・電解槽本体 ・給電用陽極 24・・・給電用陰極 ・固定床 26・・・隔膜 第1に
1, 2, 3, and 4 each illustrate a fixed bed type three-dimensional electrode electrolytic cell that can be used in the method of the present invention. 1... Flange 2... Electrolytic cell body 3... Anode terminal for power supply 4... Cathode terminal for power supply 5... Fixed bed 6... Spacer 7... Insoluble metal material 1)...・Flange 12... Electrolytic cell body 13...
Anode for power supply 14... Cathode for power supply 15. 21. 23. 25. Fixed bed forming particles 18. Insulating particles/flange
22... Electrolytic cell body/anode for power supply 24... Cathode for power supply/fixed bed 26... Diaphragm first

Claims (5)

【特許請求の範囲】[Claims] (1)油状分散物を含有する被処理水を固定床型三次元
電極電解槽に供給し、前記被処理水を電気化学的に処理
することを特徴とする被処理水の処理方法。
(1) A method for treating water to be treated, comprising supplying water to be treated containing an oily dispersion to a fixed bed type three-dimensional electrode electrolytic cell, and electrochemically treating the water to be treated.
(2)固定床型三次元電極電解槽の陽極電位が+0.2
〜+1.2V(vs.SHE)である請求項1に記載の
処理方法。
(2) The anode potential of the fixed bed three-dimensional electrode electrolytic cell is +0.2
The processing method according to claim 1, wherein the voltage is ˜+1.2V (vs. SHE).
(3)固定床型三次元電極電解槽が、電圧の印加により
陽陰極に分極する固定床内を被処理水が流通する複極式
固定床型三次元電極電解槽である請求項1又は2に記載
の処理方法。
(3) Claim 1 or 2, wherein the fixed bed type three-dimensional electrode electrolytic cell is a bipolar fixed bed type three-dimensional electrode electrolytic cell in which the water to be treated flows through a fixed bed that is polarized to an anode and a cathode by applying a voltage. Processing method described in .
(4)固定床型三次元電極電解槽の固定床がグラファイ
ト、炭素系材料、活性炭及び金属から成る群から選択さ
れる材料で構成される請求項1から3までのいずれかに
記載の処理方法。
(4) The treatment method according to any one of claims 1 to 3, wherein the fixed bed of the fixed bed three-dimensional electrode electrolytic cell is made of a material selected from the group consisting of graphite, carbon-based materials, activated carbon, and metals. .
(5)固定床型三次元電極電解槽が、給電用陽陰極間に
、陽陰極に分極する複数個の固定床を設置した電解槽で
ある請求項1から4までのいずれかに記載の処理方法。
(5) The process according to any one of claims 1 to 4, wherein the fixed bed type three-dimensional electrode electrolytic cell is an electrolytic cell in which a plurality of fixed beds polarized into anodes and cathodes are installed between anodes and cathodes for power supply. Method.
JP11659390A 1990-05-03 1990-05-03 Electrochemical treatment of water to be treated Pending JPH0416286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11659390A JPH0416286A (en) 1990-05-03 1990-05-03 Electrochemical treatment of water to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11659390A JPH0416286A (en) 1990-05-03 1990-05-03 Electrochemical treatment of water to be treated

Publications (1)

Publication Number Publication Date
JPH0416286A true JPH0416286A (en) 1992-01-21

Family

ID=14690982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11659390A Pending JPH0416286A (en) 1990-05-03 1990-05-03 Electrochemical treatment of water to be treated

Country Status (1)

Country Link
JP (1) JPH0416286A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2328446A (en) * 1997-08-22 1999-02-24 Christopher Robert Eccles Electrocatalytic treatment of liquid waste
JP2008272594A (en) * 2007-03-09 2008-11-13 Okayama Univ Electrolytic reduction dehalogenation method for activated carbon adsorbed organic halide
CN107140716A (en) * 2017-06-22 2017-09-08 河海大学 A kind of Electrochemical adsorption combination process handles the equipment and processing method of waste water from dyestuff

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2328446A (en) * 1997-08-22 1999-02-24 Christopher Robert Eccles Electrocatalytic treatment of liquid waste
JP2008272594A (en) * 2007-03-09 2008-11-13 Okayama Univ Electrolytic reduction dehalogenation method for activated carbon adsorbed organic halide
CN107140716A (en) * 2017-06-22 2017-09-08 河海大学 A kind of Electrochemical adsorption combination process handles the equipment and processing method of waste water from dyestuff
CN107140716B (en) * 2017-06-22 2020-09-01 河海大学 Equipment and method for treating dye wastewater by electrochemical-adsorption composite process

Similar Documents

Publication Publication Date Title
US5558755A (en) Method for removing contaminants from an aqueous medium
CN111252963A (en) Treatment method of high-concentration COD wastewater
JP2923108B2 (en) Method for removing impurities from printed circuit board washing wastewater
JPH0416286A (en) Electrochemical treatment of water to be treated
JP2971511B2 (en) Electrochemical treatment method for water to be treated
JP3040549B2 (en) High purity water production method
JP3020551B2 (en) Electrochemical treatment of treated water containing microorganisms
JPH1043504A (en) Separation of oil and water
JPH0788474A (en) Production of high purity water
JPH05309362A (en) Treatment of object water for treatment and multiple-electrodes-type electrolytic bath for treatment of object water for treatment
JP3056511B2 (en) Treatment water treatment equipment
RU2038323C1 (en) Equipment for purification and disinfection of water
CN220579105U (en) Processing equipment for electrolytic degreasing of nonferrous metal extract
RU2040477C1 (en) Device for disinfection and purification of water
JP3014427B2 (en) Treatment of treated water
JP3180318B2 (en) Electrochemical treatment of treated water containing microorganisms
JP2000005755A (en) Treatment of water and device therefor
JPH04219194A (en) Electrochemical treatment of water to be treated
CN114249467A (en) Method for reducing heavy metal content in water by electrolysis
JP3664274B2 (en) Electrolytic treatment method of water to be treated
JPH03101892A (en) Method and device for water treatment
JPH0416280A (en) Electrochemical treatment of water containing microorganism
JPH0416281A (en) Electrochemical treatment of water from water purifying plant
JPH0741242B2 (en) Method and apparatus for treating treated water
JPH05329483A (en) Treatment of water to be treated and bipolar electrolytic cell used therefor