JP2971511B2 - Electrochemical treatment method for water to be treated - Google Patents

Electrochemical treatment method for water to be treated

Info

Publication number
JP2971511B2
JP2971511B2 JP12255190A JP12255190A JP2971511B2 JP 2971511 B2 JP2971511 B2 JP 2971511B2 JP 12255190 A JP12255190 A JP 12255190A JP 12255190 A JP12255190 A JP 12255190A JP 2971511 B2 JP2971511 B2 JP 2971511B2
Authority
JP
Japan
Prior art keywords
water
treated
electrolytic cell
calcium
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12255190A
Other languages
Japanese (ja)
Other versions
JPH0418982A (en
Inventor
伸隆 五嶋
剛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP12255190A priority Critical patent/JP2971511B2/en
Publication of JPH0418982A publication Critical patent/JPH0418982A/en
Application granted granted Critical
Publication of JP2971511B2 publication Critical patent/JP2971511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱交換器用冷却水等の被処理水中に溶解し
ているカルシウム、マグネシウムあるいは珪素等の金属
イオンを電気化学的に除去するための方法に関し、より
詳細には前記被処理水を三次元電極式電解槽に供給して
電気化学的に処理することにより前記カルシウム等の金
属イオンをその水酸化物又は酸化物として前記三次元電
極上に析出させて除去する被処理水の電気化学的処理方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is intended to electrochemically remove metal ions such as calcium, magnesium or silicon dissolved in water to be treated such as cooling water for a heat exchanger. More specifically, by supplying the water to be treated to a three-dimensional electrode type electrolytic cell and electrochemically treating the same, the metal ions such as calcium are converted into hydroxides or oxides of the three-dimensional electrode. The present invention relates to a method for electrochemically treating water to be precipitated and removed therefrom.

(従来技術) 近年における特にマンション等の集合住宅あるいはビ
ル等の多数の企業が集合して形成される建築物の増加に
伴い、該建築物等に設置される各種冷暖房設備の設置台
数も飛躍的に増加している。このような多数の冷暖房設
備が設置されているマンション等では、通常該冷暖房設
備の冷却水の熱交換器用設備例えば熱交換器用タンクが
その屋上に設置されている。この冷却水も長期間使用を
継続すると細菌や黴類が繁殖したり、蒸発による水量減
少分を補充する操作によって次第に熱交換水のカルシム
及びマグネシウムイオン濃度は増加する。
(Prior Art) In recent years, as the number of buildings formed by a large number of companies, such as condominiums and other apartments or buildings, has increased in recent years, the number of various types of cooling and heating equipment installed in the buildings and the like has increased dramatically. Has increased. In an apartment or the like in which such a large number of cooling and heating facilities are installed, equipment for heat exchangers for cooling water of the cooling and heating equipment, for example, a tank for a heat exchanger is usually installed on the roof. If this cooling water is used for a long period of time, bacteria and fungi will proliferate, and the calcium and magnesium ion concentrations of the heat exchange water will gradually increase due to the operation of replenishing the reduced amount of water due to evaporation.

この熱交換器用冷却水中のカルシウム及び/又はマグ
ネシウムイオン濃度が上昇すると、該イオンが前記熱交
換器の熱交換面に析出して熱交換効率を大幅に低下さ
せ、あるいは冷却水の循環用配管の内壁面に金属水酸化
物が析出して最悪の場合には前記配管を閉塞して冷却水
の循環が出来なくなる。
When the concentration of calcium and / or magnesium ions in the cooling water for the heat exchanger increases, the ions are deposited on the heat exchange surface of the heat exchanger to greatly reduce the heat exchange efficiency, or to reduce the cooling water circulation pipe. In the worst case, the metal hydroxide precipitates on the inner wall surface, and the pipe is closed, so that the cooling water cannot be circulated.

又天然水にはカルシウム塩やマグネシウム塩を多く溶
解している硬水が多く、この硬水から飲料水を調製する
と得られる飲料水にもカルシウムやマグネシウムが溶解
し、その量が多いと飲料水の味を悪くする等の弊害が生
ずる。
In addition, natural water often contains hard water in which a large amount of calcium and magnesium salts are dissolved. When drinking water is prepared from this hard water, calcium and magnesium are also dissolved in drinking water. Adverse effects such as worsening the image quality.

これらのカルシウム塩やマグネシウム塩を冷却水や飲
料水から除去するには従来は煮沸処理やイオン交換処理
等の処理が行われているが、これらの処理は特に大量処
理を必要とする場合にはコスト的な負担が大きく、商業
的には行われていない。従って従来は配管が閉塞する前
に配管内の洗浄を行ったり、味の落ちた飲料水をそのま
ま飲むようにしている。
In order to remove these calcium salts and magnesium salts from cooling water and drinking water, treatments such as boiling treatment and ion exchange treatment are conventionally performed, but these treatments are particularly necessary when a large amount of treatment is required. It is costly and not commercially available. Therefore, conventionally, the inside of the pipe is washed before the pipe is closed, or the drinking water having a reduced taste is drunk as it is.

(発明が解決しようとする問題点) このように熱交換器用冷却水や飲料水をはじめとする
各種被処理水に含まれるカルシウムやマグネシウム等の
各種イオン又は塩を、比較的容易にかつ大量の被処理水
から除去可能な手段は従来は存在せず、前記イオン等の
存在による欠点をそのまま甘受している。
(Problems to be Solved by the Invention) As described above, various ions or salts such as calcium and magnesium contained in various kinds of water to be treated including cooling water for a heat exchanger and drinking water can be relatively easily and in large quantities. Conventionally, there is no means that can be removed from the water to be treated, and the disadvantage caused by the presence of the ions and the like is directly accepted.

(発明の目的) 本発明は、薬剤を使用したり手間の掛かる操作を必要
とすることなく例えば熱交換器用冷却水等のカルシウム
やマグネシウム等のイオンや塩を含む被処理水から前記
イオンを容易に除去出来る方法を提供することを目的と
する。
(Object of the Invention) The present invention makes it possible to easily remove the ions from the water to be treated containing ions or salts such as calcium and magnesium, such as cooling water for a heat exchanger, without using a chemical or requiring a complicated operation. It is an object of the present invention to provide a method that can be removed.

(問題点を解決するための手段) 本発明は、カルシウム、マグネシウム及び珪素から選
択される1又は2以上の金属のイオンを含有する被処理
水を、電圧の印加により分極した三次元電極を有する三
次元電極式電解槽に供給し、前記被処理水中の前記カル
シウム、マグネシウム及び珪素から選択される1又は2
以上の金属イオンをその水酸化物又は酸化物に変換し前
記三次元電極上に析出させて前記被処理水から除去する
被処理水の電気化学的処理方法である。なお本発明では
電極等の表面上で実質的な電気化学反応を生起しない場
合があるため本発明に使用される槽は電気化学的処理槽
というべきであるが、一般呼称に従って電解槽と称す
る。
(Means for Solving the Problems) The present invention has a three-dimensional electrode in which water to be treated containing ions of one or more metals selected from calcium, magnesium and silicon is polarized by applying a voltage. 1 or 2 selected from the calcium, magnesium and silicon in the water to be treated, supplied to a three-dimensional electrode type electrolytic cell
This is an electrochemical treatment method for the water to be treated, in which the metal ions are converted into their hydroxides or oxides, deposited on the three-dimensional electrode, and removed from the water to be treated. In the present invention, a tank used in the present invention should be called an electrochemical treatment tank because a substantial electrochemical reaction may not occur on the surface of an electrode or the like, but is called an electrolytic tank according to a general name.

以下本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明は、熱交換器用冷却水等のカルシウムやマグネ
シウム等のイオンを含む被処理水を三次元電極式電解槽
に供給し、該電解槽に直流又は交流電圧を印加して電解
によるガスを伴いあるいは伴わずに前記被処理水を処理
して前記被処理水から前記カルシウムやマグネシウムを
除去することを特徴とするものである。
The present invention supplies water to be treated containing ions such as calcium and magnesium such as cooling water for a heat exchanger to a three-dimensional electrode type electrolytic cell, and applies a DC or AC voltage to the electrolytic cell to accompany a gas by electrolysis. Alternatively, the water to be treated is treated without the treatment to remove the calcium and magnesium from the water to be treated.

水道水にはカルシウムイオンやマグネシウムイオンが
含有され水道水の配管の内壁へのこれらのイオンの析出
による配管の閉塞は大きな問題となっているが、多くの
場合水道水を水源として使用する熱交換器用冷却水中に
もカルシウムイオンやマグネシウムイオンが含有され、
該イオンは熱交換器の熱交換面に付着し易く付着すると
冷却水と被冷却水間の熱交換効率を低下させる。このよ
うに熱交換器の性能を低下させる熱交換器用冷却水中の
カルシウムイオン及びマグネシウムイオンは、該冷却水
を電気化学的に処理を行うと三次元電極式電解槽の陰極
や三次元電極上で還元されて水酸化カルシウムや水酸化
マグネシウムとして該陰極面上へ析出して冷却水から除
去され前記熱交換面に析出して熱交換効率を低下させる
ことがなくなる。又カルシウムやマグネシウム以外にも
珪素イオンや塩が水道水中に溶解していることがあり、
該珪素イオンの存在も好ましくないが、この珪素イオン
を溶解した被処理水に本発明による電気化学処理を施す
と、該珪素イオンは酸化珪素に変換されて陰極上に析出
し、前記被処理水から除去される。
Tap water contains calcium ions and magnesium ions, and the clogging of the pipe due to the precipitation of these ions on the inner wall of the pipe of the tap water is a major problem.However, in many cases, heat exchange using tap water as a water source Calcium ion and magnesium ion are also contained in dexterous cooling water,
If the ions easily adhere to the heat exchange surface of the heat exchanger, they lower the heat exchange efficiency between the cooling water and the water to be cooled. Calcium ions and magnesium ions in the heat exchanger cooling water that degrade the performance of the heat exchanger as described above, when the cooling water is subjected to electrochemical treatment, is formed on the cathode or the three-dimensional electrode of the three-dimensional electrode type electrolytic cell. It is reduced to precipitate on the cathode surface as calcium hydroxide or magnesium hydroxide and is removed from the cooling water, and does not precipitate on the heat exchange surface to lower the heat exchange efficiency. In addition, silicon ions and salts other than calcium and magnesium may be dissolved in tap water,
Although the presence of the silicon ions is not preferred, when the water to be treated in which the silicon ions are dissolved is subjected to the electrochemical treatment according to the present invention, the silicon ions are converted into silicon oxide and deposited on the cathode, and the water to be treated is removed. Removed from

本発明方法に使用する電解槽は複極型固定床式三次元
電極電解槽とする。本発明による熱交換器用冷却水等の
被処理水の処理では、処理される該被処理水が電極ある
いは後述する誘電体あるいは粒子等と接触する機会が多
いほど処理効率が上昇して効率良く前記カルシウムイオ
ン等が除去される。従って電極等の表面積が大きい複極
式固定床三次元電極電解槽を使用すると他の電解槽を使
用する場合よりも処理効率を上昇させることが出来、こ
れにより同一の処理効率を達成するために必要な装置サ
イズを他の電解槽よりも小さくできる点で有利である。
The electrolytic cell used in the method of the present invention is a bipolar fixed-bed type three-dimensional electrode electrolytic cell. In the treatment of the water to be treated such as cooling water for a heat exchanger according to the present invention, the treatment efficiency increases as the treatment water to be treated has more chances to come into contact with electrodes or dielectrics or particles described later, and the efficiency is increased. Calcium ions and the like are removed. Therefore, using a bipolar fixed-bed three-dimensional electrode electrolytic cell having a large surface area such as an electrode can increase the processing efficiency as compared with the case of using other electrolytic cells, thereby achieving the same processing efficiency. This is advantageous in that the required device size can be made smaller than other electrolytic cells.

本発明の三次元電極電解槽における三次元電極は、前
記被処理水が透過可能な多孔質材料、例えば粒状、球
状、フェルト状、織布状、多孔質ブロック状、多数の貫
通孔を形成した中実体等の形状を有する活性炭、グラフ
ァイト、炭素繊維等の炭素系材料から、あるいは同形状
を有するニッケル、銅、ステンレス、鉄、チタン等の金
属材料、更にそれら金属材料に貴金属のコーティングを
施した材料から形成された複数個の誘電体から成ること
が好ましく、該三次元電極は直流電場内に置かれ、両端
に設置した平板状又はエキスパンドメッシュ状やパーフ
ォレーティッドプレート状等の多孔板体から成る給電用
陽陰極間に直流電圧を印加して前記誘電体を分極させ該
誘電体の一端及び他端にそれぞれ正及び負の電荷が形成
されて分極する。この他に給電用陽極及び陰極とは別個
に、単独で陽極としてあるいは陰極として機能する三次
元材料を交互に短絡しないように設置しかつ電気的に接
続して複極型固定床式電解槽とすることができる。なお
前述の多数の貫通孔を形成した中実体を三次元電極とし
て使用する場合には、流通する冷却水の移動を妨害しな
いようにその開口率を10%以上95%以下好ましくは20%
以上80%以下とし、貫通孔の開孔径は被処理液が透過で
きる程度の孔径の微細孔とすることが好ましい。
The three-dimensional electrode in the three-dimensional electrode electrolytic cell of the present invention has a porous material through which the water to be treated can be permeable, for example, granular, spherical, felt, woven, porous block, and a large number of through holes. Activated carbon having a shape such as solid, graphite, carbon-based materials such as carbon fibers, or metal materials such as nickel, copper, stainless steel, iron, titanium, etc. having the same shape, and a precious metal coating applied to these metal materials It is preferable that the three-dimensional electrode is made of a plurality of dielectrics formed of a material, and the three-dimensional electrode is placed in a DC electric field, and is made of a perforated plate such as a flat plate, an expanded mesh, or a perforated plate disposed at both ends. A DC voltage is applied between the power supply positive and negative electrodes to polarize the dielectric, and positive and negative charges are formed at one end and the other end of the dielectric, respectively, so that the dielectric is polarized. In addition to this, a three-dimensional material functioning independently as an anode or a cathode is installed separately from the power supply anode and cathode so as not to be alternately short-circuited and electrically connected to form a bipolar fixed-bed electrolytic cell. can do. When the solid body having a large number of through holes described above is used as a three-dimensional electrode, the opening ratio is set to 10% or more and 95% or less, preferably 20% so as not to hinder the movement of the flowing cooling water.
It is preferable that the opening diameter of the through-holes is not less than 80%, and the opening diameter of the through-holes is a fine hole having such a diameter that the liquid to be treated can pass through.

前記誘電体として活性炭、グラファイト、炭素繊維等
の炭素系材料を使用しかつ陽極から酸素ガスを発生させ
ながら被処理水を処理する場合には、前記誘電体が酸素
ガスにより酸化され炭酸ガスとして溶解し易くなる。こ
れを防止するためには前記誘電体の陽分極する側にチタ
ン等の基材上に酸化イリジウム、酸化ルテニウム等の白
金族金属酸化物を被覆し通常不溶性金属電極として使用
される多孔質材料を接触状態で設置し、酸素発生が主と
して該多孔質材料上で生ずるようにすればよい。
When a carbon-based material such as activated carbon, graphite, or carbon fiber is used as the dielectric and water to be treated is treated while generating oxygen gas from the anode, the dielectric is oxidized by oxygen gas and dissolved as carbon dioxide. Easier to do. In order to prevent this, a porous material which is usually used as an insoluble metal electrode by coating a platinum group metal oxide such as iridium oxide or ruthenium oxide on a base material such as titanium on the side where the dielectric material is positively polarized is used. What is necessary is just to install in a contact state, and to generate | occur | produce oxygen mainly on this porous material.

前記誘電体又は給電用陽陰極以外の陽極及び陰極を接
近させて電圧の低下を意図する際には、短絡防止のため
電気絶縁性のスペーサとして例えば有機高分子材料で作
製した網状スペーサ等を挿入することが好ましい。
When an anode and a cathode other than the dielectric or power supply positive and negative electrodes are brought close to each other to lower the voltage, for example, a mesh spacer made of an organic polymer material or the like is inserted as an electrically insulating spacer to prevent a short circuit. Is preferred.

処理すべき被処理液が流れる電解槽内に該被処理液が
前記誘電体や陽極又は陰極にに接触せずに流通できる比
較的大きな空隙があると被処理液の処理効率が低下する
ため、前記誘電体等は電解槽内の被処理液の流れがショ
ートパスしないように配置することが望ましい。
Since the liquid to be treated has a relatively large gap in the electrolytic cell through which the liquid to be treated flows without contacting the dielectric or the anode or the cathode, the treatment efficiency of the liquid to be treated decreases, It is desirable that the dielectric and the like be arranged so that the flow of the liquid to be treated in the electrolytic cell does not short-path.

該三次元電極式電解槽に供給される被処理水が層流で
あると横方向の液移動が少なく該被処理水が誘電体等の
表面と充分に接触することなく前記電解槽を通過するこ
とがある。特に被処理水中に含まれるカルシウムイオン
等は電極表面に接触しなければ水酸化物や酸化物に変換
されて電極上に析出することがない。従って被処理液中
のカルシウムイオン等が電極表面と十分に接触するよう
に該被処理水を500以上のレイノルズ数を有する乱流と
し、横方向の移動を十分に行わせてながら前記電解槽を
通過させることが望ましい。なおレイノルズ数とは、
(流体速度)×(流路の内径)÷(流体の運動粘性係
数)で表され、この値が大きいほど流体の乱流の程度が
大きくなる。
When the water to be treated supplied to the three-dimensional electrode type electrolytic cell is laminar, the liquid movement in the lateral direction is small and the water to be treated passes through the electrolytic cell without sufficiently contacting the surface of the dielectric or the like. Sometimes. In particular, calcium ions and the like contained in the water to be treated are converted into hydroxides and oxides and do not deposit on the electrodes unless they come into contact with the electrode surface. Therefore, the water to be treated is a turbulent flow having a Reynolds number of 500 or more so that calcium ions and the like in the liquid to be treated sufficiently contact the electrode surface, and the electrolytic cell is moved while sufficiently moving in the lateral direction. It is desirable to let it pass. The Reynolds number is
(Fluid velocity) × (inner diameter of flow path) の (kinetic viscosity coefficient of fluid), and the larger this value, the greater the degree of turbulence of the fluid.

本発明では前記したカルシウムイオン等が対応する水
酸化物や酸化物に変換されるために十分な量の電流量が
供給されれば陽陰極間に印加される直流電圧の値は特に
限定されず、又変換されるカルシウムイオン等の量が僅
少であり電極表面に僅かに電位が生じていれば処理は行
われる。従って本発明方法は電流が流れ電極表面でガス
発生が生ずる電解処理でも、又電流が流れず電極表面だ
ガス発生が生じない処理のいずれでもよいが、本発明方
法を実施する際には、実際に効率良く処理が行われてい
ることを確認するため電流を流し、僅かのガスを発生さ
せながら電解処理することが望ましい。好ましい陽極電
位は+0.2から+1.4V(vs.SHE)で好ましい陰極電位は
−1.2V(vs.SHE)より貴な範囲でこの範囲内で僅かなガ
スを発生させながら被処理水の電気化学的処理を行うこ
とができる。
In the present invention, the value of the DC voltage applied between the positive and negative electrodes is not particularly limited as long as a sufficient amount of current is supplied to convert the calcium ions and the like to the corresponding hydroxides and oxides. If the amount of converted calcium ions or the like is small and a slight potential is generated on the electrode surface, the treatment is performed. Accordingly, the method of the present invention may be either an electrolytic treatment in which a current flows and gas is generated on the electrode surface, or a process in which no current flows and no gas is generated on the electrode surface. In order to confirm that the treatment is being performed efficiently, it is desirable to apply an electric current and perform the electrolytic treatment while generating a small amount of gas. The preferred anode potential is +0.2 to +1.4 V (vs. SHE) and the preferred cathode potential is nobler than -1.2 V (vs. SHE). Chemical treatment can be performed.

水電解により発生するガスつまり酸素ガスと水素ガス
は通常爆発限界内の混合比で発生するため、比較的大き
い直流電圧を印加してガスが発生する場合は爆発の危険
を回避するために空気等の不活性ガスで希釈することが
でき、例えば電解槽出口に発生する電解ガスの分離手段
と分離後の該電解ガスを空気で希釈して電解ガス濃度が
4容量%以下になるよう希釈する手段を設置することが
できるが、熱交換器用冷却水等を処理する電解槽は容量
が比較的小さく発生するガス量も少ないため、前記ガス
分離手段は設置しなくてもよい。
The gas generated by water electrolysis, that is, oxygen gas and hydrogen gas, is usually generated at a mixing ratio within the explosion limit, so if a relatively large DC voltage is applied to generate gas, use air or other gas to avoid the danger of explosion. For example, means for separating the electrolytic gas generated at the outlet of the electrolytic cell and means for diluting the electrolytic gas after separation with air so that the electrolytic gas concentration becomes 4% by volume or less. However, since the capacity of the electrolytic cell for treating the cooling water for the heat exchanger and the like is relatively small and the amount of generated gas is small, the gas separation means may not be provided.

このような構成から成る三次元電極電解槽は、処理す
べき被処理液の種類に応じて該被処理水の処理が必要な
箇所に近接させて設置し、特に熱交換器用冷却水の場合
には、ビルやマンションの屋上等に設置された熱交換器
に近接して設置し、熱交換器内の冷却水の一部を循環さ
せて前記電解槽でカルシウムイオン等の除去を行った後
に前記熱交換器に戻すようにして使用することができ
る。
The three-dimensional electrode electrolytic cell having such a configuration is installed close to a place where the treatment of the water to be treated is required in accordance with the type of the liquid to be treated, particularly in the case of cooling water for a heat exchanger. Is installed in the vicinity of a heat exchanger installed on the roof of a building or condominium, and after circulating part of the cooling water in the heat exchanger to remove calcium ions and the like in the electrolytic cell, It can be used by returning it to the heat exchanger.

又本発明の電解槽では該電解槽に漏洩電流が生じ該漏
洩電流が電解槽から処理すべき被処理水を通して他の金
属製部材例えば熱交換器に流れ込み、該部材に溶出等の
電気化学的な腐食を生じさせることがある。そのため電
解槽内の給電用陽陰極が相対しない該電極背面部及び/
又は前記電解槽の出入口配管内に、被処理水より導電性
の高い部材をその一端を接地可能なように設置して前記
漏洩電流を遮断することができる。
Further, in the electrolytic cell of the present invention, a leakage current is generated in the electrolytic cell, and the leakage current flows from the electrolytic cell through the water to be treated into another metal member, for example, a heat exchanger, and is electrolyzed into the member by elution or the like. Corrosion may occur. For this reason, the power supply positive and negative electrodes in the electrolytic cell are not opposed to each other, and
Alternatively, a member having higher conductivity than the water to be treated can be installed in the inlet / outlet pipe of the electrolytic cell so that one end thereof can be grounded, and the leakage current can be cut off.

又熱交換器用冷却水等には配管内を流れる間に固形の
不純物が混入することがあり、上記した電気化学的処理
の他に該不純物を除去するために熱交換器の前後好まし
くは前にフィルターを設置することが望ましい。
In addition, solid impurities may be mixed into the cooling water for the heat exchanger while flowing through the piping, and before and after, preferably before, the heat exchanger to remove the impurities in addition to the above-described electrochemical treatment. It is desirable to install a filter.

なお熱交換器用冷却水は適度な温度を有して黴や細菌
等の微生物が繁殖し易い環境にあり、他の被処理水も微
生物を含むことがある。
The cooling water for the heat exchanger has an appropriate temperature and is in an environment where microorganisms such as molds and bacteria can easily propagate, and other water to be treated may also contain microorganisms.

本発明により熱交換器用冷却水等の被処理水に直流電
圧を印加すると、該被処理水中のカルシウムイオン等が
除去されるだけでなく、該被処理水中にがんゆうされる
被処理水は液流動によって三次元電極式電解槽の三次元
電極に接触しそれらの表面で強力な酸化還元反応を受け
てその滑動が弱まったり自身が死滅したりすると考えら
れる。従って本発明方法によるとカルシウムイオン等の
除去だけでなく、被処理水の殺菌又は防黴を同時に行う
ことが出来る。
When a DC voltage is applied to water to be treated such as cooling water for a heat exchanger according to the present invention, not only calcium ions and the like in the water to be treated are removed, but also the water to be treated in the water to be treated is It is considered that the liquid flows contact the three-dimensional electrodes of the three-dimensional electrode type electrolysis tank and undergo a strong oxidation-reduction reaction on their surface to weaken their sliding or die themselves. Therefore, according to the method of the present invention, not only the removal of calcium ions and the like, but also the sterilization or fungicide of the water to be treated can be performed simultaneously.

次に添付図面に基づいて本発明に使用できる電解槽の
好ましい例を説明するが、本発明方法に使用される電解
槽は、この電解槽に限定されるものではない。
Next, preferred examples of the electrolytic cell that can be used in the present invention will be described with reference to the accompanying drawings. However, the electrolytic cell used in the method of the present invention is not limited to this electrolytic cell.

第1図は、本発明の電解槽として使用可能な複極型固
定床式電解槽の一例を示す概略縦断面図、第2図は、第
1図の電解槽を熱交換器の前に設置した状態を示す概略
図である。
FIG. 1 is a schematic longitudinal sectional view showing an example of a bipolar fixed-bed type electrolytic cell that can be used as the electrolytic cell of the present invention, and FIG. 2 is a diagram in which the electrolytic cell of FIG. 1 is installed in front of a heat exchanger. It is the schematic which shows the state which performed.

上下にフランジ1を有する円筒形の電解槽本体2の内
部上端近傍及び下端近傍にはそれぞれメッシュ状の給電
用電極3と給電用陰極4が設けられている。電解槽本体
2は、長期間の使用又は再度の使用にも耐え得る電気絶
縁材料で形成することが好ましく、特に合成樹脂である
ポリエピクロルヒドリン、ポリビニルメタクリレート、
ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ
塩化エチレン、フェノール−ホルムアルデヒド樹脂等が
好ましく使用できる。正の直流電圧を与える前記給電用
陽極3は、例えば炭素材(例えば活性炭、炭、コーク
ス、石炭等)、グラファイト材(例えば炭素繊維、カー
ボンクロス、グラファイト等)、炭素複合材(例えば炭
素に金属を粉状で混ぜ焼結したもの等)、活性炭素繊維
不織布(例えばKE−1000フェルト、東洋紡株式会社)、
又はこれに白金、白金、パラジウムやニッケルを担持さ
せた材料、更に寸法安定性電極(白金族酸化物被覆チタ
ン材)、白金被覆チタン材、ニッケル材、ステンレス
材、鉄材等から形成される。又給電用陽極3に対向し負
の直流電圧を与える給電用陰極4は、例えば白金、ステ
ンレス、チタン、ニッケル、ハステロイ、グラファイ
ト、炭素材、軟鋼あるいは白金族金属をコーティングし
た金属材料等から形成されている。
A mesh-like power supply electrode 3 and a power supply cathode 4 are provided near the upper end and the lower end of a cylindrical electrolytic cell main body 2 having a flange 1 at the top and bottom, respectively. The electrolytic cell main body 2 is preferably formed of an electric insulating material that can withstand long-term use or re-use. In particular, synthetic resins such as polyepichlorohydrin, polyvinyl methacrylate,
Polyethylene, polypropylene, polyvinyl chloride, polyvinyl chloride, phenol-formaldehyde resin and the like can be preferably used. The power supply anode 3 for applying a positive DC voltage includes, for example, a carbon material (eg, activated carbon, charcoal, coke, coal, etc.), a graphite material (eg, carbon fiber, carbon cloth, graphite, etc.), a carbon composite material (eg, carbon to metal Activated carbon fiber non-woven fabric (for example, KE-1000 felt, Toyobo Co., Ltd.),
Alternatively, it is formed of a material having platinum, platinum, palladium or nickel supported thereon, a dimensionally stable electrode (a platinum group oxide-coated titanium material), a platinum-coated titanium material, a nickel material, a stainless steel material, an iron material, or the like. The power supply cathode 4 which faces the power supply anode 3 and applies a negative DC voltage is made of, for example, platinum, stainless steel, titanium, nickel, Hastelloy, graphite, carbon material, mild steel, or a metal material coated with a platinum group metal. ing.

前記両給電用電極3,4間には複数個の、図示の例では
3個の固定床5が積層され、かつ該固定床5間及び該固
定床5と前記両給電用電極3、4間に4枚の多孔質の隔
膜あるいはスペーサー6が挟持されている。各固定床5
は電解槽本体2の内壁に密着し固定床5の内部を通過せ
ず、固定床5と電解槽本体2の側壁との間を流れる冷却
液の漏洩流がなるべく少なくなるように配置されてい
る。隔膜を使用する場合には該隔膜として織布、素焼
板、粒子焼結プラスチック、多孔板、イオン交換膜等が
用いられ、スペーサーとして電気絶縁性材料で製作され
た織布、多孔板、網、棒状材等が使用される。
A plurality of, in the example shown, three fixed beds 5 are laminated between the two power feeding electrodes 3 and 4, and between the fixed floor 5 and between the fixed floor 5 and the two power feeding electrodes 3 and 4. Are sandwiched between four porous diaphragms or spacers 6. Each fixed floor 5
Are arranged so as to be in close contact with the inner wall of the electrolytic cell main body 2, do not pass through the inside of the fixed bed 5, and minimize the leakage flow of the cooling liquid flowing between the fixed bed 5 and the side wall of the electrolytic cell main body 2. . When a diaphragm is used, a woven fabric, a calcined plate, a particle sintered plastic, a perforated plate, an ion exchange membrane, or the like is used as the diaphragm, and a woven fabric, a perforated plate, a net, made of an electrically insulating material as a spacer. A rod-shaped material or the like is used.

このような構成から成る電解槽2は、第2図に示すよ
うにビルやマンション等の建築物11の屋上の熱交換器12
に近接してフィルター13とともに設置される。該建築物
11の各階には所定の冷暖房装置が設置され、前記熱交換
器12のフィン14に接触して冷却された熱交換器用冷却水
は冷却水供給配管15を通して前記冷暖房設備に供給され
て該設備に使用される循環水を冷却した後、ポンプ16に
より冷却水回収配管17を通して屋上に循環されフィルタ
ー13を通って固体状不純物が除去された後、前記電解槽
2に供給される。
As shown in FIG. 2, the electrolytic cell 2 having such a configuration is used as a heat exchanger 12 on the roof of a building 11 such as a building or an apartment.
It is installed together with the filter 13 in close proximity to. The building
A predetermined cooling and heating device is installed on each floor of 11, and the cooling water for the heat exchanger cooled by contacting the fins 14 of the heat exchanger 12 is supplied to the cooling and heating equipment through a cooling water supply pipe 15 and is supplied to the equipment. After cooling the circulating water to be used, the water is circulated on the roof through a cooling water recovery pipe 17 by a pump 16 and solid impurities are removed through a filter 13 and then supplied to the electrolytic cell 2.

該電解槽に供給された冷却水を第1図に矢印で示すよ
うに下方から供給しながら通電を行うと、前記各固定床
5が図示の如く下面が正に上面が負に分極して固定床5
内及び固定床5間に電位が生じ、該電解槽内を流通する
冷却水はこの電位により正又は負に分極された固定床5
に接触して該冷却水中の黴や細菌の殺菌及びカルシウム
やマグネシウムイオンの水酸化物としての析出除去等の
改質処理が行われて該電解槽2の上方から取り出され
て、第2図に示すように熱交換器に循環され、同様に熱
交換器用冷却水の処理が継続される。
When energization is performed while supplying the cooling water supplied to the electrolytic cell from below as shown by the arrow in FIG. 1, each fixed bed 5 is fixed with the lower surface polarized positively and the upper surface negatively polarized as shown in the figure. Floor 5
A potential is generated between the inside and the fixed bed 5, and the cooling water flowing in the electrolytic cell causes the fixed bed 5 polarized positively or negatively by this potential.
And then subjected to a modification treatment such as disinfection of mold and bacteria in the cooling water and precipitation removal of calcium and magnesium ions as hydroxides, taken out from the upper part of the electrolytic cell 2, and shown in FIG. As shown, the heat is circulated through the heat exchanger, and the treatment of the heat exchanger cooling water is similarly continued.

第3図は、本発明に使用できる複極型固定床式電解槽
の他の例を示すもので、該電解槽は第1図の電解槽の固
定床5の給電用陰極4に向かう側つまり陽分極する側に
メッシュ状の不溶性金属材料7を密着状態で設置したも
のであり、他の部材は第1図と同一であるので同一符号
を付して説明を省略する。
FIG. 3 shows another example of a bipolar-type fixed-bed electrolytic cell which can be used in the present invention. The electrolytic cell is a side of the fixed bed 5 of the electrolytic cell shown in FIG. The mesh-shaped insoluble metal material 7 is installed in a state of close contact on the side to be positively polarized, and the other members are the same as those in FIG.

直流や交流電圧が印加された固定床5でガス発生が伴
う場合には、酸素ガスが発生する固定床5の陽分極側が
消耗劣化する。図示の通りこの部分に不溶性金属材料7
を設置しておくと、該不溶性金属材料7の過電圧が固定
床5を形成する炭素系材料の過電圧より低いため殆どの
酸素ガスが前記不溶性金属材料7から発生し固定床5は
殆ど酸素ガスと接触しなくなるため、前記固定床5の溶
解は効果的に抑制される。又該電解槽2に供給された熱
交換器用冷却水は第1図及び第2図の場合と同様に処理
されカルシウム除去等の処理が行われる。
When gas generation accompanies the fixed bed 5 to which a DC or AC voltage is applied, the positively polarized side of the fixed bed 5 where oxygen gas is generated is worn and deteriorated. As shown, the insoluble metal material 7
Is installed, since the overvoltage of the insoluble metal material 7 is lower than the overvoltage of the carbon-based material forming the fixed bed 5, most of the oxygen gas is generated from the insoluble metal material 7, and the fixed bed 5 is almost free of oxygen gas. Since there is no contact, the dissolution of the fixed bed 5 is effectively suppressed. The cooling water for the heat exchanger supplied to the electrolytic cell 2 is treated in the same manner as in FIGS. 1 and 2, and a treatment such as calcium removal is performed.

第4図は、本発明に使用できる複極型固定床式電解槽
の他の例を示すものである。
FIG. 4 shows another example of a bipolar-type fixed-bed electrolytic cell that can be used in the present invention.

上下にフランジ21を有する円筒形の電解槽本体22の内
部上端近傍及び下端近傍にはそれぞれメッシュ状の給電
用陽極23と給電用陰極24が設けられている。電解槽本体
22は、長期間の使用又は再度の使用にも耐え得る電気絶
縁材料特に合成樹脂で形成することが好ましい。
A mesh-shaped power supply anode 23 and a power supply cathode 24 are provided near the upper end and the lower end of a cylindrical electrolytic cell main body 22 having upper and lower flanges 21, respectively. Electrolyzer body
22 is preferably formed of an electrical insulating material that can withstand long-term use or re-use, especially a synthetic resin.

前記両給電用電極23、24間には、導電性材料例えば炭
素系材料で形成された多数の固定床形成用粒子25と該固
定床形成用粒子25より少数の例えば合成樹脂製の絶縁粒
子28とがほぼ均一に混在している。該絶縁粒子28は、前
記給電用陽極23及び給電用陰極24が完全に短絡すること
を防止する機能を有している。
Between the power supply electrodes 23 and 24, a large number of fixed bed forming particles 25 formed of a conductive material such as a carbon-based material, and a smaller number of the fixed bed forming particles 25, such as synthetic resin insulating particles 28, are used. Are almost uniformly mixed. The insulating particles 28 have a function of preventing the power supply anode 23 and the power supply cathode 24 from being completely short-circuited.

このような構成から成る電解槽に下方から矢印で示す
ように熱交換器用冷却水を供給しながら通電を行うと、
前記各固定床形成用粒子25が給電用陽極23側が負に又給
電用陰極24側が正に分極して表面積が莫大な三次元電極
として機能し、第1図及び第3図の電解槽と同様にして
前記冷却水中の微生物の滅菌やカルシウムイオンやマグ
ネシウムイオンの除去等の改質処理が行われて該電解槽
の上方から取り出される。
When electricity is supplied to the electrolytic cell having such a configuration while supplying cooling water for a heat exchanger as indicated by an arrow from below,
Each of the fixed bed forming particles 25 functions as a three-dimensional electrode having an enormous surface area by polarizing the power supply anode 23 side negatively and the power supply cathode 24 side positively, similar to the electrolytic cell of FIG. 1 and FIG. Then, the cooling water is subjected to a reforming treatment such as sterilization of microorganisms and removal of calcium ions and magnesium ions, and is taken out from above the electrolytic cell.

(実施例) 以下に本発明方法による熱交換器用冷却水改質処理の
実施例を記載するが、該実施例は本発明を限定するもの
ではない。
(Example) Hereinafter, an example of a cooling water reforming treatment for a heat exchanger according to the method of the present invention will be described, but the example does not limit the present invention.

実施例1 透明な硬質ポリ塩化ビニル樹脂製の高さ400mm、内径6
00mmのフランジ付円筒形である第1図に示した電解槽を
第2図に示すように、クーリングタワートフィルタ設備
間に設置した。該電解槽内には、炭素繊維から成る直径
600mm、厚さ10mmの固定床15個を、開口率80%で直径600
mm及び厚さ1.2mmのポリエチレン樹脂製隔膜16枚で挟み
込み、上下両端の隔膜にそれぞれ白金をその表面にメッ
キしたチタン製である直径580mm厚さ1.0mmのメッシュ状
給電用陽極及び給電用陰極を接触させて設置した。
Example 1 Transparent rigid polyvinyl chloride resin, height 400 mm, inner diameter 6
The electrolytic cell shown in FIG. 1 having a 00 mm cylindrical shape with a flange was installed between the cooling tower filter equipment as shown in FIG. The diameter of the electrolytic cell is made of carbon fiber.
15 fixed floors with a thickness of 600mm and a thickness of 10mm are created with an aperture ratio of 80% and a diameter of 600
A mesh-shaped power supply anode and a power supply cathode with a diameter of 580 mm and a thickness of 1.0 mm, which are made of titanium in which platinum is plated on the surfaces of upper and lower ends, respectively, sandwiched between 16 polyethylene resin membranes having a thickness of 1.2 mm and a thickness of 1.2 mm. It was installed in contact.

熱交換器用冷却水を10トン/の速度で前記電解槽に
給電し、かつ前記給電用電極間に第1表に示す電解電圧
を印加して前記冷却水の処理を行った。該処理操作にお
ける肉眼観察による発生ガスの有無、電解槽通過前後の
冷却水のカルシウム及びマグネシウムイオン濃度、細菌
数及び消費電力量を第1表に纏めた。
The cooling water for the heat exchanger was supplied to the electrolytic cell at a speed of 10 tons /, and the electrolytic voltage shown in Table 1 was applied between the power supplying electrodes to perform the treatment of the cooling water. Table 1 summarizes the presence or absence of generated gas by visual observation, the concentrations of calcium and magnesium ions in the cooling water before and after passing through the electrolytic cell, the number of bacteria, and the amount of power consumption in the treatment operation.

第1表から熱交換器用冷却水は電解槽で処理されるこ
とによりカルシウム及びマグネシウムイオン濃度及び細
菌数が大幅に減少することが判る。
From Table 1, it can be seen that the calcium and magnesium ion concentration and the number of bacteria are significantly reduced by treating the cooling water for the heat exchanger in the electrolytic cell.

30日経過後に通電を停止し電解槽を解体して固定床の
状態を観察したところ変化は見られなかった。
After 30 days, the power supply was stopped, the electrolytic cell was disassembled, and the state of the fixed bed was observed. No change was observed.

実施例2 実施例1の電解槽本体及び給電用陽陰極を使用し、該
給電用電極間に、粒径5〜10mmのグラファイト粒子と硬
質ポリ塩化ビニル樹脂製で粒径5〜10mmの絶縁粒子を重
量比4:1で均一に混合した混合粒子を充填し、第4図に
示す電解槽を構成した。
Example 2 Using the electrolytic cell body of Example 1 and a positive electrode for power supply, graphite particles having a particle size of 5 to 10 mm and insulating particles made of hard polyvinyl chloride resin and having a particle size of 5 to 10 mm were provided between the power supply electrodes. Was mixed at a weight ratio of 4: 1 to form an electrolytic cell shown in FIG.

この電解槽を実施例1と同様にクーリングタワーに近
接させて設置し、同様の条件で熱交換器クーリングタワ
ー用冷却水の処理を行い、該処理操作における肉眼観察
による発生ガスの有無、電解槽通過前後の冷却水のカル
シウム及びマグネシウムイオン濃度、細菌数及び消費電
力量のそれぞれ結果を第2表に纏めた。
This electrolytic cell was placed close to the cooling tower in the same manner as in Example 1, the cooling water for the heat exchanger cooling tower was treated under the same conditions, the presence or absence of generated gas by visual observation in the treatment operation, before and after passing through the electrolytic cell. Table 2 summarizes the results of the calcium and magnesium ion concentrations, the number of bacteria, and the power consumption of the cooling water.

第2表から熱交換器用冷却水のカルシウム及びマグネ
シウムイオン濃度及び細菌数は電解槽で処理されること
により大幅に減少することが判る。
Table 2 shows that the concentrations of calcium and magnesium ions and the number of bacteria in the cooling water for the heat exchanger are significantly reduced by the treatment in the electrolytic cell.

実施例3 実施例1の電解槽を使用し、供給する熱交換器用冷却
水のレイノルズ数を変化させて滅菌率及びカルウシム及
びマグネシウムイオンの除去率への影響を調べた。その
結果を第3表に示した。なお前記冷却水の電解槽入口で
の細菌数は焼413000個/、カルウシム及びマグネシウ
ムイオンは全体で33ppmであった。
Example 3 Using the electrolytic cell of Example 1, the effect of the supplied cooling water for the heat exchanger on the sterilization rate and the removal rate of calcium and magnesium ions was examined by changing the Reynolds number. The results are shown in Table 3. The number of bacteria at the inlet of the cooling water electrolytic cell was 413,000 / calcium, and the total amount of calcium and magnesium ions was 33 ppm.

第3表から、レイノルズ数が500未満であると 殺菌率「〔(入口細菌数)−(出口細菌数)〕÷(入口
細菌数)×100」が不十分で電解槽出口から排出される
処理済被処理水中にかなりの細菌が残存するが、レイノ
ルズ数が500以上になるとほぼ完全に滅菌された被処理
水が電解槽から取り出されることが判る。又被処理水の
カルシウム及びマグネシウムイオン濃度も33ppmから10p
pm未満に減少することが判る。
From Table 3, if the Reynolds number is less than 500 The sterilization rate “[(number of bacteria in the inlet) − (number of bacteria in the outlet)] ÷ (number of bacteria in the inlet) × 100” is insufficient, and considerable bacteria remain in the treated water discharged from the outlet of the electrolytic cell. It can be seen that when the Reynolds number becomes 500 or more, almost completely sterilized water to be treated is taken out of the electrolytic cell. Calcium and magnesium ion concentration of the water to be treated is 33ppm to 10p
It can be seen that it decreases to less than pm.

(発明の効果) 本発明方法は、カルシウム、マグネシウム及び珪素等
のイオンを含有する被処理水を三次元電極式電解槽に供
給し、前記被処理水中の前記カルシウム、マグネシウム
及び珪素から選択される1又は2以上のイオンをその水
酸化物又は酸化物に変換し前記三次元電極上に析出させ
て前記被処理水から除去する被処理水の電気化学的処理
方法である(請求項1)。
(Effect of the Invention) In the method of the present invention, water to be treated containing ions such as calcium, magnesium and silicon is supplied to a three-dimensional electrode type electrolytic cell, and is selected from the calcium, magnesium and silicon in the water to be treated. This is a method for electrochemically treating water to be treated, wherein one or more ions are converted to a hydroxide or oxide thereof, deposited on the three-dimensional electrode, and removed from the water to be treated (claim 1).

水道水に含まれるカルシウムイオンやマグネシウムイ
オン等の配管の内壁への水酸化物等としての析出による
配管の閉塞は大きな問題となっているが、本発明方法に
よると前記カルシウムイオンを含有する被処理水を莫大
な表面積を有する分極した三次元電極式電解槽に供給す
ると、前記イオンは分極した三次元電極上で還元されて
水酸化カルシウムや水酸化マグネシウムとして該陰極面
上へ析出して被処理水冷却水から除去され、それと同時
に被処理水に含まれる微生物の滅菌も行われる。
Blockage of the pipe due to precipitation of hydroxide or the like on the inner wall of the pipe such as calcium ions or magnesium ions contained in tap water is a major problem, but according to the method of the present invention, the treatment containing the calcium ion When water is supplied to a polarized three-dimensional electrode type electrolytic cell having an enormous surface area, the ions are reduced on the polarized three-dimensional electrode and deposited on the cathode surface as calcium hydroxide or magnesium hydroxide to be treated. It is removed from the water cooling water, and at the same time, the microorganisms contained in the water to be treated are sterilized.

本発明方法では前述の通り莫大な表面積を有する三次
元電極を使用するため卓越したイオン除去効率が達成さ
れ、かつ電解槽に被処理水を供給するという比較的簡単
な操作で大量の被処理水を処理することが出来る。
As described above, the method of the present invention uses a three-dimensional electrode having an enormous surface area to achieve excellent ion removal efficiency, and a large amount of water to be treated by a relatively simple operation of supplying the water to the electrolytic cell. Can be processed.

本発明方法は被処理水が熱交換器用冷却水の場合に特
に効果があり(請求項2)、カルシウムイオン、マグネ
シウムイオンあるいは珪素イオンがその水酸化物又は酸
化物として熱交換面に析出して熱交換効率を低下させる
ことがなくなり、かつ熱交換器の配管の閉塞も防止す
る。
The method of the present invention is particularly effective when the water to be treated is cooling water for a heat exchanger (Claim 2), and calcium ions, magnesium ions or silicon ions precipitate as hydroxides or oxides on the heat exchange surface. The heat exchange efficiency is not reduced, and the pipes of the heat exchanger are not blocked.

又被処理水を三次元電極式電解槽にレイノルズ数が50
0以上になるように供給すると(請求項3)、前記被処
理水が横方向にも十分移動して前記三次元電極に十分に
接触して該被処理水の電気化学的な処理を効率良く行う
ことが出来る。
The water to be treated is placed in a three-dimensional electrode type electrolytic cell with a Reynolds number of 50.
When the water to be treated is supplied so as to be 0 or more (claim 3), the water to be treated moves sufficiently in the lateral direction and sufficiently contacts the three-dimensional electrode to efficiently perform the electrochemical treatment of the water to be treated. You can do it.

更に本発明方法で発生する電解ガスは爆発限界内の酸
素ガス及び水素ガスの混合ガスとなり密閉系で処理を行
うと爆発の危険がある。従って電解槽の出口近傍に電解
により発生するガスの分離手段及び分離されたガスの希
釈手段を設けて、爆発の危険を回避することができる
(請求項4)。
Furthermore, the electrolytic gas generated by the method of the present invention becomes a mixed gas of oxygen gas and hydrogen gas within the explosion limit, and there is a danger of explosion if the treatment is performed in a closed system. Therefore, by providing a means for separating gas generated by electrolysis and a means for diluting the separated gas near the outlet of the electrolytic cell, the danger of explosion can be avoided (claim 4).

更に本発明の電解槽では該電解槽に漏洩電流が生じ該
漏洩電流が他の金属製部材例えば熱交換器に流れ込み、
該部材に溶出等の電気化学的な腐食を生じさせることが
ある。これを防止するためには給電用陽陰極が相対しな
い適切な箇所に、被処理水より導電性の高い部材をその
一端を接地可能なように設置して前記漏洩電流を遮断す
ることが好ましい(請求項4)。
Furthermore, in the electrolytic cell of the present invention, a leakage current occurs in the electrolytic cell, and the leakage current flows into another metal member such as a heat exchanger,
Electrochemical corrosion such as elution may occur on the member. In order to prevent this, it is preferable to cut off the leakage current by installing a member having higher conductivity than the water to be treated so that one end thereof can be grounded at an appropriate place where the positive cathode for power supply does not face ( Claim 4).

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明方法の電解槽として使用可能な複極型
固定床式電解槽の一例を示す縦断面図、第2図は、第1
図の電解槽の設置状況を示す概略図、第3図は、他の複
極型固定床式電解槽の一例を示す縦断面図、第4図は、
更に他の複極型固定床式電解槽の一例を示す縦断面図で
ある。 1、21……フランジ、2、22……電解槽本体 3、23……給電用陽極、4、24……給電用陰極 5……固定床、6……スペーサー 7……不溶性金属材料 11……建築物、12……熱交換器 13……フィルター、14……フィン 15……冷却水供給用配管、16……ポンプ 17……冷却水回収用配管 25……固定床形成用粒子、28……絶縁粒子
FIG. 1 is a longitudinal sectional view showing an example of a bipolar fixed-bed type electrolytic cell usable as an electrolytic cell in the method of the present invention, and FIG.
FIG. 3 is a schematic view showing the installation state of the electrolytic cell in the figure, FIG. 3 is a longitudinal sectional view showing an example of another bipolar-type fixed-bed electrolytic cell, and FIG.
It is a longitudinal cross-sectional view which shows an example of another bipolar type fixed bed type electrolytic cell. 1, 21 flange, 2, 22 electrolytic cell body 3, 23 anode for power supply, 4, 24 cathode for power supply 5, fixed floor, 6 spacer 7, insoluble metal material 11 … Buildings, 12… Heat exchangers 13… Filters, 14… Fins 15… Cooling water supply pipes, 16… Pumps 17… Cooling water recovery pipes 25 …… Fixed bed forming particles, 28 …… insulating particles

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】カルシウム、マグネシウム及び珪素から選
択される1又は2以上の金属のイオンを含有する被処理
水を、電圧の印加により分極した三次元電極を有する三
次元電極式電解槽に供給し、前記被処理水中の前記カル
シウム、マグネシウム及び珪素から選択される1又は2
以上の金属イオンをその水酸化物又は酸化物に変換し前
記三次元電極上に析出させて前記被処理水から除去する
被処理水の電気化学的処理方法。
1. A treatment water containing ions of one or more metals selected from calcium, magnesium and silicon is supplied to a three-dimensional electrode type electrolytic cell having a three-dimensional electrode polarized by application of a voltage. 1 or 2 selected from the calcium, magnesium and silicon in the water to be treated
An electrochemical treatment method for the water to be treated, wherein the metal ions are converted into their hydroxides or oxides, deposited on the three-dimensional electrode, and removed from the water to be treated.
【請求項2】被処理水が熱交換器用冷却水である請求項
1に記載の方法。
2. The method according to claim 1, wherein the water to be treated is cooling water for a heat exchanger.
【請求項3】被処理水を500以上のレイノルズ数で三次
元電極式電解槽を流通させながら前記被処理水の処理を
行う請求項1又は2に記載の方法。
3. The method according to claim 1, wherein the water to be treated is treated while flowing the water to be treated through a three-dimensional electrode type electrolytic cell at a Reynolds number of 500 or more.
【請求項4】その出口近傍に電解により発生するガスの
分離手段及び分離されたガスの希釈手段が設けられた電
解槽を使用する請求項1から3までのいずれかに記載の
方法。
4. The method according to claim 1, wherein an electrolytic cell provided with a means for separating gas generated by electrolysis and a means for diluting the separated gas is provided near the outlet.
【請求項5】三次元電極式電解槽内の給電用陽陰極が相
対しない該給電用電極背面及び/又は前記電解槽の出入
口配管内に、被処理水より導電性の高い部材をその一端
を接地可能に設置して処理を行う請求項1から4までの
いずれかに記載の方法。
5. A member having higher conductivity than water to be treated is provided on the back surface of the power supply electrode and / or in the inlet / outlet pipe of the electrolytic cell where the positive electrode for power supply in the three-dimensional electrode type electrolytic cell is not opposed. The method according to any one of claims 1 to 4, wherein the processing is performed by being installed so as to be grounded.
JP12255190A 1990-05-11 1990-05-11 Electrochemical treatment method for water to be treated Expired - Lifetime JP2971511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12255190A JP2971511B2 (en) 1990-05-11 1990-05-11 Electrochemical treatment method for water to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12255190A JP2971511B2 (en) 1990-05-11 1990-05-11 Electrochemical treatment method for water to be treated

Publications (2)

Publication Number Publication Date
JPH0418982A JPH0418982A (en) 1992-01-23
JP2971511B2 true JP2971511B2 (en) 1999-11-08

Family

ID=14838677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12255190A Expired - Lifetime JP2971511B2 (en) 1990-05-11 1990-05-11 Electrochemical treatment method for water to be treated

Country Status (1)

Country Link
JP (1) JP2971511B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4126307B2 (en) 2005-03-16 2008-07-30 株式会社コガネイ Circulating water purification method and apparatus
JP4974782B2 (en) * 2006-06-30 2012-07-11 三洋電機株式会社 Ion removal apparatus and method of using the same
JP4686605B2 (en) 2006-08-08 2011-05-25 株式会社コガネイ Water purification method and apparatus
WO2008026462A1 (en) 2006-08-29 2008-03-06 Koganei Corporation Water purification method and system therefor
CN102963989B (en) * 2012-09-24 2015-12-16 江苏江华水处理设备有限公司 A kind of descaling method of inhibition sterilization

Also Published As

Publication number Publication date
JPH0418982A (en) 1992-01-23

Similar Documents

Publication Publication Date Title
US5958213A (en) Water treatment method and apparatus for water containing oil droplets
JPH10151463A (en) Water treatment method
JP2008307524A (en) Water treatment device
EP3363931A1 (en) Filter press device for electroplating metal from solutions, which is formed by separating elements formed by ion-exchange membranes, forming a plurality of anolyte and catholyte chambers, the electrodes being connected in series with automatic detachment of the metallic product
JP2971511B2 (en) Electrochemical treatment method for water to be treated
CN111634979B (en) Device for removing chloride ions in desulfurization wastewater by constructing three-dimensional electrode system through hydrotalcite-based particle electrode
JP2923108B2 (en) Method for removing impurities from printed circuit board washing wastewater
JP3214724B2 (en) Fixed-bed type three-dimensional electrode type electrolytic cell
CN104817137B (en) A kind of standard zero polar distance electrolytic bath processed for water
JP2008279408A (en) Water treatment apparatus and water treatment system
JP3040549B2 (en) High purity water production method
JPH03224682A (en) Electrochemical treatment of liquid to be treated
JP3180318B2 (en) Electrochemical treatment of treated water containing microorganisms
JP3020551B2 (en) Electrochemical treatment of treated water containing microorganisms
JPH0416286A (en) Electrochemical treatment of water to be treated
JPH0788474A (en) Production of high purity water
JPH04219194A (en) Electrochemical treatment of water to be treated
JP2000005755A (en) Treatment of water and device therefor
JPH10174975A (en) Fixed bed type porous electrode-containing electrolytic bath and method and apparatus for treating water using the same
JPH11286796A (en) Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell
JP3664274B2 (en) Electrolytic treatment method of water to be treated
JPH09314149A (en) Gasket for fixed bed type three dimensional electrode electrolytic bath, fixed bed type three dimensional electrode electrolytic bath, and water treatment method
JPH0416280A (en) Electrochemical treatment of water containing microorganism
JPH10165940A (en) Bipolar fixed-bed three-dimensional electrode electrolyzer, water-treating method using the same, and water-treating apparatus and water-purifying apparatus
JPH10146588A (en) Apparatus and method for water treatment